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Abstract
Video forgery detection is becoming an important issue in

recent years, because modern editing software provide powerful
and easy-to-use tools to manipulate videos. In this paper we pro-
pose to perform detection by means of deep learning, with an ar-
chitecture based on autoencoders and recurrent neural networks.
A training phase on a few pristine frames allows the autoencoder
to learn an intrinsic model of the source. Then, forged material is
singled out as anomalous, as it does not fit the learned model, and
is encoded with a large reconstruction error. Recursive networks,
implemented with the long short-term memory model, are used
to exploit temporal dependencies. Preliminary results on forged
videos show the potential of this approach.

Introduction
An ever increasing share of the traffic flowing over the Inter-

net is composed of visual data, images and videos. This wealth of
data is a precious source of information for a number of critical
applications. In the wake of recent acts of terrorism, for exam-
ple, investigators relied heavily on videos posted on social net-
works by a multitude of individual users. However, armed with
sophisticated video editing tools, a skilled attacker can prepare
and diffuse false videos that may fool even expert analysts, and
may cause huge damage. In this context, like in many others,
establishing the integrity of visual assets of interest becomes of
primary importance [1].

Recently, there has been intense activity on video forgery de-
tection and localization. These papers, however, focused only on
a few specific attacks, trying to detect frame erasure/substitution
[2, 3], compression artifacts [4, 5, 6], or video object copy-move
[7, 8]. Therefore, it is important to devise new tools that are able
to expose different types of video forgery attacks, even in the typ-
ically adverse conditions encountered on social networks. In this
work we will focus on splicings carried out with chroma-key com-
position (see Fig.1) and adopt an anomaly detection strategy. The
forgery is singled out based on the statistical differences, observed
in a suitable feature domain, with respect to genuine material.

To implement this idea we resort to deep learning tools, in-
cluding auto-encoders and recurrent neural networks. A major
qualifying point is the use of unsupervised learning: network pa-
rameters are learnt based on the very same video under analysis.
However, we assume that a small number of frames in the video
under test is known to be pristine, an hypothesis easily satisfied by
background-only segments. The proposed method uses residual-
based features, as done in [9, 10], which are processed by au-
toencoders in combination with LSTM recurrent neural networks.
During the training phase, the autoencoder learns to reproduce
faithfully the pristine input by retaining all relevant information

Figure 1: Example of chroma-key composition on a video se-
quence. Top: frames from the original video; middle: frames
from the aligned green screen video; bottom: forged frames.

in the hidden layer. Then, in normal operations, it keeps recon-
structing the input with high accuracy, as long as it comes from
the same source (the pristine video). In the presence of spliced
areas, the reconstruction error increases significantly, triggering
detection. Therefore, the autoencoder behaves as a one-class clas-
sifier: a large reconstruction error between input and output is
interpreted as an anomaly, hence a forgery. The reconstruction
error, computed in sliding window modality over the frame, is
converted into a heat map for visual inspection and, after thresh-
olding, in the final detection map. The use of recurrent networks,
then, allows us to gather information from the whole video, not
just a single frame, thus exploiting temporal dependencies. Au-
toencoders have been recently used also in [11], but in the context
of an iterative procedure, in conjunction with a discriminative la-
beling step, for single-image forgery detection. It is also worth
noting that in the literature autoencoders have been already pro-
posed for anomaly detection in order to solve a one class clas-
sification problem [12], and have been applied in very different
applications [13, 14].

In the rest of the paper we report on related work concerning
video forgery detection, provide some background on the neural
networks of interest, describe the proposed method, and finally
comment the results of some experiments on a suitable dataset of
forged videos.

Related Work
In this section we will briefly review the main research lines

emerging in the recent literature on video forgery detection and
localization. We will focus especially on methods that do not
make any specific hypotheses on the type of manipulation. Then,
we will describe techniques that look for splicing performed by
croma-key compositing.

A good number of forgery detection methods rely on
the camera sensor noise, or Photo Response Non Uniformity
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Figure 2: High-level differences among feedforward networks
(left), autoencoders (center) and recurrent networks (right).

(PRNU). This is a fixed pattern, caused by inhomogeneity in sil-
icon wafers and imperfections in the sensor manufacturing pro-
cess, which can be retrieved in all images/videos taken by a given
camera. Uniqueness and stability make of PRNU a sort of cam-
era fingerprint, and a valuable tool for image forensics. It is a
powerful tool for source identification [15], but also for image
forgery detection [16, 17], since it can be applied irrespective of
the specific type of manipulation. Any tampering of the source
data causes also a change in the sensor fingerprint, which raises
an alarm on the authenticity of the asset. Applications to video
source identification have been explored originally in [18], and
subsequently in [19], where a strategy to face the effects of strong
compression is proposed. Instead, its use for forgery detection is
first analyzed in [20]. It is worth noting that PRNU-based forgery
detection is much more challenging than source identification,
since the detector must operate on small local patches to locate
the forgery. In this case, the very low intensity of the PRNU pat-
tern becomes a serious limit. Moreover, the performance is very
sensitive to the scene content, limiting application in dark or tex-
tured areas [16]. A final drawback, is the need of a large training
set to estimate the PRNU pattern.

Other methods rely on the analysis of noise residuals ob-
tained by removing the semantic content of the video through
high-pass filtering [21]. In fact, noise residuals bear traces of pe-
culiar in-camera processes which can be used to detect statistical
anomalies. Unlike PRNU-based methods, these do not require
training data, and work directly on the residuals frames. In [22]
a Gaussian mixture model is used to analyze the temporal cor-
relation on residuals. However, the method is very sensitive to
quantization noise and cannot handle videos with moving back-
ground. This last restriction applies also to the method proposed
in [23], where the inconsistencies of the photon shot noise char-
acteristics are used for forgery detection. Chen et al. [24] focus
instead on motion residuals, looking for irregularities. However,
the proposed method can only identify the forged video segments,
without localizing the specific forged area.

We conclude this short survey of methods focusing on the
detection of splicing carried out through chroma-key composit-
ing. A few papers in the literature deal with this problem. They
all try to detect artifacts generated by the foreground/background
composition, relying on their statistical differences. Su et al. [25]
look for different correlation patterns, in the green component,
around the edges of the spliced area. In [26], instead, inconsis-
tencies of statistical features of quantized DCT coefficients are

Figure 3: An autoencoder with a single hidden layer.

sought, while in [27] blurring artifacts are considered.

Background
In this section, we provide some basic information about the

artificial neural network models adopted in this work, that is, au-
toencoders, and recurrent neural networks. Fig.2 provides a very
high-level summary of the major differences among these mod-
els. A generic feedforward neural net (on the left) can compute
any function y = φ(x) of the input vector. The input vector has
a fixed length, corresponding to the size of the input layer, while
no constraint is imposed on the output. Autoencoders (center) are
feeforward neural networks in which the output is constrained to
have the same size as the input. Indeed, they are usually trained
to provide as output the best possible approximation of the input,
that is y = x̂ = φ(x). Recurrent neural networks (right) have been
introduced to deal with input data coming in sequential form, such
as the words of a sentence or the frames of a video. In such cases,
it is often desired that the output at a given time instant, yt , de-
pends not just on the input at the same instant, xt , but also on past
inputs, x0, . . . ,xt−1. This can be obtained efficiently by introduc-
ing a state variable, ht , which keeps memory of past inputs by
a suitable updating rule, obtaining the model depicted in Fig.2,
with yt = φ(xt ,ht), and ht = ψ(xt ,ht−1). In the following, we
describe in some more detail these networks.

Autoencoders
An autoencoder is able to learn, by proper training, a rep-

resentation (coding) of the input data in oder to guarantee some
desired properties [28]. Its simplest form is shown in Fig.3: a
feedforward non-recurrent net with the input layer connected to
the output layer through a single hidden layer. Typically, the in-
put and output layers have the same size, and the output is desired
to approximate the input. In this case, one can evaluate the recon-
struction error between input and output by means of a specific
loss function. Specifically, the encoder maps the input vector,
x ∈ RK , to its hidden (or latent) representation, z ∈ RH , as

z = φ1 (A1x+b1) (1)

where φ1(·) is the activation function, A1 is a K×H weight matrix
and b1 is a bias vector. The decoder, instead, maps the hidden
representation to the output reconstruction as

x̂ = φ2 (A2z+b2) (2)

where φ2,A2 and b2 are the activation function , the weight
matrix and the bias vector, respectively. All these parameters
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θ = {A1,b1,A2,b2} are learned by minimizing the average re-
construction error between input and output over a suitable train-
ing set. Usually, the average Euclidean distance is used as loss
function:

L(θ) = ||x− x̂;θ ||2 (3)

and the optimization is carried out through stochastic gradient de-
scent.

Most of the times, autoencoders have a bottleneck structure,
H < K, aimed at extracting a compact representation of the input.
In this way, the network is forced to represent the input with a
smaller number of variables (in the hidden layer) while preserv-
ing the information content as much as possible. If linear activa-
tion functions are used, the autoencoder approximates a principal
component analysis (PCA), providing a low-dimensional linear
representation of data. More often, nonlinear activation functions
are used, such as rectified linear unit (ReLU), hyperbolic tangent,
or a sigmoid function. In this case the autoencoder goes beyond
PCA, capturing multi-modal aspects of the input distribution [29].

Recurrent Neural Networks
In feedforward neural networks, information flows only from

input units to output units. Every time the network is fed with a
new input, all previous ones are forgotten. However, when deal-
ing with sequential data, such as audio signals, sentences, videos,
and so on, it is very likely that previous inputs carry valuable in-
formation on the current task, and hence the network should be
able to remember as many inputs as possible, and take them into
account.

To address this problem, one can resort to recurrent neural
networks (RNN) which receive a sequence of values in input,
x0,x1, . . . ,xt , . . ., and produce a corresponding sequence of out-
put values, y0,y1, . . . ,yt , . . . In principle, each output value yt de-
pends on all past inputs. In practice, the network maintains a hid-
den state ht , which represents the memory of the network. State
and output are updated with each new input

ht = σ(Wxt +Uht−1) (4)

yt = σ(Vht) (5)

where σ indicated a sigmoid nonlinearity, and all network param-
eters W,U,V must be learned by suitable training.

For training, feedforward networks rely on the well-known
backpropagation algorithm, together with an optimization method
such as the gradient descent. The same approach can be applied
to RNNs, obtaining a training algorithm known as backpropaga-
tion through time (BPTT), where the output error backpropagates
across all timesteps. Unfortunately, the vanishing-gradient effect,
which already affects feedforward networks, becomes a major
problem with RNNs. The error, propagating through a large num-
ber of timesteps, tends to vanish, preventing the network from
learning long-term dependencies.

A number of solutions to this problem have been proposed,
with mixed results [30]. Recently, the long short-term memory
(LSTM) model has emerged as the most promising architecture
for effective training. As the name suggests, a LSTM network is
able to learn both short-term and long-term dependencies, thanks
to the gate-based mechanism shown in Fig.4. There are three

yt−1 yt

σ σ tanh σ

x x

ht−1 x +

xt

ht

tanh

Figure 4: LSTM cell.

gates, the forget, input, and output gates, which control, respec-
tively, the fraction of the current state that should be discarded,
the fraction of the current input that should be used to update the
state, and the part of the newly computed state to use for updat-
ing the output. While the network becomes more complex, it also
gains the ability to select which parts of the current and past in-
formation to use for computing the output and updating the state.

Proposed method
The method proposed here takes inspiration from our previ-

ous work on the detection and localization of splicing in still im-
ages [10, 11]. We provide, first, a brief overview of the method,
and then describe in more detail its components.

Input frames are analyzed in sliding window modality, us-
ing image patches of 128×128 pixels taken with stride 8. From
each patch, we extract a handcrafted feature, designed to capture
the subtle statistical differences of spliced material with respect
to the original video. Each feature is analyzed by an anomaly de-
tector, which outputs an anomaly score. All such scores are then
projected back on the image domain and aggregated to produce a
global “heat” map which is used as the basis to detect the spliced
material, if present, and its position. Note that we work on single-
frame 2d patches. However, temporal dependencies are taken into
account through the use of recurrent neural networks.

In the following subsections we describe the features and the
anomaly detector, the latter based on a recurrent autoencoder.

Feature extraction
The literature on image forgery detection makes very clear

the importance of using features extracted from image resid-
uals [21, 31, 32], that is, after removing the semantic image
content, which does not help discovering statistical anomalies.
In particular, high-order statistics seem necessary to achieve a
good discrimination [9, 10], which can be considered through co-
occurrence counts. Here, we use features inspired by work in ste-
ganalysis [33, 34]. However, unlike in steganalysis, where a rich
set of different high-pass linear and non-linear residuals seems to
be necessary to achieve a good performance, we consider a single
high-pass third-order derivative filter to extract meaningful fea-
tures. This choice proved effective in previous work [31], as also
confirmed by recent experiments carried out in [32] on a variety
of different manipulations.

We therefore follow a three-step model comprising

1. computation of residuals through high-pass filtering;
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Figure 5: An array of identical feedforward autoencoders for a
sequence of input patches.

2. quantization of the residuals;
3. computation of a histogram of co-occurrences.

The final histogram is the feature vector associated with the whole
patch, to be used for anomaly detection. The residual is ob-
tained as ri j = fi, j−1−3 fi, j +3 fi, j+1− fi, j+2, where f and r are
origin and residual frames, and i, j indicate spatial coordinates.
However, we are interested in the joint distribution of residuals,
which provides information on higher-order phenomena and in-
volves a larger neighborhood. To obtain a manageable histogram
of co-occurrences, residuals are therefore quantized to a few bins
and truncated, r̂i, j = truncT (round(ri, j/q)), with q the quantiza-
tion step and truncT the truncation operator at level T . In par-
ticular, we use a uniform five-level quantizer, and compute co-
occurrences on four pixels in a row, that is

C(k0,k1,k2,k3) =

∑
i, j

I(r̂i, j = k0, r̂i+1, j = k1, r̂i+2, j = k2, r̂i+3, j = k3)

where I(E) is the event indicator. The homologous column-wise
co-occurrences are pooled with the above, based on symmetry
considerations, obtaining eventually a 625-bin histogram, which
is reduced to 338 by further symmetry arguments. Finally, the his-
togram is converted to vector form and normalized to zero mean
and unit norm to obtain the final feature vector x.

Anomaly detection
To perform anomaly detection, we exploit the properties of

autoencoders. The parameters of the autoencoder are learned on a
dataset of pristine feature vectors, extracted from a short sequence
of splicing-free frames. During the test phase, whenever a pristine
feature vector is presented in input, the network succeeds in repro-
ducing it with a small error. On the contrary, in the presence of
spliced material, the feature vector does not fit the intrinsic model
stored in the network parameter, and is reproduced with a large
error. By measuring the reconstruction error (3) between input
and output one obtains therefore a reliable anomaly score.

With reference to the t − th frame of the video, the same
procedure is applied to all feature vectors, xs,t , with s indicating
the spatial location of the corresponding patch. To build the output
heat map, all original patches are replaced by the corresponding
anomaly scores.

Under a different perspective, if we consider all patches as-
sociated with a specific spatial location, s, they are processed by
a virtual array of identical autoencoders, as shown in Fig.5. How-
ever, it can be expected that past input patches carry valuable in-
formation on the current one, which should be taken into account
to improve performance. Therefore, we replace our feedforward
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Figure 6: An array of temporally dependent autoencoders for a
sequence of input patches.

autoencoder with a recurrent one, giving rise, after temporal un-
rolling, to the structure depicted in Fig.6. The current feature vec-
tor is encoded by taking into account also past patches, with a
relatively long memory implemented by the LSTM model. As in
the previous structure, all parameters of this recurrent autoencoder
are learnt in advance on a short sequence of pristine frames.

Experimental results
This section is devoted to the experimental assessment of

performance. We will first present the video dataset, then ana-
lyze the performance of the proposed method, and finally carry
out a comparison with some state-of-the-art reference algorithms.

To assess the performance of the proposed method we cre-
ated a new specific dataset, available online at www.grip.unina.it,
which is described below. This is primarily due to the scarcity
of datasets for video forensics, but also to the need to perform
experiments in perfectly known and controlled conditions, in-
cluding knowledge of the origin of videos and of the types of
attack. Our dataset comprises 10 short videos with splicings
created with Adobe After Effects CC R© using croma-key com-
positing by means of green screen acquisitions. The background
videos have been captured by the authors using nine different
smartphones, while the green screen acquisitions (including hu-
mans, animals, and objects) have been downloaded from YouTube
under the Creative Commons license, except for one down-
loaded from: http://www.hollywoodcamerawork.com/green-
screen-plates.html. In order to study also the realistic case of
videos downloaded from a social network, typically with some
quality impairments, the dataset includes, together with the orig-
inal videos (H.264) and the forged videos (uncompressed AVI),
also their versions uploaded and downloaded from YouTube, at
the maximum quality. Tab.1 reports some synthetic information
on the videos, and in particular the total number of frames and the
number of forged frames. All videos were cropped at the same
size of 720×1280 pixels. Fig.7 and Fig.8 show individual frames
extracted from each original and, respectively, forged, videos. It is
worth underlining that all videos are characterized by significant
motion of either the background or spliced object.

The proposed method was implemented in Tensorflow us-
ing the Adam learning algorithm [35], with learning rate 0.005,
exponential decay rates for moment estimation β1 = 0.9 and
β2 = 0.999, and ε = 10−8 for numerical stability. As already
said, training was carried out on 50 frames, known in advance to
be pristine. Performance was measured instead on 100 frames.
In particular, given the available ground truth, we computed the
pixel-level true positive rates (TPR) and false positive rates (FPR)
by thresholding the heat maps (at the same level for all videos) and
averaging results over all 10 videos. Then, by varying the thresh-
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Figure 7: Individual frames taken from the original videos.

Figure 8: Individual frames taken from the forged videos.

# name # frames # forged camera

1 Tank 335 191 Nokia Lumia520

2 Man 399 207 Apple iPhone 7

3 Cat 281 136 Huawei P7 mini

4 Helicopter 488 292 Apple iPhone 5

5 Hen 373 169 Huawei P9 plus

6 Lion 294 228 Samsung GT I8150

7 Ufo 306 96 Motorola MotoG

8 Tree 302 240 Huawei P8lite

9 Girl 371 162 Samsung J5

10 Dog 310 186 Nokia Lumia520

Table 1: Characteristics of the video dataset.

old, we obtained the receiver operating curves (ROC) shown in
the following.

First of all, we investigated the impact on performance of
the number of neurons, H, in the hidden layer of the autoencoder.
Results are summarized in the ROCs of Fig.9 for the case of
uncompressed forged videos (left) and videos downloaded from
YouTube. In both cases, the performance improves significantly
by increasing H from 15 to 100, while beyond that point there
is no further improvement, and even a slight impairment of per-
formance for youtube videos. Therefore, we set H = 100 once
and for all. From these ROCs, the proposed method appears to
perform quite well. Performance impairs somewhat when using
compressed videos, but not dramatically so.

Then, we carried out a similar experiment to select the opti-
mal number of unrolling steps of the LSTM recurrent neural net-
work. In this case, however, the impact of performance turned out
to be minor, so we set this parameter to 25 and avoid showing un-
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Figure 9: Performance as a function of the number of neurons in
the hidden layer of the autoencoder. Left: uncompressed (forged)
videos. Right: YouTube compressed videos.

informative ROCs. Actually, if we renounce altogether the use of
recurrent units, falling back on single-frame analysis, the perfor-
mance is only mildly affected, as shown very clearly by the ROCs
of Fig.10 for both the uncompressed forged videos and YouTube
ones. This was a surprising result, since it appears that we are tak-
ing only minimal advantage of the temporal information. While
this may be justified for uncompressed forged videos, where very
good performance are obtained, for YouTube compressed video
there is obviously room for further improvements. A possible ex-
planation is the fact that, while we are using temporal information
through the RNN, we are not tracking the objects through time,
and all videos are affected by significant motion.

We conclude this analysis by comparing results with some
reference methods. Unfortunately, a very limited number of can-
didate references can be considered and no implementation is
made available by the authors. For example, format-based meth-
ods tailored on MPEG-2 coding, like [26], had to be discarded al-
together because modern smartphones use more advanced codecs,
such as MPEG-4 or H.264. Then, we implemented several other
methods, but in some cases could not obtain acceptable results,
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Figure 10: Performance of the proposed method with and without
the use of recurrent units. Left: uncompressed (forged) videos.
Right: YouTube compressed videos.
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Figure 11: Comparison with state-of-the-art methods. Left: un-
compressed (forged) videos. Right: YouTube compressed videos.

such as for [25], proposed for chroma-key composition. In the
end, we could select as references the model-based method pro-
posed by ourselves in [9] trained on 50 frames, called WIFS2014
from now on, and two variants of PRNU-based detectors. In a
first case, called in-video, 50 frames of the test video are used
to estimate the PRNU, as done in [20]. However, we also con-
sidered an ideal case, called out-video, in which the PRNU is
computed from 300 INTRA frames of uniform background so
us to guarantee its reliable estimate [19]. For both PRNU-based
methods, BM3D denoising is used [36], PRNU is maximum-
likelihood estimated, and detection is based on the normalized
cross-correlation (NCC) computed on 128×128-pixel windows,
as preliminary experiments with the more complex PCE did not
show improvements.

Results are shown in Fig.11. With uncompressed videos, the
proposed method performs only slightly better than WIFS2014.
On the contrary, it provides a large improvement with respect
to PRNU-based methods, which for most videos perform only
slightly better than random guessing, irrespective of the PRNU
estimation quality. Turning to the case of compressed YouTube
videos, WIFS2014 does not perform so well anymore, and the
proposed method does provide a significant performance gain.
The performance of PRNU-based methods, instead, degrade fur-
ther. Interestingly, the in-video (hence, worse) PRNU estimate
seems to be slightly preferable, which raises some doubts on what
these detectors are actually looking for.

Finally, we show some sample results for the Hen video, un-
compressed forged (Fig.12) and YouTube compressed (Fig.13).
A short sequence of four frames is shown in the top line, together
with the heat maps output by the in-video PRNU-based method,
WIFS2014, and the proposed method, in the other lines. The vi-
sual inspection fully confirms previous observations. WIFS2014
and the proposed method provide comparable results when no

post-processing is carried out, but the proposed method is clearly
superior on the YouTube video. In both cases, the PRNU-based
heat maps look basically random.

Conclusion
We proposed a method for video splicing detection based

on autoencoder and recurrent neural networks. During the train-
ing phase, the autoencoder learns to reproduce the pristine input,
so that in the presence of spliced areas the reconstruction error
increases triggering detection. Experimental results look promis-
ing, especially on compressed videos downloaded from YouTube,
even if the use of recurrent neural networks provides a marginal
improvement. Different directions need to be explored in the fu-
ture. A tracking algorithm should be included in order to take into
account the motion of the objects and a completely blind method,
with no need of a training phase, should be developed. Finally, a
more extensive experimental analysis should be carried out, with
different type of manipulations and post-processing operations.
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