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Optimal LED Selection for Multispectral Lighting Reproduction
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Abstract

We demonstrate the sufficiency of using as few as five LEDs
of distinct spectra for color-accurate multispectral lighting repro-
duction and solve for the optimal set of five from 11 such com-
mercially available LEDs. We leverage published spectral re-
flectance, illuminant, and camera spectral sensitivity datasets to
show that two approaches of lighting reproduction, matching illu-
minant spectra directly and matching material color appearance
observed by one or more cameras or a human observer, yield the
same LED selections. Our proposed optimal set of five LEDs in-
cludes red, green, and blue with narrow emission spectra, along
with white and amber with broader spectra.

Introduction

Lighting reproduction systems as in Debevec et al. [2] and
Hamon et al. [6] surround a subject with red, green, and blue
(RGB) light emitting diodes (LEDs), driving them to match a real-
world lighting environment recorded using high dynamic range,
panoramic RGB photography. A subject is thus illuminated as in
Fig. 1 with a reproduction of the directions, colors, and inten-
sities of light, appearing as they would in the actual scene into
which they will later be composited. While compositing results
can be convincing (especially after image manipulation by color
correction artists), Wenger et al. [16] and LeGendre et al. [10]
observed poor color rendition using only RGB LEDs for light-
ing reproduction. Color rendition is compromised because RGB
LEDs lack energy at certain wavelengths across the visible light
spectrum and the total emission spectrum of an RGB light source
is confined to be a linear combination of each of the relatively
narrow individual red, green, and blue LED emission spectra. As
such, while RGB LEDs can produce light across a wide gamut of
observable colors, they cannot reproduce light of any spectrum.
Accordingly, material appearances under RGB LED reproduced
lighting are unlikely to match those under the complex illumina-
tion environments of the real world.

Figure 1.

Omnidirectional lighting reproduction.
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Figure 2. Spectra of the 11 Lumileds Luxeon LEDs evaluated, correspond-
ing to Royal Blue (Y), Blue (B), Cyan (C), Green (G), Lime (L), PC Amber
(P), Amber (A), Red-Orange (O), Red (R), Deep Red (D), and White (W).

Both Wenger et al. [16] and LeGendre et al. [10] extended
lighting reproduction to the multispectral domain, considering
light sources comprised of more than just RGB LEDs, for the
single light source and omnidirectional lighting scenarios respec-
tively. Intuitively, adding more individually-controllable spectral
channels to a light source should improve its color rendition capa-
bility, but each additional spectral channel also adds complexity.
As such, a minimal, sufficient set of LEDs may be of interest to
visual effects practitioners and luminaire manufacturers. While
both [16, 10] demonstrated improved color rendition when using
more than just RGB LEDs, neither discussed a minimal, sufficient
set of LEDs for multispectral lighting reproduction.

We approach the selection of such a set of LEDs by evaluat-
ing the color rendition capabilities of different LED combinations.
We evaluate color matches for various materials of diverse re-
flectance spectra as viewed under different real-world illuminants
by multiple observers. We find the optimal set of LEDs from an
initial set of 11 commercially-available LEDs with distinct, vis-
ible light emission spectra. Along with white (W), we consider
the 10 Lumileds Luxeon Rebel ES colors: Royal Blue (Y), Blue
(B), Cyan (C), Green (G), Lime (L), PC Amber (P), Amber (A),
Red-Orange (O), Red (R), and Deep Red (D) with spectra in Fig.
2. We first determine the number k of LEDs of distinct spectra
such that adding an additional LED no longer meaningfully im-
proves lighting reproduction, and we next determine the optimal
subset of k such LEDs to use for reproducing diverse and complex
illuminants.

We solve for a minimal, sufficient set of LEDs using two
different approaches from Wenger et al. [16]: Spectral Illuminant
Matching (SIM) and Metameric Reflectance Matching (MRM).
With SIM, we compute a linear combination of individual LED
emission spectra that best matches a target illuminant spectrum in
a least-squares sense. With MRM, we compute a linear combi-
nation of individual LED emission spectra that best matches the
appearance of a color chart as observed by one or more cameras,
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or the standard human observer. From our analysis, our contribu-
tions are the following:

1. We show that using more than five LEDs of distinct spectra
yields diminishing returns for color rendition in multispec-
tral lighting reproduction, for the diverse illuminants, mate-
rials, and observers we consider.

2. We propose an optimal set of five LEDs which includes: red,
green, and blue LEDs with narrow emission spectra, plus
white and amber LEDs with broader emission spectra.

Related Work

Lighting Reproduction

In this work, we are interested in selecting a minimum, suffi-
cient set of LEDs for a multispectral light source used to replicate
a real-world lighting environment inside a studio, while ensur-
ing good color rendition performance. As previously described,
Debevec et al. [2] and Hamon et al. [6] reproduced omni-
directional lighting environments using only RGB LEDs, with
computer-controllable light sources and LED flat panels respec-
tively, but neither evaluated color rendition or optimized LED se-
lection based on emission spectra.

Wenger et al. [16], seeking to cover the gaps between the
emission spectra of RGB LEDs for a single light source, demon-
strated improved color rendition for skin and the squares of a color
chart when using a nine-channel multispectral light instead of an
RGB source but did not discuss a minimal, sufficient LED set.
As bright yellow LEDs were not then available, they filtered two
white LEDs of their nine-channel source to produce dim yellow
light. Although multispectral illumination can be achieved by se-
lectively filtering broad spectrum white light, we consider this ap-
proach out of scope for our analysis since the overall quantity of
light after filtering will be far lower for the same input power,
although the same optimization approaches can be applied.

Fryc et al. [3] extended this work [16] to develop an LED-
based spectrally-tunable light source using 35 LEDs of distinct
spectra, evaluating Spectral Illuminant Matching (SIM) when try-
ing to reproduce daylight, various fluorescent, and HMI illumi-
nants. This work did not consider color rendition and did not dis-
cuss a minimal, sufficient LED set. However, both Wenger et al.
[16] and Fryc et al. [3] noted the lack of available “yellow-green”
LEDs, with emission spectra around 550 nm, at that time. Due to
recent advances in solid state lighting, two new LEDs from Lu-
mileds Lighting, the Luxeon Rebel ES colors Lime and PC Am-
ber, now cover this spectral gap, but they are still dimmer than
other LEDs, and they have broader emission spectra. Both consist
of royal blue emitters with emission-broadening phosphors, each
with essentially no remaining emitter output. Our current work
evaluates the usefulness of these two newer emitters for multi-
spectral lighting reproduction.

LeGendre et al. [10] reproduced omnidirectional lighting in
a six-channel, multispectral light stage with RGB, cyan (C), am-
ber (A), and white (W) LEDs. When using only RGBW LEDs,
color rendition was improved for skin, the squares of a color chart,
and various fabric samples, as compared with RGB-only lighting.
Even closer color matches were achieved when using all six multi-
spectral (RGBCAW) LEDs. However, the LED selection process
was justified again as the covering of spectral gaps between the
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RGB LEDs. These works [16, 10] using LED sources with four,
six, or nine spectral channels with improved color rendition over
RGB-only lighting motivate our interest in finding a minimal, suf-
ficient set of LEDs for multispectral lighting reproduction.

Multispectral Reflectance Capture

Spherical or dome-shaped multispectral LED lighting rigs
have also been designed and constructed to illuminate a subject
from all directions for the purpose of multispectral material re-
flectance measurement. The system of Ajdin et al. [1] used six-
teen spectral channels, while that of Gu and Liu [5] used six and
Kitahara et al. [9] used nine. To the best of our knowledge, the
LEDs included in these systems were also selected based on max-
imizing the coverage of the visible light spectrum according to
LED availability, without specifically considering color rendition.

Individual multispectral light sources have also been built
[4, 8, 12, 13, 14] for image-based spectral reflectance measure-
ments of scenes and materials. Park et al. [12] estimated scene
reflectance spectra by capturing a sequence of images under
RGYAW LED time-multiplexed multispectral illumination. Opti-
mal combinations of these five LEDs were selected for each se-
quential illumination condition in the imaging system, but the ini-
tial selection of LEDs was not discussed. Parmer et al. [13] used
RGYCA LEDs for multispectral imaging; Goel et al. [4] used
17 LEDs of distinct spectra for hyperspectral imaging (with 12
LEDs in the visible wavelength range), and Kimachi et al. [8]
also used 12 different LEDs. However, optimal LED selections
for reflectance measurements were not discussed. Shrestha et
al. [14] described a multispectral LED-based imaging system,
starting with a total of 19 LEDs of distinct spectra and generat-
ing optimal sets of three LEDs each, based on the accuracy of
per-pixel estimated reflectance spectra or colors from either two
or three photographs under sequential multispectral illumination
conditions. While this approach is the most similar to ours, our
objective differs in that we optimize LED selections for color ren-
dition rather than spectral estimation, and we seek only one mul-
tispectral illumination condition for a single photograph while us-
ing any number of LEDs of distinct spectra.

Commercial Luminaire Design

While we primarily envision our multispectral light source
used in an omnidirectional lighting rig designed for live-action
compositing, as in prior works describing lighting reproduction
[2, 6, 10], we also note that light sources with individually-
controllable spectral channels may also be used in other profes-
sional studio lighting or consumer electronics contexts. In partic-
ular we note the availability of multispectral professional studio
luminaires, such as the RGBW LED ARRI Skypanel and vari-
ous RGBW and RGBA ColorKinetics LED light sources, as well
as the consumer-focused Philips Hue LED light bulbs, which are
three-channel Red, Lime, Royal Blue (RLY) or RGB luminaires.
While the process of selecting the LEDs comprising these lumi-
naires would be of theoretical interest to our work, to the best of
our knowledge these manufacturers have not published technical
motivations for these choices, besides the claims of being able to
produce white light with varied and controllable correlated color
temperatures (CCT).
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Methods and Equations

Wenger et al. [16] described three optimization approaches
for evaluating the performance of lighting reproduction systems.
In this section, we summarize them and describe their applicabil-
ity to computing an optimal combination of LEDs for multispec-
tral lighting reproduction. For each possible LED combination,
we solve for relative spectral channel intensities oy, using these
approaches, and we then evaluate the color rendition performance
using the accumulated error from each optimization approach. We
seek to reproduce lighting with only positive spectra, so we obtain
oy > 0 for all k by using nonnegative least squares.

Throughout our analysis, we assume a spectral camera
model, with pixel values p; generated by integrating over all
wavelengths the modulation of an illuminant spectrum /(1) by
the reflectance spectrum R(A) of a material, by the camera spec-
tral sensitivity w for the observer’s jth color channel:

pr= [ IORAw,(2) m

We compute pixel values using a discrete approximation of
Eq. 1, where i is the index over the wavelength samples, dictated
by measurement spectral resolution:

pj=Y LiRiwj; ()
7

1. Spectral llluminant Matching

Using Spectral Illuminant Matching (SIM), the goal is to
directly match a target illumination spectrum. We compute a
linear combination of individual LED emission spectra that best
matches a target illuminant spectrum in a least-squares sense. If
two illuminants have the same spectra, then they will produce
identical color appearances for all materials as seen by all ob-
servers. While this method maintains the observer-independence
of LED selection, Wenger et al. [16] demonstrated for a nine-
channel multispectral light source that SIM yielded the poorest
color rendition of the various approaches. Finding the relative
spectral channel intensities oy, given a target illuminant spectrum
I is formulated as a least squares problem, considering the kth
LED with emission spectrum /j:

argmin(Y (Y ol — 1)*) | & > 0V k 3)
ik

1

2. Metameric llluminant Matching

Using Metameric Illuminant Matching (MIM), the goal is
to match the color rather than the spectrum of a target illumi-
nant, which requires knowledge or assumptions about the spec-
tral sensitivity functions of the observer. Generating light that is
metameric to a target illuminant only ensures that materials with
spectrally-flat, neutral reflectance spectra will appear the same
color under both illuminants to the target observer. Producing
metameric light is also formulated as a least-squares problem,
where w; represents the spectral sensitivity of the observer’s jth
color channel:

argmin(Z(ZwL,-Zaka‘i — Zliwj,i)2) |ogy >0VEk (4)
7 T X 7
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3. Metameric Reflectance Matching

As the goal of a lighting reproduction system is color rendi-
tion, Metameric Reflectance Matching (MRM) seeks to directly
optimize the relative LED weights o for a multispectral light
source to best match color appearances, for particular materi-
als of interest, with known or measured reflectance spectra, and
observer(s) with spectral sensitivities w;. For n materials with
known reflectance spectra R,,, producing light that affords mate-
rial color matches is again formulated as a least-squares problem:

argmin(ZZ(ZRmin,iZOtklk,i —ZRn,iIin,i)z) | >0k
nojoi X i

(&)

For MIM, the modulation of a target illuminant by the spec-
tral sensitivities of one tristimulus observer yields only three
equations, so we can theoretically only solve for optimal weights
oy, for three-channel light sources. However, Wenger et al. [16]
found a minimum norm, positive solution for a nine-channel
source. Rather than solve this under-constrained MIM problem,
we instead observe that the MIM constraints may be included in
the MRM solve if a material with a flat reflectance spectrum, such
as any neutral grayscale square of a color chart, is included. Such
a spectrum modulates the incident illumination spectrum only by
an overall, wavelength-independent scale factor. Similarly, if we
sought to include SIM constraints in the MRM solve, we could
design a set of theoretical reflectance spectra as pulse functions
at increments equivalent to our measurement resolution (10 nm).
Minimizing MRM error using a set of such functions is equivalent
to minimizing SIM error.

Figure 3. Circuit board with 11 LEDs of distinct spectra (some duplicates).

Datasets

Towards an observer-agnostic optimal LED selection, we
evaluate MRM color error for various LED combinations by us-
ing a database of spectral sensitivity functions for 28 cameras [7]
and include the CIE 1931 2° standard observer. For test illumi-
nants, we consider CIE illuminant A (tungsten lighting), D65 (av-
erage daylight), and F4 (fluorescent, used for calibrating the CIE
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color rendering index, with CRI = 51). Since light sources of
a light stage frequently reproduce indirect illumination, we also
consider D65 modulated by measured reflectance spectra of grass
and sand from the USGS Digital Spectral Library (SPLIB06a).
We use these materials because of their frequent occurrence in
natural scenes, but other materials may be of interest, depending
on the lighting environment. We also consider diffuse skylight,
which we measured at midday using a Photo Research PR-650
spectroradiometer. We use the 24 reflectance spectra of the X-
Rite ColorChecker”™ chart for MRM. We also evaluate MRM
color error for different skin tones using a database of 120 skin
reflectance spectra, with measurements from the forehead and
cheeks of 40 subjects [15]. As the spectral resolution and sam-
pling extent vary across datasets, we resample each spectrum with
trapezoidal binning between 400 and 700 nm to the coarsest res-
olution, 10 nm. As camera spectral sensitivity functions are typ-
ically broad, re-sampling error should be small. We affix each
LED onto a custom circuit board (Fig. 3) and measure the emis-
sion spectra (Fig. 2) using the PR-650 spectroradiometer.

Results

Spectral llluminant Matching

Fig. 4 shows the SIM sum of squared errors (SSE) (400-700
nm) for the normalized test illuminants, for several LED combi-
nations. Optimal weights o, are determined for each LED com-
bination for each illuminant. We report the theoretical error us-
ing all 11 LEDs, the minimal error combinations of six and five
LEDs, RGBW, and RGB only. As there are 462 combinations of
six LEDs to construct from 11 LEDs, we always include RGBW
in our sets of five or six LEDs, as these are useful for other light
stage applications such as high resolution facial scanning. We
therefore evaluate 21 LED combinations, varying two LEDs of a
six-channel source.
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Figure 4. Spectral Sum of Squared Errors, 400-700 nm, using SIM for six

different illuminants, for various combinations of LEDs.

The black bars of Fig. 4 represent the theoretically minimal
SSE when using all 11 LEDs of distinct spectra. D65, Skylight,
and the D65 modulated spectra are reproduced comparably with
4 (RGBW) and 11 LEDs. The five-channel RGBWP solve repro-
duces illuminants A and F4 comparably to the 11-channel solve.

Metameric Reflectance Matching

Fig. 5 shows the theoretical MRM average error for com-
puted tristimulus values of the color chart, relative to the white
square values. For each LED combination, we solve for optimal
weights oy for each observer separately and report the average
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color error across the 24 chart squares and the 29 observers (28
cameras and human observer). Therefore, we constrain that the
LEDs used must be consistent across observers, but the LED in-
tensities o may vary from observer to observer.
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Figure 5. Average squared error of tristimulus values from all 24 color chart
squares for six different illuminants, using Metameric Reflectance Matching.
Each bar represents the average error across 29 observers.

Five-channel RGBWA and RGBWP solves again have simi-
lar error to the full 11-channel solve for MRM, with average error
under 0.5% for illuminants A, D65, Skylight, and the D65 mod-
ulated spectra, and under 1% for illuminant F4. For a given LED
arrangement and illuminant, average color errors for various ob-
servers are similar.

Although the reflectance spectra of the color chart are de-
signed to replicate various real-world material spectra [11], skin
tones are of particular interest for lighting reproduction. Fig. 6
shows the theoretical average MRM color error for 120 skin tones,
corresponding to the forehead and cheek reflectance spectra from
40 subjects [15], relative to color chart white square values. For
Fig. 6, we solve for optimal LED intensities ¢ using only the
24 color checker reflectance spectra for MRM but independently
report error for skin spectra (not included in the minimization).
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Figure 6. Average squared error of tristimulus values computed from 120
skin reflectance spectra for six different illuminants, using Metameric Re-
flectance Matching solves from Fig. 5. Each bar represents the average
error across 29 observers.

We also separately solve for optimal LED intensities o
when including these 120 spectra in the optimization, which re-
duces average skin tone color error to under 1% even for RGB-
only lighting for each illuminant at the expense of increased color
error for the color chart squares. The color rendition for the color
chart squares is 0.1% worse on average and at most 0.6% worst,
adding to the errors presented in Fig. 5.

Notably, SIM and MRM each produce an identical optimal
set of five LEDs (RGBWP) for the illuminants and observers con-
sidered, and both error metrics show diminishing returns for spec-
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tral matching or color rendition when including more than five
spectral channels in a light source.

While for the experiments presented in Fig. 5 we tailor the
light intensities ¢, to each observer, we also solve for one optimal
set of intensities oy for each illuminant for all observers and again
report the average error across all chart squares and observers.
Fig. 7 shows the theoretical difference in the MRM color error
as a function of the solving method (SIM, all-observers MRM,
single-observer MRM). The single-observer MRM solves yield
lower color error than the all-observer MRM solves, but the all-
observer MRM error is still low, owing to the general similarity
of camera spectral sensitivity functions.

For all illuminants and LED configurations, SIM yields more
color error than even the all-observer MRM, indicating that light-
ing reproduction may benefit from a generic assumption about
spectral sensitivity functions in the absence of measured observer
response.

Metameric Reflectance Matching Error
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Figure 7.
chart squares for six different illuminants, using SIM, MRM (single-observer),
and MRM (all-observers). Each bar represents the average error across 29
observers.

Average squared error of tristimulus values from all 24 color

We also present qualitative results for color rendition using
the color chart MRM for the six illuminants for the CIE 2° stan-
dard observer in Fig. 8. The background squares represent the
ground truth color chart appearances under the six illuminants,
and the foreground circles represent the color chart appearances
as illuminated by the MRM optimized lighting reproduction us-
ing 11 LEDs, RGBWP, RGBW, and RGB-only. All pixel values
are computed using Eq. 2, and the XYZ tristimulus values are
converted to sSRGB for display. RGBW lighting produces visu-
ally accurate color rendition for illuminants D65, Skylight, and
D65 modulated by grass and sand reflectance spectra. Adding the
PC Amber LED yields visually accurate color rendition for the
remaining illuminants, A and F4.

In Fig. 9, we compare the spectra from the human observer
color chart MRM lighting reproduction with 11 LEDs, RGBWP,
RGBW, and RGB-only with the six ground truth illuminant spec-
tra re-sampled at 10 nm resolution (solid black lines). The spectra
of Fig. 9 therefore correspond to those used to generate the color
charts of Fig. 8. While the reproduced lighting spectra do not
exactly match the ground truth illuminant spectra, even with 11
spectral channels, the LED reproduced lighting still yields close
visual matches (Fig. 8).

Using the optimal LED intensities o computed for the CIE
2° standard observer color charts of Fig. 8, we also present qual-
itative results for color rendition for a selection of 24 skin re-
flectance spectra in Fig. 10. These 24 spectra were selected from
the original set of 120 so as to evenly cover the possible values
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for total light reflected across the visible spectrum. Again, back-
ground squares represent the ground truth skin appearances under
the six illuminants, and foreground circles represent appearances
as illuminated by the MRM optimized lighting reproduction using
11 LEDs, RGBWP, RGBW, and RGB-only. RGBW lighting pro-
duces visually accurate color rendition for illuminants A, D65,
Skylight, and D65 modulated by the sand reflectance spectrum.
Adding the PC Amber LED yields visually accurate color ren-
dition for the remaining illuminants, F4 and D65 modulated by
grass reflectance spectrum.

Future Work

The experiments of this work describe the theoretically
achievable color rendition capabilities of various combinations of
LEDs, considering specific illuminants, materials, and observers.
While we have shown that a five-channel RGBWP light source
should be theoretically sufficient for multispectral lighting repro-
duction, it would be interesting to validate these results with phys-
ical measurements, to compare theoretical and experimental er-
ror as in prior work [16, 10]. Such a validation would require
the physical existence of particular illuminants, and so the di-
rect image-based MRM optimization approach of LeGendre et al.
[10] could be employed, which does not rely on spectral measure-
ments.

Additionally, visual effects practitioners may have particular
interest in digital cinema cameras such as the RED Epic and the
ARRI Alexa, which were not included in the camera database [7].
The same optimization approaches could be applied to ensure the
optimal LED selection for these cameras if their spectral sensitiv-
ities were known or measured. Without knowledge of the camera
spectral response, the image-based MRM minimization approach
[10] could again be employed.

While our optimization approach did not evaluate the over-
all brightness of the light produced by each combination of LEDs
for a given power input, it is well known that LEDs of different
spectra have varied luminous efficiency. Future work could opti-
mize for luminous efficiency in tandem with color rendition per-
formance and identify potential trade-offs between these goals.

Although multispectral lighting reproduction produces visu-
ally accurate color rendition without the need for color correction
in post-production, camera raw pixel values produced by the sen-
sor will inevitably have a color matrix applied to them for dis-
play as part of a typical color workflow. A 3x3 color matrix al-
lows for linear color channel mixing, in effect producing a differ-
ent theoretical camera sensor. Another direction for future work
could include optimizing LED selection based on both luminous
efficiency and color rendition performance, while allowing for a
post-processing color matrix step.

Conclusion

We have demonstrated that material color appearance un-
der various direct and indirect illuminants may be accurately
matched using as few as five LEDs of distinct spectra for multi-
spectral lighting reproduction: red, green, blue, white, and broad-
spectrum PC Amber. Using more than these five LEDs of distinct
spectra yields diminishing returns. Spectral illuminant matching
and color appearance matching via metameric reflectance yield
the same optimal set of five LEDs for the illuminants and ob-
servers considered.

29



RGBW RGBWP All 11 LEDs

RGB

lluminant A

llluminant D65

llluminant F4

Skylight

D65xGrass

D65xSand

Figure 8. Color matching results using Metameric Reflectance Matching for different direct and indirect illuminants for the CIE 2° standard observer, with
illumination reproduced using various LED combinations. The background squares represent the ground truth computed color chart appearances under the
target illuminants, while the foreground circles represent the computed color chart appearances under LED-reproduced illumination. Row 1 shows the lighting
reproduction results using all 11 LEDs of distinct spectra. Row 2 shows results using 5 LEDs only (RGB, White and PC Amber). Row 3 shows results using
RGBW only. Row 4 shows the result using RGB only. XYZ tristimulus values are converted to the sRGB color space for display. RGBW lighting produces
accurate color rendition for D65, Skylight, and D65 modulated by grass and sand reflectance spectra. Adding PC Amber yields accurate color rendition for

illuminants A and F4.
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Spectra produced using Metameric Reflectance Matching for different direct and indirect illuminants for the CIE 2° standard observer, using various
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Figure 10. Color matching results using Metameric Reflectance Matching for different direct and indirect illuminants for the CIE 2° standard observer, with
illumination reproduced using various LED combinations. The background squares represent the ground truth computed skin tone appearances under the
target illuminants, while the foreground circles represent the computed skin tone appearances under LED-reproduced illumination. Row 1 shows the lighting
reproduction results using all 11 LEDs of distinct spectra. Row 2 shows results using 5 LEDs only (RGB, White and PC Amber). Row 3 shows results using
RGBW only. Row 4 shows the result using RGB only. XYZ tristimulus values are converted to the sRGB color space for display. RGBW lighting produces
accurate color rendition for A, D65, Skylight, and D65 modulated by the sand reflectance spectrum. Adding PC Amber yields accurate color rendition for
illuminants F4 and D65 modulated by the grass reflectance spectrum.

RGBW RGBWP All 11 LEDs

RGB
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