
Design Principles of Convolutional Neural Networks for Multi-
media Forensics
Belhassen Bayar and Matthew C. Stamm; Drexel University, Philadelphia, PA, bb632@drexel.edu, mstamm@coe.drexel.edu

Abstract
Convolutional neural networks (CNNs) have received signif-

icant attention due to their ability to adaptively learn classifica-
tion features directly from data. While CNNs have helped cause
dramatic advances in fields such as object and speech recog-
nition, multimedia forensics is fundamentally different problem
compared to other deep learning applications. Little work ex-
ists to guide the design of CNN architectures for forensic tasks.
Furthermore, it is still unclear which forensic tasks can be per-
formed using CNNs. In this work, we investigate the design of
CNNs for multiple multimedia forensic applications. We show
that CNNs are capable of performing image manipulation detec-
tion as well as camera model identification. Through a series of
experiments, we systematically examine the influence of several
important CNN design choices for forensic applications, such as
the use of a constrained convolutional layer or fixed high-pass fil-
ter at the beginning of the CNN, the use of nonlinearity after the
first layer, the choice of activation and pooling functions, etc. We
show that different CNN design choices should be made for differ-
ent forensic applications and identify design choices to maximize
the performance of CNNs for manipulation detection and camera
model identification.

Introduction
Multimedia information, such as digital images, is frequently

used in numerous important settings, such as evidence in legal
proceedings, criminal investigations, and military and defense
scenarios. Since this information can easily be edited or falsi-
fied, information forensics researchers have developed a wide va-
riety of methods to forensically determine the authenticity and
source of multimedia data [27]. Many early forensic approaches
were developed by theoretically or heuristically identifying a set
of traces left in an image by a particular processing operation or
source device. For example, techniques have been developed to
detect specific traces left by resampling and resizing [22, 14], con-
trast enhancement [26], median filtering [15, 13], sharpening [2],
and many other operations. Similarly, forensic algorithms have
been developed to identify the model of an image’s source cam-
era using specific traces left by different elements of the camera’s
internal processing pipeline [28, 3, 8].

More recent data-driven forensic approaches have leveraged
techniques from steganalysis research that capture local pixel de-
pendencies using high dimensional feature sets [9, 20]. These
approaches have been used to detect image editing [23] and per-
form camera model identification [4, 19]. While these techniques
have shown significant improvements in manipulation detection
or camera model identificaiton accuracy, researchers are still left
with questions such as: Are these the best set of classification
features for forensic tasks? Can forensic traces and classification

features be learned directly from data?
Recently, researchers have shown significant interest in us-

ing techniques from deep learning to address problems in mul-
timedia security such as image manipulation detection and ste-
ganalysis [1, 21]. Tools such as convolutional neural networks
(CNNs) [17] show particular promise due to their ability to adap-
tively learn decision features from large sets of data. While CNNs
have been successfully applied to computer vision problems such
as object recognition [16, 29], lessons learned from this field do
not necessarily translate to multimedia forensics. Because mul-
timedia forensics is a fundamentally different problem, certain
design principals that are successful when building CNNs to per-
form object recognition are suboptimal for multimedia forensic
tasks.

In their standard form, CNNs tend to learn features related to
the image’s content, whereas, in image forensics tasks we need to
suppress an image’s content and capture pixel value dependencies
finduced by an editing operation (e.g., image tampering detection
task [23]) or the camera’s image processing pipeline (e.g., camera
model identification task using models of camera’s demosaicing
algorithm [28]). If CNNs are used in their existing form, this will
lead to a classifier that identifies the objects and scenes associated
with the camera as opposed to learn image forensics classification
features. In response to this problem, two methods have emerged
namely the predetermined high-pass filter based deep learning ap-
proach used in steganography [21] and the ‘constrained convolu-
tional’ layer adaptive approach used to perform image manipula-
tion detection [1].

Since the use of deep learning approaches for multimedia se-
curity applications is still in its infancy, little work exists to guide
the design of CNN architectures for forensic tasks. In addition, no
work has explicitly examined and compared the performance of
different proposed network topologies. As a result, several open
questions currently exist with regard to the design and training of
CNNs for multimedia forensics. For example: Which problems in
multimedia forensics can CNNs be successfully applied to? Mul-
tiple approaches have recently been proposed for the design of
the initial CNN layer (i.e. high-pass filter or constrained convo-
lutional layer). Which of these yields the best performance? Do
certain other design parameters such as the pooling technique or
choice of activation function have significant effects on the CNN’s
accuracy? Do these design choices vary depending on the foren-
sic task being considered? What effect do different training tech-
niques such as batch normalization and local contrast normaliza-
tion have on the CNN’s classification accuracy? In order to guide
future research into the application of deep learning techniques
for multimedia security, it is important to address these questions.

In this paper, we systematically investigate several CNN de-
sign choices, then use the results of our investigation to present

IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017 77

https://doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-328
© 2017, Society for Imaging Science and Technology



several guidelines for designing and training CNN architectures
for multimedia forensics. Specifically, we investigate (1) the im-
pact of the choice of the initial CNN layer, (2) the effect of dif-
ferent types of nonlinearity following the first layer (i.e. pooling,
the absolute value function, nonlinear activation functions, etc.),
(3) the performance of different pooling techniques, (4) the influ-
ence of network depth, (5) the effect of integrating a 1× 1 layer
into the CNN to learn associations across feature maps, (6) the
influence of the choice of activation functions, and (7) the effect
of different training approaches such as batch normalization and
local contrast normalization.

Additionally, we demonstrate that CNNs can be designed to
perform several different forensic tasks. Specifically, we inves-
tigate the design of CNNs for detecting multiple different image
manipulations as well as for identifying the model of an image’s
source camera. The construction of a CNN for performing cam-
era model identification is a new result that, to the best of our
knowledge, has not yet been published. Our investigation reveals
both general CNN design principles that are important regardless
of the forensic task, along with other design choices that must be
appropriately selected depending on the chosen forensic task.

Background
Convolutional neural networks (CNNs) are an extended ver-

sion of neural networks (NNs) [17]. They have proven effective at
extracting classification features directly from data with different
types of signals such as images [16], text data [6] and speech [11],
etc. A CNN’s architecture, which is the set of parameters and
components that we need to design a network, is based on stack-
ing many hidden layers on top of one another which makes CNNs
capable of learning hierarchical features. That is, they can learn
higher-level features from a set of previously learned lower-level
features.

In a CNN architecture the first convolutional layer operates
as a features extractor which consists of a set of convolutional fil-
ters with a fixed size. These filters convolve in parallel with all
regions of an input image with an overlapping distance called a
stride. The output of each convolutional filter in a convolutional
layer is a new learned representation of data known as feature
map. Every entry in a feature map is equivalent to one neuron in
a NN’s layer. Subsequently, the following hidden convolutional
layers similarly extract features from the input feature maps pre-
viously learned by a former convolutional layer. The output of
these hierarchical feature extractors is fed to a fully-connected
neural network that performs a classification task.

The analytical expression of the convolution within the CNN
architecture is given in Eq. (1):

h(n)j =
K

∑
k=1

h(n−1)
k ∗w(n)

k j +b j(n), (1)

where ∗ denotes a 2-D convolution operation, h(n)j is the jth fea-

ture map output in the nth hidden layer, h(n−1)
k is the kth channel

in the (n−1)th hidden layer, w(n)
k j is the kth channel in the jth filter

in the nth layer and b(n)j is its corresponding bias term.
Recently, CNNs have been successful for addressing prob-

lems such as object recognition [16, 29]. These recent advances

have been improved with the use of GPUs to overcome the com-
putational expense of learning the large number of filters coef-
ficients and fully-connected layers weights that a deep network
involves. These weights and coefficients are initially seeded with
random values, then learned through an algorithm called back-
propagation. To introduce nonlinearity throughout the network,
the convolutional and fully-connected layers are typically fol-
lowed by an activation function. This enables each artificial neu-
ron to act as a human neuron that suppresses the small values of a
layer’s output and activates the large ones. Furthermore, the set of
hierarchical convolutional layers yields a large volume of feature
maps which makes the CNN computationally very expensive. To
address this issue, the convolutional layers are followed by an-
other type of layer called pooling which is used to reduce the di-
mension of each feature map. This reduces the computational cost
associated with training the network and decreases the chances of
over-fitting by retaining the most representative features through-
out CNN. There exist many types of pooling operations such as
max, average and stochastic pooling. A max-pooling layer for in-
stance, operates as a sliding window with a stride distance that
retains the maximum value within the sliding window dimension.

The coefficients of the convolutional filters wi j’s are auto-
matically learned using an iterative algorithm which alternates
between feedforward and back-propagation passes of the data.
This iterative process will lead to minimize the average loss
between the actual labels and the network outputs, i.e., E =
1
m ∑

m
i=1 ∑

c
k=1 y∗(k)i log

(
y(k)i
)
, where y∗(k)i and y(k)i are respectively

the true label and the network output of the ith image at the kth

class with m training images and c neurons in the output layer.
In fact, numerous solvers [24, 30, 7] could be used to solve the
underlying optimization problem. In this work we consider the
stochastic gradient descent (SGD) to train the CNN models [24].
The iterative update rule for the filters coefficients w(n)

i j in CNN
during the back-propagation pass is given below:

∇w(n+1)
i j = m ·∇w(n)

i j −d · ε ·w(n)
i j − ε · ∂E

∂w(n)
i j

w(n+1)
i j = w(n)

i j +∇w(n+1)
i j , (2)

where w(n)
i j represents the ith channel from the jth kernel ma-

trix in the hidden layer h(n)that convolves with the ith channel in
the previous feature maps denoted by h(n−1)

i , ∇w(n)
i j denotes the

gradient of w(n)
i j and ε is the learning rate. The letters m and d

are respectively the momentum and the decay. The bias term b(n)j
in (1) is updated using the same equations presented in (2). The
use of the decay and momentum strategy is mainly for fast con-
vergence as explained by LeCun et al. in [18].

General experimental setup
When a forensic investigator designs a CNN architecture,

they have at their disposal numerous possible choices of param-
eters, e.g., the number of convolutional layers, the choice of ac-
tivation function, etc. Therefore, there exist a large number of
design choices that one could make to build a CNN architecture
where each element of the network has an impact on CNN’s per-
formance. In this work, we present through a set of experiments

78
IS&T International Symposium on Electronic Imaging 2017

Media Watermarking, Security, and Forensics 2017



Figure 1. Our proposed CNN architecture; BN:Batch-Normalization Layer;

PReLU: Parametric Rectified Linear Unit Layer.

the primary steps to design a CNN model capable of adaptively
learning image forensics features directly from data. We first es-
tablish a baseline architecture shown in Fig. 1. From this fig-
ure, we can see that the baseline architecture consists of one con-
strained convolutional layer which is followed directly by four
convolutional layers and three fully-connected layers. All the reg-
ular convolutional layers are followed by a batch normalization
layer (BN) [12], a parametric rectified linear unit (PReLU) acti-
vation function [10] and a max-pooling layer.

One can notice that the constrained convolutional layer is not
followed by any type of nonlinearity (e.g., pooling layer and/or
an activation function) which will be explained through our ex-
periments. Additionally, we can notice that in the “Conv5” layer
we use 1× 1 filters followed by an average pooling layer. We
use these type of filters to learn new associations between feature
maps. The first two fully connected layers contain 200 neurons
and are followed by a PReLU activation function. The number of
neurons in the output layer is equal to the number of classes in
the considered forensics task. This layer is followed by a softmax
activation function and the class of the input image corresponds
to the highest activated neuron in the output layer. In this work,
the input layer of our CNN is the green layer of an image patch
sized 256×256 pixels.

In our experiments, we vary specific design choices in
the baseline architecture and experimentally evaluate the perfor-
mance of these choices on two different tasks, namely (1) image
manipulation detection and (2) camera model identification. Only
one design choice is varied at a time in order to understand the
importance of that particular design choice. In every experiment,
we train each CNN for 45 epochs, which is the number of times
that every sample in the training data was trained. Additionally,
while training CNNs, their testing accuracies on a separate testing
database were recorded every 1000 iterations to produce figures in
the experiments sections. In what follows, we give details about
the different architectural design choices that we will test in our

experiments.
We start our experiments by studying the first convolutional

layer in a CNN architecture. This layer is the most important
in a CNN’s architecture since it extracts the lowest-level features
from the input data. Then higher-level features will be extracted
through the following hidden convolutional layers. As we men-
tioned above, CNNs in their existing form do not suppress the im-
age’s content and may lead to a classifier that identifies the scenes
and objects associated with training data. To combat this issue,
two alternatives have emerged to suppress an image’s content and
capture pixel values dependencies when CNN is used in a foren-
sics task, i.e., high-pass filter (HPF) [21] and constrained convo-
lutional layer [1]. More specifically, the following fixed HPF has
been used in steganography [21]:

w(1) = 1
12


−1 2 −2 2 −1
2 −6 8 −6 2
−2 8 −12 8 −2
2 −6 8 −6 2
−1 2 −2 2 −1


as a first convolutional layer in CNN. This method has proven
effective and promising at distriguishing between the stego and
cover images.

However, this approach still suffers from the fact that a
human intervention is required to choose a predetermined filter
which is not adaptive. To address this problem, we have suggested
in our recent work the constrained convolutional layer [1] which
can jointly suppress an image’s content and adaptively learn pixel
values dependencies while training CNN to perform universal im-
age manipulation detection. Each of the K filters w(1)

k in the first
convolutional layer of the CNN have the following constraints
placed on them:{

w(1)
k (0,0) =−1

∑`,m6=0 w(1)
k (`,m) = 1

(3)

In this manner, we enforce the first convolutional layer in CNN
to extract prediction-error features by learning a normalized lin-
ear combination of the central pixel value in terms of its local
neighbors within the convolutional filter dimension. Pseudocode
outlining the training process of the constrained convolutional
layer is given in Algorithm 1. In this work we compare the per-
formance of a CNN when both types of the first convolutional
layer are used to extract the lowest-level forensics features from
data, i.e., prediction-error features. Furthermore, when the “Con-
strained Conv” layer in Fig. 1 is replaced by a HPF layer, the new
dimension of “Conv2” layer becomes 7×7×1×96.

In different deep learning applications, the first convolutional
layer is typically followed by an activation function and a pooling
layer. However, such rules may not apply to multimedia forensics
tasks. Thus, in the second set of experiments we study the effect
of introducing different nonlinear operations to the prediction-
error features learned by the “Constrained Conv” layer used in
the baseline architecture. That is, we would like to know if non-
linearity can help to learn a better representation of the data when
introduced to the prediction-error features.

From Fig. 1, one can observe that we use an average-pooling
layer after the 1× 1 filters in the “Conv5” layer. Choosing the
type of the pooling layer after the 1× 1 convolutional filters is a

IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017 79



Algorithm 1 Training algorithm for constrained convolutional
layer

1: Initilize wk’s using randomly drawn weights
2: i=1
3: while i≤ max iter do
4: Do feedforward pass
5: Update filter weights through stochastic gradient

descent and backpropagate errors
6: Set wk(0,0)(1) = 0 for all K filters
7: Normalize w(1)

k ’s such that ∑`,m 6=0 w(1)
k (`,m) = 1

8: Set wk(0,0)(1) =−1 for all K filters
9: i = i+1

10: if training accuracy converges then
11: exit
12: end

very critical task and has a noticeable impact on the performance
of the CNN. These 1× 1 filters learn the association between
the highest-level feature maps in the network before the fully-
connected layers perform classification. Therefore, it is important
to choose a pooling layer that keeps the most representative fea-
tures which will be fed to the fully-connected layers. Moreover,
there exist other types of pooling that may perform better than
average-pooling. Therefore, in the experimental part we study the
impact of using a max-pooling layer after “Conv5”.

One can also notice from Fig. 1 that in the baseline ar-
chitecture we use the PReLU activation function [10]. When
CNNs used with a PReLU activation function, it has experimen-
tally demonstrated to surpass human-level performance on visual
recognition challenge [25]. Earlier CNN architectures in com-
puter vision [16, 29] use the ReLU activation function which have
shown several advantages during training the network. Recently,
Clever et al. [5], proposed the exponential linear units (ELU) ac-
tivation function, which considerably speeds up learning and ob-
tains less than 10% classification error compared to a ReLU net-
work with the same architecture. Thus, we experimentally study
the effect of using each of the above mentioned activation func-
tions in the baseline architecture.

There is no systematic way of determining the necessary
depth in a CNN architecture and one has to empirically choose
the appropriate number of convolutional layers in the network.
Therefore, in the experimental part we assess the performance
of CNN when trained with different depths. We also study the
impact of using 1× 1 convolutional filters. Unlike the convolu-
tional layers with larger filter size where each is followed by a
max-pooling layer, we use an average-pooling layer after the 1×1
convolutional filters. We start by training a CNN architecture with
one convolutional layer after the “Constrained Conv” layer, then
we vary the network depth by increasing the number of convo-
lutional layers while keeping the number of the fully-connected
layers fixed. Thus, for every fixed depth we train a CNN both
with and without a 1× 1 convolutional layer whose number of
filters is equal to 128. Additionally, every non-constrained convo-
lutional operation is followed by a BN layer, a PReLU activation
function and a pooling layer.

Similarly to the activation function, researchers in computer
vision have developed several techniques to normalize the data

throughout the CNN architecture. Early CNNs use the local re-
sponse normalization (LRN) layer to normalize the data through-
out the network. This type of layer normalizes the central co-
efficient within a sliding window in a feature map with respect
to its neighbors. Furthermore, the LRN layer has proven to im-
prove the testing performance of the network. In particular, it has
improved the AlexNet model [16] testing accuracy by 1.4% to
classify 1,000 different objects.

Recently Ioffe et al., proposed in [12] the batch normaliza-
tion layer which dramatically accelerates the training of deep net-
works. This type of mechanism minimizes the internal covariate
shift which is the change in the input distribution to a learning
system. This is done by a zero-mean and unit-variance transfor-
mation of the data while training the CNN model. Since the input
to each layer is affected by the parameters of all previous layers,
even small changes get amplified. Thus, this type of layer ad-
dresses an important problem and increases the final accuracy of a
CNN model. Additionally, the BN layer has proven to reduce the
effect of overfitting in CNNs. Therefore, in our experiments we
trained the baseline architecture with these two choices of normal-
ization layer to assess the impact of each on CNN’s performance.

Image manipulation detection
In this part, we present an experimental study about the im-

pact of the different design choices of the CNN parameters on
the final image manipulation detection rate. We used the baseline
CNN architecture in Fig. 1 to adaptively extract image manip-
ulation features directly from data and perform universal image
tampering detection with five different editing operations listed in
Table 1. For this forensics task, the output layer of CNN con-
sists of 6 neurons, i.e. original versus five editing operations. As
mentioned above, the baseline architecture of CNN is fixed then
changed accordingly to each tested design setting described in the
previous section.

Data collection & training parameters To run this set of ex-
periments, we first built an experimental database that we down-
loaded from the 1st IEEE IFS-TC image forensics challenge
website: http://ifc.recod.ic.unicamp.br/fc.website/

index.py?sec=5. We collected 2,445 images of size 1024×768
for the training and testing data. To train our CNNs we randomly
selected 1,852 images from our experimental database. Next, we
divided these images into 256×256 pixel patches and retained all
the nine central patches from the green layer of each image for
our training database. We then created their corresponding edited
patches using the five tampering operations listed in Table 1. In
total, our training database consisted of 100,000 patches in which
16,667 patches were not tampered.

When training our CNN, we set the batch size equal to 64
and the parameters of the stochastic gradient descent as follows:
momentum = 0.9, decay = 0.0005, and a learning rate ε = 10−3

that decreases every 5 epochs by a factor γ = 0.5. We trained the
CNN in each experiment for 45 epochs (approximately 70,000 it-
erations). We subsequently created a testing database by dividing
the remaining 593 images not used for the training into 256×256
pixel patches in the same manner described above. In total, our
testing database consisted of 32,000 patches where 5,337 patches
were not edited. Note that training and testing are disjoint. In
what follows we describe the set of experiments that we ran to

80
IS&T International Symposium on Electronic Imaging 2017

Media Watermarking, Security, and Forensics 2017



Table 1: Used editing parameters to create our experimental
database for CNN-based universal manipulation detection.

Editing operation Parameter
Median Filtering (MF) Ksize = 5×5
Gaussian Blurring (GB) with σ = 1.1 Ksize = 5×5
Additive White Gaussian Noise (AWGN) σ = 2
Resampling (RS) using bilinear interpolation Scaling = 1.5
JPEG compression QF = 70

find the appropriate architecture to image manipulation detection.

Experimental results In the first set of experiments, we com-
pared a CNN with the constrained convolutional layer [1] to the
steganalysis approach suggested in [21] where the input image
is first convolved with a predetermined HPF. Fig. 2 depicts the
curves of the image manipulation detection rate versus the num-
ber of training epochs for both networks, i.e., the HPF-based
CNN and constrained convolutional layer-based CNN. One can
observe that the CNN with the constrained convolutional layer
outperforms the HPF approach throughout the training epochs
where the best achieved detection rates are respectively 98.70%
and 97.99%. The HPF approach achieves a lower detection rate
since it is a suboptimal solution of the trained network with a con-
strained convolutional layer. Thus, the constrained convolutional
layer can capture image manipulation features that may not be
captured using a hand-designed HPF.

In the baseline CNN architecture, the prediction-error fea-
ture maps adaptively learned by the constrained convolutional
layer are directly convolved with the regular convolutional layer
“Conv2”. Therefore, in this part of experiments we study the
effect of introducing nonlinearity after the “Constrained Conv”
layer and whether this could lead to learn better representative im-
age manipulation features. Normally, all the regular convolutional
layers are followed by an activation function and a pooling layer.
Thus, we assessed the performance of the baseline architecture in
Fig. 1 after applying the changes listed in Table 2. We trained the
new CNN architectures with the same training parameters used in
the previous experiments.

We first trained our CNN architecture with a PReLU acti-
vation function and a max-pooling layer after the “Constrained
Conv” layer. The best achieved detection rate with this new ar-
chitecture is 95.48%, whereas, the baseline architecture achieved
98.70% without introducing the nonlinearity to the prediction-
error features. Therefore, by adding an activation function and a
pooling layer after the “Constrained Conv” layer, the CNN model
has lost the salient features capable of detecting image manipula-
tion with a higher rate.

Then, we assessed the CNN baseline architecture when
adding only a max-pooling layer after the constrained convolu-
tional layer. The best achieved detection rate with this archi-
tecture is 93.19%. We then study the impact of adding a sym-
metry operation to the prediction-error features extracted by the
first constrained layer. Therefore, we trained our model in Fig. 1
with adding an absolute value layer after the “Constrained Conv”
layer. The final detection rate significantly decreased to 94.90%.
These results suggest that any type of nonlinearity introduced to

Figure 2. CNN testing accuracy v.s. training iterations for image manipula-

tion detection, blue: our proposed architecture, red: HPF-based CNN.

Table 2: CNN testing accuracy with nonlinear operations after
constrained convolutional layer for image manipulation detec-
tion.

Nonlinear operations Accuracy
PReLU + Max-pooling 95.48%

Max-pooling 93.19%
Absolute value 94.90%

w/out nonlinearity 98.70%

the prediction-error features inhibits important representative fea-
tures and drops significantly the overall detection rate. Therefore,
it is very important to use a regular convolutional layer directly
after the constrained convolutional operation.

The baseline network architecture includes one constrained
convolutional layer, three regular convolutional layers followed
by a 1× 1 convolutional layer that learns the association across
feature maps and three fully connected layers used for the classi-
fication task. However, the number of convolutional layers can-
not be determined in a systematic way and one has to try different
depths of the network to find the appropriate number of convo-
lutional layers after the constrained one. Furthermore, we need
to know how important is to learn association across the feature
maps and whether the 1×1 convolutional filters can improve the
final detection rate.

Figure 3. Testing accuracy versus number of convolutional layers for im-

age manipulation detection, green: last convolutional layer followed by 1×1

convolutional layer, yellow: last convolutional layer not followed by 1×1 con-

volutional layer.

IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017 81



Figure 4. CNN testing accuracy v.s. training iterations for image manipula-

tion detection, blue: avg-pooling after Conv5, red: max-pooling after Conv5.

Table 3: CNN testing accuracy with different activation func-
tions for image manipulation detection.

Activation function Accuracy
ELU 98.52%

ReLU 97.78%
PReLU 98.70%

Fig. 3 summarizes the performance of each possible depth.
One can notice that as we increase the number of convolutional
layers we can improve the overall detection rate until we reach the
optimal depth. We can also notice that with two, three and four
non-constrained convolutional layers, the 1×1 convolutional fil-
ters have importantly improved the final detection rate. However,
if we use these 1×1 filters after the first non-constrained convolu-
tional layer the detection rate decreases from 98.01% to 97.46%.

One can observe that the best performance is achieved
when we use the baseline architecture in Fig. 1, i.e., three non-
constrained convolutional layers followed by 1×1 convolutional
filters after the “Constrained Conv” layer. Additionally, we can
notice that when four convolutional layers are used after the “Con-
strained Conv” layer, where the number of used filters in the
fourth added non-constrained convolutional layer is 48 with di-
mension 5× 5× 64, the final detection rate has decreased by
0.54% compared to the baseline CNN architecture in Fig. 1.

In the previous set of experiments, we showed that the 1×1
convolutional filters followed by an average-pooling improves the
overall accuracy of the proposed CNN. However, there exist other
types of pooling that may perform better. Therefore, we trained
the baseline architecture in Fig. 1 using a max-pooling layer after
“Conv5” layer. Fig. 4 depicts the detection rate versus the train-
ing epochs using two choices of pooling layer. The overall detec-
tion rate has decreased from 98.70% to 97.45% when using the
max-pooling layer after “Conv5”. Thus, for image manipulation
detection task, the average-pooling layer retains the most repre-
sentative features from the deepest convolutional feature maps in
the network.

Subsequently, we examined the impact of different choice of
activation function on CNN’s performance. We compared the per-
formance of the proposed PReLU-based network in Fig. 1 to ELU
and ReLU networks. To accomplish this, we trained the baseline
architecture with the different mentioned above activation func-
tions. We report the best achieved detection rates of these net-

Figure 5. CNN testing accuracy v.s. training epochs with different activation

functions for image manipulation detection.

Figure 6. CNN testing accuracy v.s. training epochs with batch normaliza-

tion and local response normalization.

works in Table 3. Fig. 5 shows the detection rate versus the train-
ing epochs curve for each choice of activation function. One can
observe that the PReLU network outperforms the ELU and ReLU
networks and reaches a higher constant detection rate in fewer
number of epochs. We can notice that the PReLU network perfor-
mance is respectively 0.92% better than the ReLU network and
0.18% better than the ELU networks.

Finally, we compared the proposed BN-based architecture in
Fig. 1 to the same architecture that instead uses 5×5 LRN layer
after each pooling operation. We trained both architectures for
45 epochs. We used a learning rate ε = 10−4 for the LRN-based
model since a higher choice of the learning rate yields very large
filters coefficients, hence the training diverges. Fig. 6 depicts the
detection rate versus the training epochs of each network where
the best achieved rate with the LRN-based network is 95.92%
whereas we could achieve 98.70% with the baseline architecture
that uses the batch normalization layer. Fig. 7 shows the training
loss versus the training epochs for both networks. One can ob-
serve that the BN layer leads to significantly lower loss compared
to the LRN layer. Additionally, the BN-based CNN loss curve has
less spikes throughout the training epochs which demonstrates the
impact of this layer on reducing the effect of overfitting.

Summary In this part, we demonstrated through our experi-
ments that a CNN architecture used in different deep learning
applications may not be generalized and applied in image ma-
nipulation detection task. In fact, we have seen that the choice of
the first convolutional layer is very crucial to CNN’s performance.
More specifically, the constrained convolutional layer has proven
to help improving the detection rate compared to when CNN is

82
IS&T International Symposium on Electronic Imaging 2017

Media Watermarking, Security, and Forensics 2017



Table 4: Classification accuracy for each camera model in our database using a ReLU-based CNN architecture in Fig. 1.
Camera Model Accuracy Camera Model Accuracy Camera Model Accuracy

Canon EOS SL1 98.97% Kodak Easyshare C813 99.66% Samsung S2 99.37%
Canon PC 1234 98.50% LG G2 98.36% Samsung S3 93.73%
Canon PC 1730 96.36% LG G3 99.17% Samsung S4 99.79%

Canon Powershot G10 97.65% LG Nexus5 94.63% Samsung S5 97.63%
Canon Powershot S100 98.94% LG Realm 97.93% Samsung S6 edge 99.40%
Canon Powershot A580 98.41% Motorola Droid Maxx 98.44% Sony A6000 95.92%

iPad Air 2 97.56% Motorola Droid Turbo 94.91% Sony Cybershot DSCT70 98.85%
iPhone 4 98.95% Nikon D7100 93.18% Sony Nex 5TL 78.14%
iPhone 4s 99.41% Nokia Lumia 920 98.71% Sony Nex 7 93.51%
iPhone 5 98.70% Samsung Lite 99.53% Blackberry Leap 95.65%
iPhone 5s 98.33% Samsung Note3 98.04% Overall Accuracy 97.59%
iPhone 6s 97.84% Samsung Note4 97.55% -

used with a predetermined HPF. Additionally, unlike regular CNN
architectures our experiments showed that features learned by the
first convolutional layer should not be processed by any type of
nonlinear operation. More explicitly, the prediction-error features
which are the lowest-level image manipulation features are vul-
nerable to be destroyed by any type of nonlinearity. Furthermore,
we found that the image manipulation detection rate could be im-
proved when using deeper CNN architecture, however, it starts to
decrease after we reach the appropriate number of convolutional
layers. Moreover, when we use 1×1 convolutional filters after the
highest-level feature maps the detection rate has also significantly
increased for the different tested depths. We also have seen that
the particular choice of the pooling layer and the activation func-
tion has an impact on CNN’s performance. Finally, through our
experiments we demonstrated the advantage of using BN layers
in CNN, which reduces the effect of overfitting, compared to an
architecture that instead uses LRN layers to normalize the data.

Camera model identification
While previous research has shown that CNNs can be used

to perform image manipulation detection, researchers may natu-
rally ask: What other forensic tasks can CNNs be used for? Here,
we show that CNNs can be designed to determine the make and
model of an image’s source camera. To the best of our knowl-
edge, this is the first paper to show that CNNs can be built to
learn traces left in an image by its source camera, then use these
traces to determine the source camera’s make and model.

Our experimental results for image manipulation detection
showed that one has to test each design choice of CNN to find the
appropriate architecture for the considered forensics task. Thus,
we are also interested in studying whether rules learned in the
previous forensics task could be applied to camera model iden-
tification. Similarly to the image manipulation detection experi-
ments, we train different CNN architectures to study the effect of
each element in CNN on the CNN’s performance to perform im-
age’s source identification. The number of neurons in the output
layer of the CNN baseline architecture in Fig. 1 is equal to the
number of camera models used to collect the training and testing
databases.

Data collection & training parameters We built an experi-
mental database by manually capturing images using the 34 dif-

Figure 7. CNN training loss v.s. training epochs with batch normalization

and local response normalization functions.

ferent camera models listed in Table 4. At least 300 images were
captured by each camera using its default settings to create a
set of 17,641 images. To train our CNN, we randomly selected
14,113 images from our experimental database. Next, we divided
these images into 256×256 pixel patches and retained the central
25 patches from the green layer of each image for our training
database. In this database, each block corresponds to a new im-
age that has its corresponding camera model label. In total, our
training database consisted of 352,825 patches.

When training our CNN, we set the batch size equal to 64
and the parameters of the stochastic gradient descent as follows:
momentum = 0.9, decay = 0.0005, and a learning rate ε = 10−3

that decreases every 5 epochs by a factor γ = 0.5. We trained the
CNN in each experiment for 45 epochs (approximately 250,000
iterations).

Finally, to evaluate the performance of our proposed ap-
proach, we created a testing database by dividing the 3,528 im-
ages not used for the training into 256×256 pixel patches in the
same manner described above. In total, our testing database con-
sisted of 88,200 patches. We then used our CNN to identify the
source camera model of each image in the testing set.

Experimental results Similarly to the image manipulation ex-
periments, we compared the constrained CNN in Fig. 1 to the
approach suggested in [21] where the input image is first con-
volved with a HPF layer. Fig. 8, depicts the curve of the identifi-
cation rate versus the training epochs for each network. One can
observe that the constrained convolutional layer based CNN out-

IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017 83



Figure 8. CNN testing accuracy v.s. training epochs for camera model

identification, blue: our proposed architecture, red: HPF-based CNN.

Table 5: CNN testing accuracy with nonlinear operations after
constrained convolutional layer for camera model identifica-
tion.

Nonlinear operations Accuracy
PReLU + Max-pooling 70.56%

Max-pooling 79.49%
Absolute value 94.83%

w/out nonlinearity 97.39%

performs the HPF approach where the best achieved identification
rates are respectively 97.39% and 96.69%. As mentioned in the
previous set of experiments, we also believe that the HPF-based
CNN achieves lower performance because any predetermined fil-
ter is a suboptimal solution of the learned constrained convolu-
tional filters. Additionally, these results show that if we make use
of the constrained convolutional layer, a CNN can adaptively ex-
tract features related to pixel values dependencies induced by the
camera’s image processing pipeline, e.g., its demosaicing algo-
rithm, compression, denoising, etc. However, we believe that the
camera’s fingerprint is dominated by the demosaicing algorithm.

Subsequently, we study the impact of using different nonlin-
ear operations after the “Constrained Conv” layer on the CNN’s
identification rate for camera model identification. Thus, simi-
larly to the image manipulation detection task where we exper-
imentally showed that the prediction-error features are vulnera-
ble to be destroyed by nonlinear operations, we would like to as-

Figure 9. CNN testing accuracy v.s. training iterations for camera model

identification, blue: avg-pooling after Conv5, red: max-pooling after Conv5.

Table 6: CNN testing accuracy with different activation func-
tions for camera model identification.

Activation function Accuracy
ELU 97.28%

ReLU 97.59%
PReLU 97.39%

sess the baseline architecture’s ability to perform image source
camera model identification when nonlinearity is introduced to
the camera’s demosaicing features learned by the “Constrained
Conv” layer.

Table 5 summarizes the performance of the baseline CNN
after applying the nonlinear operations to the prediction-error fea-
tures. First, we trained the network in Fig. 1 with a PReLU and
max-pooling layer after “Constrained Conv” layer. The CNN
identification rate has significantly decreased and the best identi-
fication rate of the network during the training is 70.56%. We re-
peated the same experiment by adding only a max-pooling layer.
The final identification rate has also decreased compared to the
baseline architecture and it didn’t achieve better than 79.49% dur-
ing training. Finally, we study the impact of using an absolute
value layer on the learned prediction-error features. The network
performance has also decreased and the best achieved identifica-
tion rate is 94.83%. From Tables 2 and 5 one can notice that
the prediction-error features learned in image’s source identifica-
tion task are more vulnerable to be destroyed by nonlinear oper-
ations compared to the image manipulation detection task. Thus,
through our experiments we were able to demonstrate that for
both considered forensics tasks, if the “Constrained Conv” layer
is followed by a nonlinear operation then most of the representa-
tive features will be destroyed and the performance of the network
significantly decreases.

We then compared the performance of the baseline archi-
tecture in Fig. 1 to the same architecture that instead uses a max-
pooling layer after the 1×1 convolutional filters in “Conv5” layer.
Fig. 9 depicts the identification rate versus the training epochs
curves for both choices of pooling. Unlike the image manip-
ulation detection task, when a max-pooling layer is used after
the “Conv5” layer in the CNN baseline architecture, the perfor-
mance of CNN to identify the image’s source is improved and
can achieve 97.57% accuracy. This result demonstrates again that
the design choices of CNN in multimedia forensics depend on the
forensics detection task.

In the previous experiment, we have shown that for image’s
source identification the choice of the pooling layer should be
different when CNN is used for image manipulation detection.
Therefore, one particular design of CNN could not be generalized
for another forensics tasks. Thus, in this part of the experiments
we assessed the performance of the baseline architecture with dif-
ferent choices of activation function. Fig. 10 shows the identifi-
cation rate versus the training epochs for the different choices of
activation function, i.e., ELU, ReLU and PReLU. In Table 6, we
report the best achieved camera model identification rate for each
choice of activation function. One can observe that the ReLU-
based CNN outperforms the ELU and PReLU networks where
their best achieved identification rates are respectively 97.59%,
97.28% and 97.39%.

84
IS&T International Symposium on Electronic Imaging 2017

Media Watermarking, Security, and Forensics 2017



Figure 10. CNN testing accuracy v.s. training epochs with different activa-

tion functions for camera model identification.

Finally, Table 4 shows the identification rate for each camera
model in our database using the ReLU-based baseline CNN. One
can notice that the CNN can identify the image’s source with an
accuracy typically higher than 97% for each model. This demon-
strates the ability of the constrained convolutional layer to capture
good camera’s fingerprints while suppressing the image content.
Additionally, these results are very promising since we are using
reasonably small input image patches from a single image chan-
nel.

Summary In this set of experiments, we have shown that some
rules learned from the image manipulation detection task could
be generalized for camera model identification. More specifically,
the choice of the first convolutional layer should be the same for
both forensics CNN detectors. In fact, when a CNN is used with
the constrained convolutional layer, we can achieve better iden-
tification rate compared to a CNN that uses a fixed HPF layer
on top of the network. Furthermore, our results show that when
nonlinearity is introduced to the camera’s demosaicing features
learned by “Constrained Conv” layer the overall identification rate
significantly decreases. Unlike the image manipulation detection
experiments where the PReLU-based baseline CNN architecture
performs the best, in these experiments we found that for source
camera model identification a ReLU-based CNN outperforms the
other choices of activation functions we examined. Finally, we
have seen through our experiments that the choice of the pooling
layer after the 1× 1 convolutional filters could differs between
both tasks. Our results showed that when a max-pooling layer is
used after “Conv5” the overall identification rate is improved.

Conclusion
In this paper, we presented the primary steps to design a

CNN architecture for multimedia forensics tasks. We showed
that CNNs could be used to perform universal image manipu-
lation detection and camera model identification. Through our
experiments, we demonstrated the effect of using each element
in a CNN architecture on the performance of CNN. Given that
image forensics is fundamentally different problem compared to
object recognition, several rules used to design CNNs should not
be applied when a forensics investigator builds a deep network.
To learn image forensics features using a CNN we first need to
suppress the image’s content, otherwise, it will lead to a classi-
fier that identifies objects and scenes associated with the train-

ing images. To address this issue, two competing approaches,
which suggest to replace the first convolutional layer in the net-
work, have emerged, i.e., predetermined high-pass filter layer [21]
versus constrained convolutional layer [1]. We studied the impact
of each of these approaches on the performance of CNN. Our ex-
perimental results showed that the constrained convolutional layer
improves the identification rate of CNN for both forensics tasks
compared to the HPF-based approach.

Furthermore, we studied the effect of introducing different
nonlinear operations to the features learned by the constrained
convolutional layer. We demonstrated through our experiments
that for both forensics tasks any type of nonlinearity would de-
stroy these representative features which decreases the overall
identification rate. Additionally, to further improve the perfor-
mance of CNN, we showed through the experiments that we can
accomplish this by increasing the network depth. Moreover, we
have seen that if 1× 1 convolutional filters are used to learn fea-
ture maps association from the highest-level convolutional fea-
tures in the network, this will lead to a better CNN’s performance.
Finally, our results showed that some rules learned when design-
ing a CNN for image manipulation detection cannot be applied to
camera model indentification task. In fact, we have seen that the
best performance in these two forensics tasks was achieved with
different choices of activation function and pooling layers.

Acknowledgment
This material is based upon work supported by the National

Science Foundation under Grant No. 1553610. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

References
[1] B. Bayar and M. C. Stamm. A deep learning approach to universal

image manipulation detection using a new convolutional layer. In
Proceedings of the 4th ACM Workshop on Information Hiding and
Multimedia Security, pages 5–10. ACM, 2016.

[2] G. Cao, Y. Zhao, R. Ni, and A. C. Kot. Unsharp masking sharpening
detection via overshoot artifacts analysis. IEEE Signal Processing
Letters, 18(10):603–606, 2011.

[3] H. Cao and A. C. Kot. Accurate detection of demosaicing regular-
ity for digital image forensics. IEEE Transactions on Information
Forensics and Security, 4(4):899–910, 2009.

[4] C. Chen and M. C. Stamm. Camera model identification framework
using an ensemble of demosaicing features. In Information Foren-
sics and Security (WIFS), 2015 IEEE International Workshop on,
pages 1–6. IEEE, 2015.

[5] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289, 2015.

[6] R. Collobert and J. Weston. A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning. In
Proceedings of the 25th international conference on Machine learn-
ing, pages 160–167. ACM, 2008.

[7] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159, 2011.

[8] T. Filler, J. Fridrich, and M. Goljan. Using sensor pattern noise

IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017 85



for camera model identification. In 2008 15th IEEE International
Conference on Image Processing, pages 1296–1299. IEEE, 2008.

[9] J. Fridrich and J. Kodovskỳ. Rich models for steganalysis of digital
images. IEEE Transactions on Information Forensics and Security,
7(3):868–882, 2012.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vi-
sion, pages 1026–1034, 2015.

[11] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups. IEEE Signal Processing Mag-
azine, 29(6):82–97, 2012.

[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[13] X. Kang, M. C. Stamm, A. Peng, and K. J. R. Liu. Robust median
filtering forensics using an autoregressive model. IEEE Transac-
tions on Information Forensics and Security,, 8(9):1456–1468, Sept.
2013.

[14] M. Kirchner. Fast and reliable resampling detection by spectral anal-
ysis of fixed linear predictor residue. In Proceedings of the 10th
ACM Workshop on Multimedia and Security, MM&Sec ’08, pages
11–20, New York, NY, USA, 2008. ACM.

[15] M. Kirchner and J. Fridrich. On detection of median filtering in
digital images. In IS&T/SPIE Electronic Imaging, pages 754110–
754110. International Society for Optics and Photonics, 2010.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[17] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel. Backpropagation applied to hand-
written zip code recognition. Neural computation, 1(4):541–551,
1989.

[18] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48.
Springer, 2012.

[19] F. Marra, G. Poggi, C. Sansone, and L. Verdoliva. A study of
co-occurrence based local features for camera model identification.
Multimedia Tools and Applications, pages 1–17, 2016.

[20] T. Pevny, P. Bas, and J. Fridrich. Steganalysis by subtractive pixel
adjacency matrix. IEEE Transactions on Information Forensics and
Security, 5(2):215–224, June 2010.

[21] L. Pibre, P. Jérôme, D. Ienco, and M. Chaumont. Deep learning for
steganalysis is better than a rich model with an ensemble classifier,
and is natively robust to the cover source-mismatch. arXiv preprint
arXiv:1511.04855, 2015.

[22] A. C. Popescu and H. Farid. Exposing digital forgeries by detect-
ing traces of resampling. IEEE Transactions on Signal Processing,
53(2):758–767, Feb. 2005.

[23] X. Qiu, H. Li, W. Luo, and J. Huang. A universal image foren-
sic strategy based on steganalytic model. In Proceedings of the
2nd ACM workshop on Information hiding and multimedia security,
pages 165–170. ACM, 2014.

[24] H. Robbins and S. Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet

large scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015.

[26] M. C. Stamm and K. J. R. Liu. Forensic detection of image manip-
ulation using statistical intrinsic fingerprints. IEEE Trans. on Infor-
mation Forensics and Security, 5(3):492 –506, 2010.

[27] M. C. Stamm, M. Wu, and K. J. R. Liu. Information forensics: An
overview of the first decade. IEEE Access, 1:167–200, 2013.

[28] A. Swaminathan, M. Wu, and K. J. R. Liu. Nonintrusive component
forensics of visual sensors using output images. IEEE Transactions
on Information Forensics and Security, 2(1):91–106, 2007.

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–9, 2015.

[30] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

Author Biography
Belhassen Bayar received the B.S. degree in Electrical Engineer-

ing from the Ecole Nationale d’Ingénieurs de Tunis (ENIT), Tunisia, in
2011, and the MS degree in Electrical and Computer Engineering from
Rowan University, New Jersey, in 2014. After graduating from ENIT, he
worked as a Research Assistant at the University of Arkansas at Little
Rock (UALR). In Fall 2014, he joined Drexel University, Pennsylvania,
where he is currently a PhD candidate with the Department of Electri-
cal and Computer Engineering. Bayar won the Best Paper Award at the
IEEE International Workshop on Genomic Signal Processing and Statis-
tics in 2013. In summer 2015 he interned at Samsung Reasearch America
in Mountain View, California. His main research interests are in image
forensics, machine learning and signal processing.

Matthew C. Stamm received the B.S., M.S., and Ph.D. degrees in
electrical engineering from the University of Maryland, College Park in
2004, 2011, and 2012, respectively. He is an Assistant Professor with in
the Department of Electrical and Computer Engineering at Drexel Univer-
sity. From 2004 to 2006, he was a Radar Systems Engineer with the Johns
Hopkins University Applied Physics Laboratory. His research interests
include multimedia forensics, signal processing, information security, and
machine learning.

86
IS&T International Symposium on Electronic Imaging 2017

Media Watermarking, Security, and Forensics 2017


