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Abstract 
This paper analyzes the surface appearance of a textured 

fluorescent object. First, the bispectral radiance factor of the 
fluorescent object is decomposed into the fluorescent emission 
(luminescent) component and the reflection component, which are 
summarized as the Donaldson matrix. Second, the observed 
spectral images are described by a multiplication of two factors: 
one factor is spectral functions depending on wavelength and 
another is the weighting factors representing the surface texture.   
An algorithm is proposed to estimate the bispectral functions and 
the location weights from the spectral images observed under 
multiple illuminants. Third, the two textured images of the 
reflection component and the luminescent component are 
constructed using the estimates of the spectral function and the 
location weights. Also the surface appearances of the same 
fluorescent object under arbitrary illumination are constructed by 
combining the two component images. 

Introduction 
Fluorescent materials are used in painted objects, papers, 

plastics, clothes, and all sorts of things that we may come across 
each day. Fluorescence is a luminosity phenomenon where a 
material is first excited by light radiation in a specific wavelength 
region, and then the excited state relaxation emits light radiation 
in another longer wavelength region [1],[2]. Many fluorescent 
objects appear brighter and more vivid than the original object 
color based on a non-fluorescent light reflection.  The fluorescent 
characteristics are described in terms of the bispectral radiance 
factor. The radiance factor is a function of two wavelength 
variables: the excitation wavelength of incident light and the 
emission/reflection wavelength. The bispectral radiance factor can 
be summarized as a Donaldson matrix [3], which is an illuminant 
independent matrix representation of the bispectral radiance factor 
of a target object.  

The bispectral radiance factor can be measured using two 
monochromators normally. Traditionally, standard procedures for 
using two monochromator methods were proposed by the CIE [4], 
and several standardization and accuracy in fluorescent radiance 
measurement were discussed in various fields [5]-[8]. The two-
monochromator method is precise and direct in order to measure 
the bispectral radiance factor. However, an essential problem of 
the two-monochromator method is time-consuming and expensive, 
which is confined in the laboratory setup. 

We proposed a method for estimating the bispectral 
Donaldson matrices of fluorescent objects by using only two 
illuminant projections [9]. We also discussed the mutual 
illumination phenomenon between two fluorescent objects [10]-
[12].  By knowing the Donaldson matrices, appearances of the 
fluorescent objects are reconstructed under different illuminations 
[13]. In the previous studies, we supposed that the fluorescent 

objects had only smoothed matte surfaces and the illumination 
was uniform. However, we note that the perceived texture of the 
image includes not only surface texture but also the non-
uniformity and shading effect by illumination conditions. Also, 
most material surfaces are not always smoothed but have some 
uneven texture such as irregularities, roughness, and patterns 

In this paper we analyze the surface appearance of a 
fluorescent object with textures by surface geometries and 
roughness. We describe the bispectral radiance factor of the 
fluorescent object by the Donaldson matrix. First, we show that 
the observed spectral image are modeled by a multiplication of 
two factors of the spectral functions depending on wavelength and 
the location weights representing the texture information of the 
surface.  Second, a nonlinear algorithm is proposed to estimate the 
spectral reflectance, the bispectral luminescent radiance factor, 
and the texture information at each pixel point. Third, the 
observed image is decomposed into two textured images of the 
reflection component and the luminescent component. The 
surface appearances of the textured fluorescent object under 
arbitrary illumination can be constructed by combining the two 
component images. 

 

Bispectral Properties of Fluorescent objects  
The bispectral properties of a fluorescent object can be 

explored using two monochromators, where one is placed in the 
irradiating beam and the other is placed in the viewing beam. Let 
D be a Donaldson matrix representing the tabular form of complete 
bispectral radiance factor ( , )em exD λ λ . The excitation wavelength

exλ  corresponds to one direction in the array and the emission 

wavelength emλ  corresponds to the other direction. Figure 1 

illustrates the Donaldson matrix of a yellow paint containing a 
fluorescent color [9]. 

 

 

Figure 1. Bispectral Donaldson matrix obtained from a yellow paint containing 
a green fluorescent color.                                     
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The Donaldson matrix was measured with our bispectrometer 
system in the range [350, 700nm] with 5nm intervals, where 
monochromatic light corresponding to each excitation wavelength 
was projected on the surface in 5nm step. Figure 1 shows a 71 × 71 
square array of the matrix of bispectral radiance factor. The 
diagonal represents the reflected radiance factor that produces 
yellow color. The reason of why the matrix is triangular and the 
luminescent component is located only in the lower half of the off-
diagonal is that the luminescent energy is emitted at longer 
wavelength than each excitation wavelength. This shift of 
wavelength is called Stokes shift [2]. 

In Figure 1, a hump in the range [500, 600nm] of emission 
wavelength represents the luminescent radiance factor. The 

spectral radiance factor ( , )em exLD λ λ  is a function of both emission 

and excitation wavelengths. We can assume that the luminescent 
radiance factor can be separated into the emission and excitation 
wavelength components as ( , ) ( ) ( )L em ex em exD λ λ α λ β λ= . A general 

form of the Donaldson matrix D with the above properties can be 
represented in an N × N matrix as 
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where  (i = 2, 3, .., N),  (i = 2, 3, .., N), and  (i = 2, 3, .., N-1)  
represent, respectively, the reflected radiance factor corresponding 
to surface-spectral reflectance, the emission spectrum, and the 
excitation spectrum. 

Observation Model 
Let us suppose that a fluorescent object with matte surface is 

illuminated uniformly with a single light source. Let ( )S λ , ( )α λ , 

and ( )β λ be the continuous functions of the surface-spectral 
reflectance, the emission spectrum, and the excitation spectrum of 
the object, respectively. Also let ( )E λ be the illuminant spectrum 
of the light source. We suppose that the object surface is not 
necessarily smooth but a textured rough surface. 

The observations of spectral radiances at location x=(x, y) of 
the object surface are described as 
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where the interval of integration is [350, emλ ] because the 

excitation starts from about 350nm. The weights 1( )f x and 2 ( )f x to 

the spectral functions are variable of location x and independent of 
wavelength λ . The location weights represent the texture 
information of the surface. The two terms in Eq.(2) represent, 

respectively, the diffuse reflection component and the fluorescent 
emission component. 

We can summarize the observation model in matrix form.  Let 
s, α and e be N-dimensional column vectors representing the 
reflectance, emission, and illuminant spectra, respectively. Also, 
let f(x) be two-dimensional column vector representing the 
location weights, that is, the texture information, and A be an N× 2 
matrix as follows: 

[ ]
[ ]1 2

,

( ) ( ) ( )
t

f f

=

=

A s e c α

f x x x

 
 (3) 

where symbols   and t represent element-wise multiplication and 
matrix transposition, respectively. Then the observations are then 
modeled in a simple matrix equation as 

( ) ( )=y x Af x . (4) 

Estimation Algorithm of Spectral Functions 
and Location Functions  

The Donaldson matrix is composed of the surface-spectral 
reflectance component in the diagonal and the luminescent 
component in the off-diagonal. The luminescent component is 
further decomposed into the emission and excitation spectral 
components. We consider that the target fluorescent object has a 
specific Donaldson matrix, and the weighted matrix is observed at 
each pixel point.  The weighting coefficient is variable of location, 
which represents the surface texture. We should note that the 
bispectral functions and the two-dimensional location weighting 
functions are independent of illuminant.  

We develop a method to estimate the two unknown factors: 
the bispectral functions and the location functions from the 
observed spectral images of a fluorescent object.  This estimation 
leads to a nonlinear estimation problem to minimize a residual 

error 
2−y Af , because both A and f are unknown in Eq.(4), even 

though the illuminant e is given. This paper proposes an iterative 
approach to solve this nonlinear estimation problem. The unknown 
quantities to be estimated are the spectral functions ( )S λ , ( )α λ , 

( )β λ  and the location functions 1( )f x and 2( )f x . We note here 

that the wavelength range of fluorescent emission ( )β λ is narrow, 
and can be measured by using a separate way such as the use of a 
UV light source. So we assume that the wavelength range of 

( ) 0β λ > is given. Moreover, we assume that the texture is based 
on surface roughness, and the averages of the location weights 
over the entire surface are one as [ ]t

E[ ( )] 1 1=f x . 

Our iterative approach is based on an alternate estimation of 
the spectral functions and the location weights. Instead of the joint 
minimization over variables λ and x, we separate the minimization 
into two steps of a linear least squares estimation.  The observation 
equations with two variables λ and x are expressed in two 
equivalent forms as follows:   
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and 

IS&T International Symposium on Electronic Imaging 2017
Material Appearance 2017 43



 

 

[ ] 1

2

( )
( , ) ( ) ( ) ( ) ( )

( )

f
y S E C

f
λ λ λ α λ λ  

=  
 

x
x

x
. (6) 

Eq. (5) is used for determining the spectral functions when the 
location weights are fixed. Also Eq. (6) is used for determining the 
location weights when the spectral functions are fixed. Therefore, 
minimization of the residual error is performed by estimating the 
spectral functions and the location weights alternately, based on 
the linear least square minimization with non-negativity constraints. 
All estimates are updated in two steps. We repeat this iterative 
process by starting from Eq.(5) with appropriate initial conditions 
of the location weighting functions. We also need the initial 
condition for the spectral function ( )C λ . 

The spectral functions ( )β λ and ( )C λ  are estimated in a 
separate way without using the iterative algorithm. When the 
spectral reflectance estimation of ( )S λ is updated at each step of 

the iterative process, the excitation spectrum ( )β λ and the spectral 

function ( )C λ can be estimated by substituting the reflectance 

estimate ˆ( )S λ into the following relationships: 

( )ˆ( ) ( ) 1 ( )Q Sβ λ λ λ= − ,                                                      (7) 

350

( ) ( ) ( )C E d
λ

λ β λ λ λ= ,                                                  (8) 

where ( )Q λ is the luminescence efficiency, and the norm of ( )β λ
is defined as ( ) 1β λ =  (see [9]). 

In a practical iterative estimation algorithm, we use the initial 
conditions of a perfect flat surface as 1 2( ) ( ) 1f f= =x x at all x, and 

a constant excitation spectrum as ( ) 0.5.β λ =  
In the wavelength range where there is no fluorescent 

emission of ( ) 0α λ = , the above observation equations are 
simplified and reduced to 

1( , ) ( ) ( ) ( )y f S Eλ λ λ=x x .                                                    (9)  

Therefore, in this range, the spectral reflectance estimate is 
calculated using all observations and the previously estimated 
location weight over at entire image region as follows: 
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 If multiple light sources rather than one light are available for 
illuminating the target fluorescent object from the same lighting 
position, the estimation accuracy of the spectral functions and the 
location functions is certainly improved. Suppose that n light 
sources are available. Then the observation equations by the 
spectral imaging system for the same fluorescent object are 
expressed as 
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In this case the above two equations are used for estimating the 
spectral functions and the location weights alternately, based on 
the linear least square minimization with non-negativity constraints.  
The iterative computational procedure and the initial conditions are 
the same as before. 

Appearance Decomposition and 
Reconstruction 

Figure 2 shows the flow for decomposing the appearance of a 
fluorescent object and reconstructing the appearance under 
different illuminant. The iterative algorithm presented in the 
previous section estimates the Donaldson matrix, constructed with 
the three spectral functions of reflection, emission, and excitation 
from the observed spectral image. The algorithm also estimates the 
location weights for the reflection spectrum and the emission 
spectrum. The location weights represent the local texture of the 
object surface. The observed image is decomposed into two 
textured images of the reflection component and the fluorescent 
self-luminescent component. 

 

 
Figure 2. Flow for decomposing the appearance of a fluorescent object and 
reconstructing the appearance under different illuminant. 

Next, we consider appearance reconstruction of the same 

fluorescent object under different light sources.  Let RD̂ and LD̂
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be the estimated reflection component and the luminescent 

component of the Donaldson matrix, respectively.  Also let 1̂( )f x

and 2̂ ( )f x be the estimated location weights for the two 

components.  Then the spectral vector observed under an arbitrary 
illuminant e can be predicted by a weighted sum of the two 
spectral components as follow: 

1 R 2 L
ˆ ˆˆ ˆ( ) ( ) ( )f f= +y x x D e x D e .                                           (13) 

The above equation means that the two component images are 
combined into a synthesized image to reconstruct the appearance 
of the fluorescent object observed under the illuminant e. The 

reflection component RD̂ e  depends directly on the illuminant. On 

the other hand, note that the luminescent component LD̂ e  has 

always the same spectral composition ( )α λ independently of the 
illuminant, although the intensity depends on the illuminant. 

Experimental Results 
The spectral imaging system used in the experiments 

consisted of a monochrome CCD camera (QImaging Retiga 1300) 
with 12-bit dynamic range and Peltier Cooling, a VariSpec Liquid 
Crystal Tunable filter (LCTF), and a personal computer. Figure 3 
shows the total spectral sensitivity functions of the imaging system, 
including the filter transmittances and the monochrome camera 
sensitivity. The spectral images were captured at the equal 
wavelength intervals of 5 nm. The exposure time of the camera 
was adjusted according to the total sensitivity function in each 
channel so that the captured spectral image intensity was equal in 
every channel.  We operated this camera in the visible range [400, 
700 nm]. We used two light sources of an incandescent lamp and 
an artificial sunlight lamp (SERIC XC-100). Figure 4 shows the 
spectral power distributions for the two light sources. 

The feasibility of the proposed method was examined using 
textured fluorescent samples. The sample were made by painting 
Acryl Gouache Fluorescent paints on wall papers with rough 
surface. The size of the samples were 10 cm by 10 cm, which were 
uniformly illuminated from the vertical direction and photographed 
from the front with the spectral imaging system. Figures 5 (a) and 
(b) show the color pictures of the captured spectral images for an 
orange fluorescent board with a textured surface under the two 
light sources.  The image size is 500 × 500 pixels.  We see surface 
roughness or texture in the captured images. 

The proposed algorithm to estimate the spectral functions 
and the location weights was executed with the initial conditions of 

1( )f x and 2 ( )f x  being constant and ( )β λ  being constant. The 

iterative algorithm converged after about three iterations. The 

average of the residual error 
2−y Af was 52.2. Figures 6 and 7 

show the estimation results of the spectral functions. The solid 
curves in Figure 6 represent the estimates of ( )S λ and ( )α λ . The 

solid curve in Figure 7 represents the estimate of ( )β λ . The broken 
curves in both figures represent the estimation results by using the 
two illuminant projection method [9], where the  samples were 
measured using a spectro-radiometer with the same light sources. 
In this case, we neglected the texture of the surface and assumed a 
flat surface without texture. Figure 8 shows the Donaldson matrix 
of the orange fluorescent object, which was constructed with the 
estimated spectral functions. 

 

Figure 3. Total spectral sensitivity functions of the imaging system used in 
experiments. 

 

Figure 4. Spectral power distributions of an incandescent light source and an 
artificial sunlight source used in experiments. 

    

 (a) Incandescent light                       (b) Sunlight 
Figure 5. Color pictures of the captured spectral images for an orange 
fluorescent board with a textured surface under the two light sources. 

 

 

Figure 6. Estimation results for the spectral functions of reflectance and 
fluorescent emission.  The broken curves represent the estimation results by 
the two illuminant projection method. 
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Figure 7. Estimation results for the excitation spectral function. The broken 
curve represent the estimation results by the two illuminant projection method. 

 
Figure 8. Donaldson matrix constructed with the estimated spectral functions. 

            

  

Figure 9. Estimated location weights representing texture patterns. (Left and 
right: the reflection component and the luminescent component. Upper and 
lower: the front view and the slant view.) 

Figure 9 shows the estimated location weights 1( )f x and 2 ( )f x  

representing texture patterns for the reflection component and the 
luminescent component, where the front view and the slant view 
are depicted for the two components. We can see that, although the 
texture of the reflection component is similar to the texture of the 

fluorescent self-luminescence component, the both textures are not 
necessarily perfect coincident. 

Figures 10 (a) and (b) show the two textured component 
images of reflection and luminescence based on Figure 2, under 
the incandescent light and the sunlight. We should note that in 
Figure 10 (b) the two luminescent component images have the 
same chromaticity even in different illuminants. Figure 10 (c) 
shows the reconstructed images of the same object surface under 
the two light sources by combining the component images (a) and 
(b).  Note that the appearances of the object on the reconstructed 
images are close to the ones on the original observed image in 
Figure 5. 

Finally, we constructed the appearance of the same 
fluorescent object surface under different illuminant along the flow 
in Figure 2. Figures 11 (a) and (b) demonstrate the reflection 
component image and the luminescent component image for the 
same object under D65 illuminant. In this image rendering, the 
spectral power distribution of the D65 light source in X-Rite 
Macbeth Judge II was used. These were combined into the 
synthesized image to construct the appearance under D65 as shown 
in Figure 12 (a). Figure 12 (b) is a real image of the same object 
observed in the viewing booth of X-Rite Macbeth Judge II. The 
appearance of the constructed image is very close to the real 
appearance. 

 
 

   

                 (a)                                      (b)                                     (c) 
                                             Incandescent light 

   
                 (a)                                      (b)                                     (c) 
                                                      Sunlight 
Figure 10. Textured component images (a) and (b) of reflection and 
luminescence under the incandescent light and the sunlight, and 
reconstructed images (c) of the same object surface by combining the 
component images (a) and (b). 

                

                          (a)                                                  (b) 
Figure 11. Reflection component image (a) and the luminescent component 
image (b) for the same object under D65 illuminant.  
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                                    (a)                                                   (b) 
Figure 12. Synthesized image (a) by combining two component images to 
construct the appearance under D65 and real image (b) of the same object 
observed in a viewing booth. 

Conclusions 
This paper has analyzed the surface appearance of a 

fluorescent object with textures. The bispectral radiance factor of 
the fluorescent object was described by the Donaldson matrix.  
First, we showed that the observed spectral image were modeled 
by a multiplication of two factors of the spectral functions 
depending on wavelength and the location weights representing the 
texture information of the surface. Second, an iterative algorithm 
was proposed to estimate the spectral reflectance, the bispectral 
luminescent radiance factor, and the texture information at each 
pixel point. Third, the observed image was decomposed into two 
textured images of the reflection component and the luminescent 
component.   

We showed that the realistic appearances of a textured 
fluorescent object under the arbitrary illumination could be 
constructed by combining the two component images. The 
proposed method can be applied to the objects with textured matte 
surfaces without gloss or highlight. Objects with color texture or 
curved surface were not considered in this paper. The proposed 
algorithm estimates the spectral reflectance, the bispectral 
luminescent radiance factor, and the texture component. This 
algorithm is stable and fast. With these estimates, the observed 
images are decomposed into the reflection and luminescent 
components, and the surface appearance under different illuminant 
is reconstructed.  

This work was supported by JSPS KAKENHI Grant Number 
JP15H05926 (Grant-in-Aid for Scientific Research on Innovative 
Areas “Innovative SHITSUKSAN Science and Technology”). 
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