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Abstract
We study linear filter kernel estimation from processed digi-

tal images under the assumption that the image’s source camera
is known. By leveraging easy-to-obtain camera-specific sensor
noise fingerprints as a proxy, we have identified the linear cross-
correlation between a pre-computed camera fingerprint estimate
and a noise residual extracted from the filtered query image as a
viable domain to perform filter estimation. The result is a simple
yet accurate filter kernel estimation technique that is relatively in-
dependent of image content and that does not rely on hand-crafted
parameter settings. Experimental results obtained from both un-
compressed and JPEG compressed images suggests performances
on par with highly developed iterative constrained minimization
techniques.

Introduction
Inferring the processing history of digital images is a core

problem of digital image forensics [1, 2]. A rich body of literature
reflects the plethora of different operations an image may undergo
after being captured by an acquisition device, focussing on aspects
of manipulation detection, localization, and parameter estimation.
Purely technical solutions prevail, leaving the question as to what
operations are to be considered legitimate or malicious to human
interpretation [3]. Recent advances in data-driven techniques ad-
vocate the idea of general-purpose image forensics, where mostly
very high-dimensional feature spaces are chosen to detect, identify,
or localize a variety of operations in a unified framework [4–8].
The generality of these techniques comes at the cost of a relatively
coarse granularity with respect to intra-class variations within the
same type of processing (e. g., different filter sizes or strengths).
Even with practicable solutions to overcome issues of scalability
in multi-classification [4, 5, 8], it seems infeasible to assume that a
single model will ever be informative enough to discern between
a large number of parameter settings across multiple processing
types. Targeted techniques with the ability to estimate parameters
of specific processing operations, such as previous JPEG quantiza-
tion tables [9, 10], the shape of non-linear intensity mappings [11],
or parameters of affine transformations [12–14] will thus remain
to play an important role in the realm of image forensics.

Along these lines, our focus here is on estimating the coeffi-
cients of an unknown linear filter kernel a query image may have
been subjected to. In contrast to the analysis of non-linear filtering,
where a large number of works have focussed on the specifics of
median filtering [15, 16, among many others], the interest in linear
filtering has appeared relatively scattered over the forensics com-
munity [17–20]. At the same time, however, blind deconvolution
and point spread function (PSF) estimation are widely established

fields in image processing of course [21–23], with applications
including image restoration and enhancement, or the removal of
motion blur. The major challenge in this stream of research is that
estimating a filter kernel is an ill-posed problem in the absence of
the original unfiltered image. The key is to incorporate informative
prior models about the original image into the estimation process.
In classical blind deconvolution, such prior models will typically
pertain to a generic digital image, effectively acting as a proxy
of the captured scene. For forensic purposes, where the focus
is clearly on processing applied after image capturing, this prob-
lem can be approached in a much more narrow sense by taking
knowledge about image acquisition into account, e. g., through
reasonable assumptions that the original image underwent a de-
mosaicing procedure [17], or that the original image was stored in
JPEG format [19].

In the remainder of this paper, we demonstrate how know-
ledge of the acquisition camera’s sensor noise fingerprint [24] can
facilitate efficient and effective solutions to the linear filter kernel
estimation problem. Similar to digital camera identification in the
presence of geometric distortion [25–27], the premise here is that
the camera fingerprint, as part of the image, will undergo the same
processing the image undergoes. Under the assumption of linear fil-
tering, the effects of this processing can be measured directly in the
linear cross-correlation between the camera’s “clean” fingerprint
and the fingerprint estimate obtained from the processed image.
This way, the (assumedly) known camera fingerprint imposes a
strong prior model of the unfiltered signal in the estimation process.
Before we detail our approach below, the following sections give a
brief overview of the general filter kernel estimation problem and
some background on digital camera sensor noise forensics. We
then continue with a description of a simple filter kern estimation
technique and present experimental results.

Model and Notation
We adopt a generic linear shift-invariant (LSI) model

y[i, j] = ∑
u,v

h[u,v] · x[i−u, j− v]+n[i, j] (1)

in which the observed image y[i, j] results from the linear two-
dimensional convolution of the “clean” image x[i, j] with a filter
kernel h[u,v], plus some measurement noise n[i, j]. The goal of
filter kernel estimation is to determine the coefficients h[u,v] of the
unknown filter from the image y[i, j], where it is often instrumental
to assume a (without loss of generality) square kernel support of
S× S, S = 2S0 + 1, i. e., −S0 ≤ u,v ≤ S0, and ∑u,v h[u,v] = 1. It
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is convenient to write Equation (1) as a system of linear equations,

y = X ·h+n , (2)

where y, h, and n are the column-major vector representations of
the two-dimensional signals at play. Matrix X stacks the vectorized
local S×S support neighborhoods in a row-by-row manner:

X =


...

...
...

x[i−S0, j−S0] · · · x[i, j] · · · x[i+S0, j+S0]
...

...
...

 .

With slight abuse of notation, let us also write y = x∗h to denote
convolution. In a similar vein, denote the linear cross-correlation
between two signals as ρρρ = x⊗y, with

ρ[r,s] = ∑
i, j

x[i, j] · y[r+ i,s+ j] . (3)

We will typically put emphasis on the cross-correlation computed
over a small range of lags, −L0 ≤ r,s≤ L0. In this context, recall
that defining x̃[i, j] = x[−i,− j] helps to express cross-correlation
in terms of convolution: x⊗y = x̃∗y. Finally, note that we write
x�y for the element-wise multiplication of two vectors of equal
length and X◦Y for the Kronecker product of two matrices, and
let vector 111(M) denote an M-element column vector with all ones.

Linear Kernel Estimation
Without prior knowledge or assumptions about the clean

image, solving Equation (2) for h is an ill-posed problem. The
literature on blind deconvolution, for which kernel estimation is an
integral step, is thus rich of proposals for prior image models and
kernel estimation algorithms [21, 23]. While a detailed review is
beyond the scope of this paper, it is worth pointing out that many
state-of-the-art techniques approach the problem in a regularization
framework, minimizing expressions of the general form

‖x∗h−y‖2 +φ(x,h)→min . (4)

The regularization term φ(x,h) acts as (a set of) constraint(s) in
the minimization, favoring natural images and filter smoothness.
The minimization may be conducted over the domain of filter
kernels, clean images, or both jointly. Due to the lack of tractable
parametric image models, however, many techniques work in the
image gradient domain. The popular algorithm by Krishnan et al.
[28] for instance employs sparsity constraints of the form φ(x,h) =
‖x‖1/‖x‖2 +α‖h‖1, alternating between a minimization over x
and h iteratively.

More specific constraints may be employed in the context of
image forensics, where post-capture linear filtering is of particular
concern. The idea here is that clean camera images exhibit certain
signal characteristics pertaining to the acquisition process and that
image processing will affect these characteristics. Most promi-
nently, Swaminathan et al. [17] leverage that demosaicing from
a color filter array (CFA) introduces peculiar periodic inter-pixel
dependencies in images taken with a digital camera. Incorporat-
ing knowledge or assumptions about the layout of the CFA, the
authors attempt to reinstate those pixel structures while estimating
the filter kernel. In a related work, Conotter et al. [19] studied the
effect of linear filtering on the distribution of quantized JPEG DCT
coefficients, yet with a focus on the detection of different linear
filter kernels.

Correlation and Convolution
While all approaches above rely on (the restoration) of general

statistical signal characteristics (e. g., sparsity, or a certain form of
periodic pixel interdependencies), knowledge of the actual clean
signal would clearly open more direct avenues to filter kernel
estimation. Consider for instance the most simple conceivable
situation, where a known i.i.d. noise signal is fed into an LSI
system with unknown kernel h. It is well-known that in a situation
like this, the filter kernel can be obtained directly from the cross-
correlation between the clean input and the filtered output,

ρρρ = x⊗ (x∗h+n) = h∗ (x⊗x)+x⊗n≈ αh , (5)

as the auto-correlation x⊗x of a white noise signal will converge
to an impulse, and x and n are uncorrelated.

Figure 1 illustrates this circumstance without loss of general-
ity for a one-dimensional i.i.d. Gaussian signal x, x[i]∼N (0,1),
subjected to Gaussian blurs h,

h[u]∝ 1√
2πσ

exp

(
−u2

2σ2

)
, −S0 ≤ u≤ S0 , (6)

with varying kernel support S = 2S0 +1 and filter strength σ . The
graphs illustrate the cross-correlation up to lag ±5 between the
clean signal and the filtered signal, in the presence of additive white
noise n[i]∼N (0,1). The Gaussian density function, from which
the filter coefficients are sampled according to Equation (6), is de-
picted for reference. Observe how the measured cross-correlation
in this simulation perfectly reveals the filter the original signal
went through.

Although filter kernel estimation from actual digital images
clearly poses a more challenging situation, we will argue below that
knowledge of an image’s source camera can establish a situation
very similar to the seemingly unrealistic and simplistic simulation
above. Specifically, we will exploit that every image taken with
a specific camera can be assumed to contain a camera-specific
sensor noise fingerprint [24]. As this quasi-known noise signal
will undergo the same processing the image is subjected to, filter
kernel estimation can be carried out based on the cross-correlation
between the fingerprint estimated from clean images and the noise
estimate obtained from the filtered image.

Sensor Noise Forensics
Camera sensor noise fingerprints inevitably emerge in im-

ages captured with a digital camera due to minute differences and
manufacturing imperfections of individual sensor elements [24].
Even under absolutely homogenous exposure each sensor element
will react slightly different, in its own unique way. Denoting the
noise-free sensor output x(0), this photo-response non-uniformity
(PRNU) can be modeled as a spatially varying noise pattern of
multiplicative nature, x = (111+k)�x(0)+θθθ . The PRNU factor k
is unique to the specific source camera. It will be present in every
image taken with the same camera, yet it will vary from camera to
camera (sensor) [29]. Additive modeling noise θθθ comprises dark
current and a variety of temporally varying noise sources.

Estimating a digital camera’s PRNU fingerprint requires
access to a sufficiently large number of clean camera outputs,
x1, . . . ,xN , each of which is fed into a suitable denoising filter d(·)
to obtain noise residuals wxi = xi− d(xi). Adopting the simple
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Figure 1. Cross-correlation between a 100,000 element i.i.d. sequence

x, x[i] ∼ N (0,1), and a filtered noisy version x ∗ h + n, n[i] ∼ N (0,1), for

Gaussian blur kernels h with different supports S and standard deviations σ .

Solid lines indicate the envelope of the corresponding (scaled) filter kernel.

multiplicative model

wxi = k�xi +ΘΘΘ (7)

with white Gaussian noise ΘΘΘ, the maximum likelihood PRNU
fingerprint estimator is [24]

k̂ =

(
N

∑
i=1

wxi �xi

)
�

(
N

∑
i=1

x2
i

)−1

. (8)

All operations in the equation above are element-wise.
In the context of digital image forensics, camera sensor noise

fingerprints have been successfully employed in camera identifi-
cation [29], camera-based blind image clustering [30], and image
manipulation detection [31, 32], amongst many others. A common
building block for all those applications is the evaluation of the
cross-correlation between a camera-specific PRNU term and the
noise residual obtained from a query image x, ρρρx = (k̂�x)⊗wx.
A match is declared when a sufficiently large correlation-based
similarity score is observed, e. g., in terms of the maximum nor-
malized cross-correlation, or the peak-to-correlation energy.

While PRNU-based forensic techniques based on such cor-
relation measures have been reported to be fairly robust against
various types of image processing, we argue here that any type of
processing will inevitably have an impact on the image’s inherent
sensor noise pattern, and ultimately also on the resulting cross-
correlation between the processed image’s noise residual and the
camera fingerprint estimate from unprocessed images. Inspired
by the previous section on the interplay of convolution and cor-
relation, the following section inspects more closely how linear
image filtering translates into the PRNU cross-correlation domain,
and thus how knowledge of the clean image’s source camera may
inform linear filter kernel estimation.

PRNU-based Linear Filter Kernel Estimation
We base the estimation of the kernel h from a query image

y = x∗h+n on the following assumptions:

1. the source camera of the clean image x is known;
2. the denoising filter to compute noise residuals for all PRNU-

related analyses is linear, i. e.,

wx = x−d(x) = x−x∗d ; and (9)

3. C clean (unprocessed) images x1, . . . ,xC from the same cam-
era are available to compute clean cross-correlations

ρρρxc
= k̂⊗wxc = k̂⊗ (xc−xc ∗d) . (10)

The first assumption is reasonable considering that moderate post-
processing affects source camera attribution only mildly [33, 34].
For a better understanding of the other two assumptions, let us
consider the cross-correlation

ρρρy = k̂⊗wy = k̂⊗ (y−y∗d) (11)

between the camera’s PRNU fingerprint estimate and the query
image’s noise residual, for which we may also write

ρρρy = k̂⊗ ((x∗h+n)− (x∗h+n)∗d) (12)

= k̂⊗ ((x−x∗d)∗h+(n−n∗d)) (13)

= (k̂⊗wx)∗h+ k̂⊗wn (14)

= ρρρx ∗h+ννν . (15)

Similar to Equation (5), above lines state that the PRNU cross-
correlation obtained from a filtered image y = x ∗ h+ n is the
filtered PRNU cross-correlation obtained from the corresponding
clean image, plus an additive noise term ννν . Note that this result
only emerges because of the linearity of the denoising filter d(·).

Figures 2 and 3 illustrate the relation between ρρρx and ρρρy by
depicting the center 11×11 portions (L0 = 5) of those quantities,
averaged over a number of clean images and filtered images (5×5
Gaussian blurring with σ ∈ {0.5,2.5}).1 Besides clearly promot-
ing the idea that stronger blurring in the image domain translates
to stronger blurring in the PRNU cross-correlation domain, the
graphs also suggest an important difference to the simple simu-
lation in Figure 1: we cannot assume ρρρx to have impulse-like
qualities. Although the PRNU noise pattern itself may very well
exhibit i.i.d. characteristics, demosaicing and other post-capture
operations will introduce inevitable inter-pixel dependencies.

Assuming for a moment that the clean cross-correlation ρρρx
for the given query image was known, we may obtain the standard
least squares kernel estimate from minimizing ‖ρρρx ∗h−ρρρy‖

2,

ĥ =
(
P′xPx

)−1 P′x ρρρy . (16)

Matrix Px is the equivalent of matrix X in Equation (2), here filled
with elements of ρρρx for an assumed S×S filter support, i. e., the
m-th row of Px contains—vectorized in column-major order—the
S2 clean cross-correlation values from the S× S portion of ρρρx
corresponding to the m-th element in ρρρy.

1We refer to the following section for details about our datasets and
experimental setup.
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Figure 2. Average cross-correlation (L0 = 5) between camera fingerprint

estimate from a Nikon D70 and a Nikon D200 camera and noise residuals

from clean images of the same camera (correlation displayed with non-linear

color mapping y = x2/3 for better visibility).

In reality, the situation is more involved as we cannot as-
sume direct access to ρρρx. Different from working in the image
domain directly, however, it is more reasonable to assume here that
the clean signal under consideration—ρρρx instead of x—should
be relatively independent of the image content. Specifically, we
can expect that the distinct characteristics of ρρρx will depend to
a large degree on k̂ and its characteristics due to camera-internal
processing. A simple and straight-forward remedy is to work with
an estimate of ρρρx, obtained from a number of clean images,

ρ̂ρρx =
1
C

C

∑
c=1

(
k̂⊗wxc

)
, (17)

with mean values computed element-wise (see also Figure 2). The
filter kernel is then estimated based on Equation (16), with matrix
P replaced by the estimate P̂.

Since an ordinary least squares kernel estimate is not guaran-
teed to sum to unity, we make use of the fact that the convolution
ρ̂ρρx ∗h can also be written as

∑
|u|+|v|6=0

h[u,v] · ρ̂x[i−u, j− v]+

(
1−∑
|u|+|v|6=0

h[u,v]

)
· ρ̂x[i, j] (18)

to define auxiliary column vector ηηη = Rh, with (S2 − 1)× S2

matrix R removing the center element (|u|+ |v| 6= 0) from h,

R =



. . .
1 0

1

0 0 1
0 1

. . .


. (19)

We estimate ηηη instead of h, i. e., all but the center coefficient, by
reformulating Equation (15) based on Equation (18) to give

ρρρy− ρ̂ρρx = P̃ ·ηηη +ννν , (20)

with matrix P̃ = P̂R′− ρ̂ρρ ′x ◦ 111(S
2−1) being obtained from P̂ by

removing the center column and subtracting the m-th element of
ρ̂ρρx from the m-th row of the matrix. Vector

η̂ηη =
(
P̃′xP̃x

)−1 P̃′x
(
ρρρy− ρ̂ρρx

)
(21)
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Figure 3. Average cross-correlation (L0 = 5) between Nikon D200 cam-

era fingerprint estimate and noise residuals from blurred images of the same

camera (5×5 Gaussian blur with standard deviation σ ; non-linear color map-

ping y = x2/3 for better visibility).

then holds all S2−1 kernel coefficient estimates ĥ[u,v] except for
the center one (|u|+ |v| 6= 0), which can be computed from,

ĥ[0,0] = 1−∑i η̂i . (22)

Experimental Results
In the following experimental validation of the proposed ap-

proach we consider the estimation of Gaussian blurs h of support
S× S, S ∈ {3,5,7} and strengths 0.5 ≤ σ ≤ 5. We worked with
a total of 1,445 never-compressed “Lightroom” images from the
Dresden Image Database [35] in our experiments, stemming from
three different camera models and six unique digital cameras (see
table). All images were cropped to their center 1000×1000 por-
tion and converted to grayscale prior to any processing. Camera-
specific sensor noise fingerprints were estimated from 20 flat-
field images per camera, employing the post-processing suggested
in [24]. We found a 3× 3 Gaussian blur kernel with standard
deviation σ = 0.5 to produce suitable noise residuals w for our
purposes, cf. Equation (9). Cross-correlation estimates ρ̂ρρx were
obtained from C = 50 randomly chosen images per camera. Those
images were otherwise excluded from the kernel estimation tests.

For an assumed kernel support Ŝ≥ S, kernel estimates ĥ are
obtained from Equations (21) and (22) by fitting the adopted linear
model to the zero-centered Ŝ× Ŝ portion of the observed cross-
correlation ρρρy. We are interested in the estimation accuracy when
the true kernel size is assumed to be known (Ŝ = S), for instance
as the result of a prior feature-based inference or classification
step [6, 8]. In addition, we also consider the more generic case
where such knowledge is not available. In the latter scenario, we
set Ŝ = 7 independent of the true kernel size. In all cases, the mean
squared error (MSE) between the true and the estimated kernel,

MSE = ‖h− ĥ‖2/ Ŝ2 , (23)

Number of images from the Dresden Image Database (Light-
room, never-compressed) [35] used in the experiments.

camera model device 0 device 1

Nikon D70 175 188
Nikon D70s 175 177
Nikon D200 360 370

IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017 107



tr
ue

fil
te

rk
er

ne
l

σ = 0.5 σ = 1.5 σ = 2.5

0.5

0.1

0

es
tim

at
ed

fil
te

rk
er

ne
l

Figure 4. Gaussian kernels (S = 5) (top) and corresponding average ker-

nel estimates from Nikon D200 images (bottom). Filter size assumed to be
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√

x for better visibility.

averaged per kernel instance over all images of the same camera,
serves as quantitative criterion. For comparison, we report results
obtained with the state-of-the-art iterative blind deconvolution
algorithm by Krishnan et al. [28], which we operate for a given
filter support Ŝ with the default settings provided in the authors’
reference implementation.2

Figures 5 through 9 present quantitative estimation results for
the described experimental setup. Specifically, Figures 5 and 6
cover the estimation of 3×3 Gaussian blurs with known (Ŝ = 3)
and unknown (Ŝ = 7) filter support, respectively, while Figures 7
and 8 report equivalent results for 5×5 filters. Figure 9 examines
the estimation of filters with support S = 7. Each figure comprises
six panels, in correspondence with the six digital cameras in our
test set. The six graphs per panel depict the average MSE values of
the two estimation methods under test for different filter strengths
σ , as obtained after storing the blurred images in uncompressed
8-bit bitmap format (Q∗), or as JPEGs with quality factors 90 or
80 (Q90, Q80), respectively.

Across all tested settings, the graphs indicate that the pro-
posed PRNU-based filter kernel estimation performs as good as
or better than the computationally expensive iterative benchmark
approach. The reported results suggest a particularly strong ad-
vantage over the benchmark method when small kernel sizes are
concerned and when the true kernel size is assumed to be known
(cf. Figures 5 and 7). Under such circumstances, the PRNU-based
estimation benefits notably from knowledge of the actual filter ker-
nel size. In general, the estimation errors are considerably lower
for stronger blurs (i. e., larger kernel supports and more uniform
filter kernels), as the impact of high-frequency image content be-
comes less predominant (with respect to characteristics of the noise
residuals, and similarly also with regards to the computation of im-
age gradients for the benchmark method). The average estimated
5×5 filter kernels from blurred Nikon D200 images in Figure 4
highlight this effect for filter strengths σ ∈ {0.5,1.5,2.5}, in cor-
respondence with the respective Q∗ data points in Figure 7 (e).
Finally, observe that the estimation accuracy remains relatively sta-
ble with respect to JPEG post-compression, although differences
exist for images from different source cameras. Overall, the results
suggest that the estimation of small filter kernels of unknown size
appears to be affected by lossy compression the most, cf. Figure 6.

2http://cs.nyu.edu/~dilip/research/blind-deconvolution

In summary, we conclude that our experiments demonstrate
the potential of PRNU-based linear filter kernel estimation clearly.
For the chosen type of Gaussian kernels, our simple linear least
squares estimator achieves highly competitive estimation accura-
cies under the premise that the source camera is known, even in the
presence of considerable JPEG compression. We see the presented
results as a first step and thus leave the examination of a broader
class of linear kernels to future work, in which also the impact of
image size should be investigated.

Concluding Remarks
Blind linear filter kernel estimation can benefit from know-

ledge of or assumptions about the image capturing process. Along
those lines, this paper has leveraged camera-specific PRNU sensor
noise [24] as a proxy to model the impact of linear filtering on
digital images. Instead of estimating the filter kernel in the pixel or
gradient domain, we have identified the cross-correlation between a
camera fingerprint estimate and a noise residual extracted from the
filtered query image as a viable domain to perform filter estimation.
The result is a simple yet effective linear least squares algorithm
that gives estimation accuracies on par with highly developed
iterative constrained minimization techniques.

Future generations of our proof-of-concept estimator may
draw on the rich body of literature on kernel estimation and blind
deconvolution [21–23] to strive for improvements along several
dimensions. Specifically, it seems viable to incorporate more elab-
orate probabilistic models of the clean cross-correlation “signal”
ρρρx to account more explicitly for its (co-)variance structure. On
possibility is a Bayesian framework, which would lead to regu-
larization terms already known from state-of-the-art techniques.
A content-based correlation predictor, adopting techniques along
the lines of [24], may be another approach. As for the data fed
into the estimator, it seems promising to explore to what degree
larger portions of the computed cross-correlation might contribute
to more accurate estimates. The reader should keep in mind that
current estimates of an Ŝ× Ŝ kernel are obtained from merely
Ŝ× Ŝ data points. Finally, it also seems worthwhile to revisit the
implementation of the unity constraint in the estimation procedure.

We close this paper on a more general note, as our results
suggest that the PRNU cross-correlation domain bears valuable
information beyond the predominant examination of the most
prominent peak for the sake of fingerprint synchronization and
camera identification [24–26]. A broadened view may not only
open up new avenues to the analysis and detection of fingerprint
de-synchronization attacks based on seam-carving [36] or patch
replacement strategies [37], but also contribute to a deepened
understanding of source camera attribution in the presence of
sophisticated in-camera processing [38]—thus underlining and
strengthening the role of camera sensor noise as one of the most
valuable image characteristics in digital image forensics further.
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