
A Preliminary Study on Convolutional Neural Networks for

Camera Model Identification

Luca Bondi; Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano; Milano, Italy
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Abstract
Camera model identification is paramount to verify image

origin and authenticity in a blind fashion. State-of-the-art tech-

niques leverage the analysis of features describing characteris-

tic footprints left on images by different camera models from the

image acquisition pipeline (e.g., traces left by proprietary de-

mosaicing strategies, etc.). Motivated by the very accurate per-

formance achieved by feature-based methods, as well as by the

progress brought by deep architectures in machine learning, we

explore in this paper the possibility of taking advantage of convo-

lutional neural networks (CNNs) for camera model identification.

More specifically, we investigate: (i) the capability of different

network architectures to learn discriminant features directly from

the observed images; (ii) the dependency between the amount

of training data and the achieved accuracy; (iii) the importance

of selecting a correct protocol for training, validation and test-

ing. This study shows that promising results can be obtained on

small image patches training a CNN with an affordable setup (i.e.,

a personal computer with one dedicated GPU) in a reasonable

amount of time (i.e., approximately one hour), given that a suffi-

cient amount of training images is available.

Introduction
The rapid proliferation of inexpensive image capturing de-

vices has driven the widespread diffusion of digital pictures on

the web. As sharing any type of images through websites and

social media is everywhere. Verifying the veracity and authentic-

ity of these widely distributed (and re-distributed) images is far

from being an easy task [1, 2]. For this reason, the multimedia

forensic community has investigated methodologies to assess the

trustworthiness of digital images in the last few years [3, 4].

Among the many investigated forensic issues, great attention

has been devoted to camera model identification [5, 6, 7]. Indeed,

detecting the camera model used to take a picture can be cru-

cial for criminal investigations and trials. This information can

be exploited for solving copyright infringement cases, as well as

indicating the authors of illicit material (e.g., child pornography).

Even when deeper source identification granularity is needed (i.e.,

detecting the unique camera instance rather than just the make and

model), camera model identification can be considered an impor-

tant preliminary step to reduce the set of camera instances [7].

Moreover, being able to detect the camera model by analyzing

small image patches is a possible way to expose splicing opera-

tions [8].

The rationale behind blind state-of-the-art camera model

identification detectors is that each camera model performs pe-

culiar operations on each image at acquisition time (e.g., differ-

ent JPEG compression schemes, proprietary algorithms for CFA

demosaicing, etc.). These operations leave on each picture char-

acteristic “footprints” that can be exploited as an asset to reverse-

engineer the camera model identity.

Following this idea, some methods focus on capturing char-

acteristic footprints left during one specific step of the image ac-

quisition pipeline. As an example, in [6] noise traces left by sen-

sors on acquired images are exploited. Conversely, in [9] an algo-

rithm tailored to detect lens distortion is proposed. In [10, 11, 12],

traces relative to the used demosaicing strategy are investigated.

Alternatively, the effect of dust traces on image sensors is studied

in [13].

Given the difficulty of properly modeling complex chains of

operations typical of the image acquisition pipeline, other cam-

era model identification methods exploit features mainly captur-

ing statistical image properties paired with machine learning clas-

sifiers, rather than focusing on specific processing operations. As

an example, an technique based on local binary patterns is pro-

posed in [14]. More recently, the authors of [15, 16, 17] exploit

pixel co-occurrence statistics computed in different domains fed

to a variety of supervised classification techniques. These meth-

ods guarantee very accurate results, especially on full resolution

images that provide sufficient pixel statistics.

A common aspect of all the aforementioned algorithms is

that they rely on manually defined procedures to expose traces

characterizing different camera models. This means that they rely

on some model assumptions a priori made. However, recent ad-

vancements established by deep learning techniques in computer

vision [18] have shown that it is possible to improve the accuracy

in detection and classification tasks by taking advantage of great

amount of data in order to learn characteristic features directly

from the data itself. These methods are known as data-driven,

as they learn directly from data rather than following an analytic

model.

Considering that the feature learning paradigm has recently

proved fruitful for forensics applications [19, 20, 21, 22], in this

paper we investigate the use of feature learning techniques in the

camera model identification context, further investigating our first

exploratory solutions [23, 24]. Our objective is to show that it is

possible to use convolutional neural networks (CNNs) to learn

discriminant features directly from the observed known images,
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Figure 1. Simple CNN architecture consisting of commonly used layers. A small color image patch is processed through convolutional, max pooling, inner

product and ReLU layers. Finally, SoftMax is used to obtain a probability vector.

rather than relying on hand-crafted descriptors. In principle, this

enables to possibly capture also characteristic traces left by non-

linear and difficult to model operations during the acquisition

pipeline.

To conduct our study, we investigate the behavior of differ-

ent CNN architectures to select a proper network for discriminant

feature learning on 64×64×3 (i.e., height × width × colors) im-

age patches, while keeping computational complexity at bay. In

particular, we compare a series of CNN architectures differing in

the number of convolutional, pooling, inner product and rectified

linear unit (ReLU) layers. For each type of architecture, several

hyper-parameters choices (e.g., kernel size, stride, number of fea-

ture maps) are examined.

We focus on the importance of a proper training protocol,

which is essential to make sure that the CNN learns important

characteristics (e.g., properties discriminating camera models)

rather than biased information (e.g., the semantic of the captured

scenes). To this purpose, strongly inspired by [7], we consider

different amounts of training images, depicting either the same or

different scenes, and show how different training choices affect

classification results.

The rest of the paper is structured as follows. We first re-

port some background on CNNs. Then, we show the algorithmic

pipeline devised to perform camera model identification using

CNNs. Afterwards, we report all the details about the experimen-

tal setup, from the tested CNN architectures to the used dataset

splits. Then, we report the numeric results achieved through our

study in order to evaluate the different tested setups. Finally, we

wrap up our final considerations and conclude the paper.

Background on CNNs
In this section, we provide a brief overview of convolutional

neural networks (CNNs) sufficient to understand the rest of the

paper. For a more in depth description, please refer to one of the

many available tutorial in the literature [18, 25].

Deep learning and in particular CNNs have shown very

good performance in several computer vision applications such

as image classification, face recognition, pedestrian detection and

handwriting recognition [25]. A CNN is a complex computa-

tional model partially inspired by the human neural system that

consists of a very high number of interconnected nodes, or neu-

rons. Connections between nodes have a numeric weight param-

eter that can be tuned based on experience, so that the model is

able to learn complex functions. The nodes of the network are

organized in multiple stacked layers, each performing a simple

operation on the input. The set of operations in a CNN typically

comprises convolution, intensity normalization, non-linear acti-

vation and thresholding and local pooling. By minimizing a cost

function at the output of the last layer, the weights of the network

(e.g., the values of the filters in the convolutional layers) are tuned

so that they are able to capture patterns in the input data and au-

tomatically extract distinctive features.

This is different than traditional use of “handcrafted” fea-

tures, in which the features used are driven by human intuition. In

a CNN the features used are driven by data. Such complex models

are trained using backpropagation coupled with an optimization

method such as gradient descent and the use of large annotated

training datasets. The first layers of the networks usually learn

low-level visual concepts such as edges, simple shapes and color

contrast, whereas deeper layers combine such simple information

to identify complex visual patterns. Finally, the last layer consists

of a set of data that are combined using a given cost function that

needs to be minimized. For example, in the context of image clas-

sification, the last layer is composed of N nodes, where N is the

number of classes, that define a probability distribution over the N

visual category. That is, the value of a given node pi, i = 1, . . . ,N
belonging to the last layer represents the probability of the input

image to belong to the visual class ci. Depending on user choices,

it is possible to select the class maximizing pi as classification re-

sult, or to use all pi values as feature vector to train an external

classification tool (e.g., a support vector machine).

To train a CNN model for a specific image classification task

we need:

1. to define the metaparameters of the CNN, i.e., the sequence

of operations to be performed, the number of layers, the

number and shape of the filters in convolutional layers, etc;

2. to define a proper cost function to be minimized during the

training process;

3. to prepare a (possibly large) dataset of training and test im-

ages, annotated with labels according to the specific tasks

(i.e., camera models in our work).

Figure 1 shows a minimalistic example of a small CNN archi-

tecture depicting some of the commonly used layers. To better

understand the role of each layer, we describe the most common

building block:

• Convolution: each convolution layer is a filterbank, whose

filters impulse response h are learned through training.

Given an input signal x, the output of each filter is y = x∗h,

i.e., the valid part of the linear convolution. Convolution

is typically done on 3D representations consisting of the

spatial coordinates (x,y) and the number of feature maps

p (e.g., p = 3 for an RGB input).

• Max pooling: returns the maximum value of the input x eval-

uated across small windows (typically of 3x3 pixels).

• ReLU: Rectified Linear Unit (ReLU) uses the rectification

function y = max(0,x) to the input x, thus clipping negative

values to zero [26].

• Inner Product: indicates that the input of each neuron of the

next layer is a linear combination of all the outputs of the
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Figure 2. Proposed pipeline for camera model identification with training steps highlighted in red. During training, patches are extracted from each training

image I inheriting the same label L of the image. These are used for CNN and SVM training. During evaluation, for each patch Pi of the image I under analysis,

a feature vector Vi is extracted through the CNN. Feature vectors are input into a set of trained linear SVM classifiers in order to associate a candidate label L̂i

to each vector. The predicted label L̂ for image I is obtained by majority voting.

previous layer. Combination weights are estimated during

training. The dropout rate indicates the percentage of nodes

that are randomly neglected during training in order to avoid

data overfitting [27].

• SoftMax: “squashes” the input values in the range [0,1] and

guarantees that they sum up to one. This is particularly use-

ful at the end of the network in order to interpret its outputs

as probability values.

Camera Model Identification Using CNNs
In this paper, we consider camera model identification as a

closed set classification problem. In other words, given an image

I under analysis, the goal is to detect which camera model among

a set of known N ones has been used to shoot the photograph.

In order to solve this problem, our proposed method follows

the pipeline depicted in Figure 2: (i) images are split into patches;

(ii) a CNN is first trained, than used to extract meaningful features

from each patch; (iii) a set of support vector machines (SVMs) are

trained and used to classify each patch; (iv) a final voting proce-

dure is used to take decision at image level aggregating patches

scores.

In the following we report details about each step, leaving to

the next section the description of the tested CNN architectures,

which is object of investigation in this paper.

Patch Selection
The first step of the proposed pipeline consists in splitting

each image I into a set of K non-overlapping patches Pk, k ∈ [1,K]
of size 64× 64× 3 (i.e., height × width × color). The rationale

behind this choice is twofold: (i) splitting images into patches

allows us to obtain a greater amount of data for CNN training; (ii)

feeding the CNN with smaller data (i.e., a patches rather than full

resolution images) enables working with smaller and lighter CNN

architectures.

However, not all patches contain enough statistical informa-

tion about the used camera model. For instance, it is clear that

saturated patches should not be considered during either training

or testing. Therefore, we devised a patch selection procedure.

Specifically, for each patch Pk within an image, we compute a

quality value defined as

Q(Pk) =
1

3 ∑
c∈[R,G,B]

[

α ·β
(

µc −µc
2
)

+(1−α)(1− eγσc)
]

, (1)

where α , β and γ are empirically set constants (set to 0.7, 4 and

ln(0.01) in our experiments), whereas µc and σc, c ∈ [R,G,B] are

the average and standard deviation of red, green and blue compo-

nents (in range [0,1]) of patch Pk, respectively. This quality mea-

sure tends to be lower for overly saturated or flat patches, whereas

it is higher for textured patches showing some statistical variance

(as shown in Figure 3). Therefore, we select for each image K

patches with the highest Q values.

(a) Q = 0.91 (b) Q = 0.78 (c) Q = 0.54

Figure 3. Patch examples and relative quality measure.

CNN Training
Given a set of training labeled images coming from N known

camera models, we split them into patches and associate to each

patch the same label L of the source image to which patches be-

long. Then, we input all available patch-label pairs for training

into the CNN.

The choice of the CNN architecture is a delicate step. As

an example, a too deep network may be unnecessary long to train

and may contain too many parameters that need a huge training

dataset to be properly tuned. However, smaller networks may not

achieve accurate enough performance, loosing the ability of well

discriminating the used camera models. Moreover, despite the

number of used layers, also the choice of filters size and stride

plays a crucial role, not to mention the use of inner product lay-

ers. For these reasons in this paper we tested different CNN ar-

chitectures, the detailed description of which is left to the next

section.

A common aspect among all tested architectures is that they

accept as input patches of size 64×64×3. The pixel-wise average

over the training set is subtracted to each input patch. At the end

of the training step, we obtain the CNN model M.

SVM Training
Even though we could perform classification by simply pick-

ing the class corresponding to the maximum value from SoftMax

layer, we decided to make use of an additional classification tool.

Therefore, for each patch, the selected CNN model M is used

to extract a feature vector, stopping the forward propagation at
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the last-minus-one layer (before the classification inner-product

layer). Feature vectors associated to training patches are used to

train a battery of N · (N −1)/2 linear binary SVM classifiers S in

a One-versus-One fashion.

Majority Voting
When a new image I is under analysis, the camera model

used to acquire it is estimated as follows. A set of K patches is

obtained from image I according to the quality measures defined

in (1). Each patch Pk is processed by the trained CNN model M

in order to extract a feature vector Vk. The set S of linear SVMs

assigns a label L̂k to each patch by attributing vectors Vk to one of

the available N classes (i.e., camera models). The predicted model

L̂ for image I is obtained through majority voting on L̂k,k ∈ [1,K].
In case of par, random selection between equally likely models is

operated.

Evaluation Setup
Considering the empirical nature of the proposed pipeline,

it is essential to investigate through testing the impact of differ-

ent CNN architectures and training strategies. In this section, we

first report a detailed description of all tested CNNs. Then, we in-

troduce the problem of biased training and describe the strategies

that we tested to ensure a fair training process.

CNN Architectures
Designing a proper CNN architecture for our camera model

identification pipeline is a critical step. The overall accuracy of

the system is significantly determined by the extracted feature

vectors from each image patch.

There are several key design choices that have to be consid-

ered as they determine the final structure of the CNN. The depth

of the network, the use of pooling layers and the size of the ker-

nels are examples and are referred to as hyper-parameters. Tun-

ing hyper-parameters is approached in a trial-and-error fashion as

there are no hard-quantitative rules that can be followed. This is

due to the fact that we approach camera model identification as

a data-driven problem and the final architecture of the network

depends on the type of data under consideration. In our partic-

ular case, we explore networks that accept input patches of size

64×64×3.

In [23], we presented a CNN used to extract features for

camera model identification. A summary of the hyper-parameters

used in that CNN is shown in Table 1. The encouraging results

demonstrated with that particular architecture motivated us to im-

prove its design in [24]. In particular, we used some of the CNN

architecture design guidelines proposed in [28] and proposed a

new CNN architecture, hereinafter denoted as MConv4. In Ta-

ble 2 we summarize its hyper-parameters. In this paper, we study

the behavior of MConv4 compared to other 3 new networks, which

vary in depth as will be explained in this section. In particular, we

consider MConv4 as the base CNN on top of which we develop

the 3 remaining deeper architectures.

The changes made in MConv4 with respect to our first pro-

posed CNN aim to reduce the computational complexity and im-

prove the accuracy. As suggested in [28], in order to keep the

computational complexity at bay we use more convolutional lay-

ers with smaller kernel sizes instead of using larger kernels and

fewer convolutional layers (e.g. 2 stacks of 3× 3 convolutional

layers vs. a single 7×7 convolutional layer). A similar idea was

also proposed by Chatfield et al. in [29]. This change coupled

with the reduction in the overall number of convolutional filters

aim to be parameter efficient. It also has the added benefit that

our convolutional neural network is able to represent more com-

plex functions as we add more layers.

We also changed the kernel size of the pooling layers to the

most conventional value of 2×2 and changed the stride value to 2.

We also added an additional pooling layer. The main idea behind

having more pooling layers stems from the fact that the exact lo-

cation of a feature in the original input patch (i.e. a high activation

value occurs) is not as important as its relative location to other

features. These layers drastically reduce the spatial dimension of

the input volume they receive, which serves two purposes:

• the number of parameters is reduced by 75%, which trans-

lates into an efficient use of computer resources.

• controlling overfitting, which happens when a model is ex-

cessively fine-tuned to the training examples and it is not

able to generalize well for the validation and evaluation sets

(e.g. if the number of parameters of the network is high

enough, the network could just memorize the training ex-

amples).

Finally, because we still want our CNN to be able to model

non-linear functions we use a single ReLU layer towards the end

of the network. This will make the CNN applicable to a wide

range of camera models due to the fact that the non-linearity can

be helpful to capture non-trivial classes.

It was shown by the Oxford VGG team in [30] and Szegedy

et al. in [31], the representational capacity of a network is largely

determined by its depth. This insight was also verified with the

recent development of deep residual networks [32], which can

have more than 150 layers and were used by the winners of the

ILSVRC-2015 competition [33]. Keeping simplicity in mind, and

following the strategy that Simonyan et al. devised in [30] to pre-

pare their submission for the ILSVRC-2014, we explored a single

family of networks of increasing depth. By doing so, we took ad-

vantage of the key design choices made in our base CNN model,

MConv4, such as the stacks of convolutional and pooling layers

structure and the kernel sizes of the convolutional layers. A stride

value of 1 was chosen for the convolutional layers. This results

in no skipping (i.e. our filters are applied to all the values of the

input volumes they receive).

The CNN architectures, evaluated in this work, are outlined

in Table 3, one per column. MConv4 was introduced earlier in

[24] and we refer to the three remaining networks as MConv6,

MConv8 and MConv10. As mentioned earlier, the 4 networks vary

only in the depth: from 6 weight layers in the network MConv4

(4 convolutional and 2 Inner Product layers) to 12 weight layers

in the network MConv10 (10 convolutional and 2 Inner Product

layers). The number of filters of each convolutional layer is rather

small, starting from 32 in the first layer and then adding 16 more

filters after each pooling layer, except for the last one, where we

increase the number of filters by a factor of 2 reaching a total of

128 filters.

Training Strategies
As discussed in [7], the training procedure for machine

learning-based camera model identification algorithms must be
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Table 1: Summary of the hyper-parameters of the first CNN architecture that we presented as a feature extractor for camera model

identification in [23]

Layer Kernel size Num. filters
Conv-1 7×7 128
ReLU-1 - -
Pool-1 3×3 -
Conv-2 7×7 512
ReLU-2 - -
Pool-2 3×3 -
Conv-3 6×6 2048
ReLU-3 - -
InnerProduct-1 - 2048
ReLU-4 - -
InnerProduct-2 - 2048
SoftMax - -

Table 2: Structure of the reference CNN architecture MConv4. N is the number of training classes. Feature are extracted after the

ReLU-1 layer

Layer Input size Kernel size Stride Num. filters Output size
Conv-1 64×64×3 4×4 1 32 61×61×32
Pool-1 61×61×32 2×2 2 - 31×31×32
Conv-2 31×31×32 5×5 1 48 27×27×48
Pool-2 27×27×48 2×2 2 - 14×14×48
Conv-3 14×14×48 5×5 1 64 9×9×64
Pool-3 9×9×64 2×2 2 - 5×5×64
Conv-4 5×5×64 5×5 1 128 1×1×128
InnerProduct-1 1×1×128 - - 128 128
ReLU-1 128 - - - 128
InnerProduct-2 128 - - N N
SoftMax N - - - N

devised with great attention. While it is important to ensure a suf-

ficient amount of training data, training data cannot be randomly

selected. Training data must be carefully chosen in order to avoid

over fitting and ensure a wide variety of images covering different

scenarios.

In order to further highlight the importance of the training

strategy, let us consider the following example. Let us consider

camera model identification problem using only two camera mod-

els whose labels are L1 and L2, respectively. If all images coming

from camera L1 are very dark, and all images from camera L2 are

very bright, the CNN might learn to discriminate luminance levels

rather than camera models. It is clear that, in order to avoid such a

biased training inevitably leading to incorrect results and conclu-

sions, images from both cameras must depict both dark and bright

scenes in this case. Despite the simplicity of this example, the sit-

uation becomes less trivial when many different camera models

and images with different semantical contents are used.

In order to consider this important issue, in our study we con-

sider the Dresden Image Dataset [34] as reference, as suggested

in [7]. This dataset is composed by 73 camera devices from 25

camera models and 14 camera brands. For each device a variable

number of shots has been taken in several geographical positions.

For each position a set of different motives is shot. Details about

the acquisition process are available at [34]. In the following we

will refer to scene when considering the combination of a geo-

graphical position with a specific motive. This results in a total

amount of 83 available scenes. We only consider camera mod-

els represented by more than one device, in order to ensure that

the CNN learns model specific artifacts rather than instance spe-

cific ones. This leads to a dataset composed of 18 camera models

(as Nikon D70 and D70s basically differ only in their on-device

screen), for nearly 15,000 shots.

We need to split images into three different datasets: (i) a

training set DT used for updating CNNs and SVMs parameters;

(ii) a validation set DV used to decide the stopping point of the

training step and avoid over-fitting (i.e., typically the training pro-

cess is stopped when validation loss, given by SoftMax layer,

reaches its minimum); (iii) an evaluation set DE used to test the

trained architectures. Following the ideas presented by Kirchner

et al. [7]

• we selected shots belonging to the evaluation set (DE ) from

NE scenes and a single instance per camera model. The se-

lected images are never used in training or validation.

• we selected shots for training set (DT ) and validation set

(DV ) among images from remaining scenes and instances.

Specifically, we define three splitting policies for DT and DV so
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Table 3: The 4 proposed CNN architectures (shown in columns). Added layers are shown in bold and the number of filters for each

convolutional layer is shown in parenthesis

CNN Architecture
MConv4 MConv6 MConv8 MConv10

6 weight layers 8 weight layers 10 weight layers 12 weight layers

Input (64×64×3 image patch)

Conv-1 (32)
Conv-1 (32)
Conv-1 (32)

Conv-1 (32)
Conv-1 (32)

Conv-1 (32)
Conv-1 (32)

Pool-1

Conv-2 (48)
Conv-2 (48)
Conv-2 (48)

Conv-2 (48)
Conv-2 (48)

Conv-2 (48)
Conv-2 (48)

Pool-2

Conv-3 (64) Conv-3 (64)
Conv-3 (64)
Conv-3 (64)

Conv-3 (64)
Conv-3 (64)
Conv-3 (64)

Pool-3

Conv-4 (128) Conv-4 (128)
Conv-4 (128)
Conv-4 (128)

Conv-4 (128)
Conv-4 (128)
Conv-4 (128)

InnerProduct-1
ReLU-1

InnerProduct-2
SoftMax

to test for possible over-fitting on scenes content rather than on

camera model identification during CNN training. Since the vali-

dation set is used to decide when to stop the training process, if its

content is too similar to the training set we could easily over-fit.

Conversely, if validation set is sufficiently different from training

one, we should be able to obtain more generalizable results on the

evaluation set. Splitting policies are detailed below:

1. Fair-NT : training and validation shots are split according

to the depicted scene. The number of training scenes is set

to NT and shots coming from a specific scene are included

only in DT or in DV . In this way, DT and DV are completely

disjoint sets (in terms of scenes), thus should lead to robust

training.

2. Fair-balanced-NT : training and validation shots are split ac-

cording to scenes as for Fair-NT . The number of shots for

each device model is the same, leading to a model-balanced

training dataset.

3. Unfair-PT : training and validation shots are split regardless

of the scene they belong to, fixing the percentage of training

shots to PT . In doing so, the same scene can appear in both

training and validation sets, thus possibly leading to over-

fitting and less accurate evaluation results.

A small case example for the three splitting strategies is available

at Table 4.

Experimental Results
In this section we report the performed tests using different

CNNs and training strategies to validate the proposed pipeline in

a fair way.

Impact of the CNN Architecture
To evaluate the proposed CNN architectures, we selected a

reference splitting policy showing good performance in our ini-

tial analysis. We used the Fair-60 splitting policy and worked

with a 10-fold cross validation framework (i.e., the selected split-

ting policy is tested 10 times on different realizations of scenes).

This results in a total number of 40 trained CNN models. For

evaluation, we do not to train additional SVMs, but use the CNN

output as class prediction. This allows us to study the effect of

the different CNN architectures on the accuracy results for a fixed

splitting policy.

For each shot in the training, validation and evaluation sets in

Fair-60, K = 32 patches were extracted as described above. Train-

ing and validation patches were used to train the proposed CNNs.

Specifically, the CNN architectures were trained on DT patches

until classification loss on DV patches was minimized. Once the

CNNs were trained, they were used to extract an 18 elements vec-

tor Vk for each patch Pk at the end of InnerProduct-2 layer of the

CNN. Results aggregation at shot level was performed averaging

element by element feature vectors Vk associated to patches Pk

belonging to the same shot P, so to obtain an 18 elements score

vector V for the shot. Camera model associated to the maximum

score was used to predict the shot’s class. Shots classification ac-

curacy was computed on DT , DV and DE as average over the 10

data realizations.

The results, presented in Table 5, indicate that the classifi-

cation accuracy increases as we increase the CNN architecture

depth: from 6 weight layers in the network MConv4 to 12 weight

layers in the network MConv10. The camera model classifica-

tion accuracy of our architecture saturates when the depth reaches

12 layers, but even deeper CNNs might be beneficial for larger

datasets with a higher number of classes and training images.
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Table 4: A small scale example for three different splitting strategies. Row colors correspond to scenes. First, an instance id

and a set of scenes are selected for the evaluation set DE . Considering the remaining instances and scenes, DT and DV are built

according to what specified in the text. Labels E, V and T denote images associated to DE , DV and DT according to each policy.

Brand Model Instance Scene Fair Fair-balanced Unfair
Canon Ixus 70 0 Kohlenstrasse Back view ZINT E E E
Canon Ixus 70 0 Home III Trees in a garden II
Canon Ixus 70 0 Kaethe-Kollwitz-Ufer Blue Wonder
Canon Ixus 70 1 Kohlenstrasse Back view ZINT
Canon Ixus 70 1 Home III Trees in a garden II V V T
Canon Ixus 70 1 Kaethe-Kollwitz-Ufer Blue Wonder T T T
Canon Ixus 70 1 Kaethe-Kollwitz-Ufer Blue Wonder T V
Kodak M1063 0 Kohlenstrasse Back view ZINT E E E
Kodak M1063 0 Home III Trees in a garden II
Kodak M1063 0 Kaethe-Kollwitz-Ufer Blue Wonder
Kodak M1063 1 Kohlenstrasse Back view ZINT
Kodak M1063 1 Home III Trees in a garden II V V V
Kodak M1063 1 Kaethe-Kollwitz-Ufer Blue Wonder T T T

Table 5: CNN classification accuracy for the different sets of Fair-60

CNN Architectures DT accuracy (%) DV accuracy (%) DE accuracy (%)
MConv4 97.69 97.74 94.51
MConv6 97.82 97.53 94.67
MConv8 97.95 97.62 94.79
MConv10 98.01 97.81 94.93

Impact of Training Strategy

After testing different architectures, we focused on a refer-

ence CNN showing good performances and performed an exten-

sive set of experiments over the three splitting policies described

in the previous section. In particular, we selected the MConv4

CNN detailed in Table 2. For evaluation, we decided not to train

additional SVMs, but to use the CNN output as class prediction.

This allows us to study the effect of different training and valida-

tion split on the CNN only.

For this analysis, we fixed the number of evaluation scenes

NE to 10. For splitting policies Fair and Fair-balanced the num-

ber of training scenes NT was varied in {10,15,20,30,40,50,60}
over the 73 available scenes. The remaining 73−NT scenes were

used for validation. For splitting policy Unfair the percentage of

training shots PT was varied in {10,20,30,40,50,60,70,80,90}.

The remaining shots were assigned to the validation set. This re-

sulted in 23 splitting policies.

Figure 4 shows results using the Fair splitting policy to se-

lect train and validation datasets. Shots classification accuracy

is reported as function of number of training scenes. Train and

validation curves, in blue and green respectively, are almost al-

ways aligned. The red curve refers to the performance on the

evaluation set. When using a small number of scenes for training

(i.e., Nt = 10) , the small amount of data limits the CNN capabil-

ities of learning from data. Once the number of training scenes

is sufficiently large (i.e., Nt > 15) the results increase reaching an

evaluation accuracy up to 94.5%.

Figure 5 shows results using the Fair-balanced splitting pol-

icy to select train and validation datasets. In this case the small

amount of data severely limits the CNN capabilities of learning

from data. In fact, in the Dresden Dataset, some camera models

Figure 4. Fair splitting policy results. Training (blue), validation (green) and

evaluation (red) set.

are represented by only a few number of shots. In the best situa-

tion (Fair-balanced-60), the evaluation accuracy reaches 92.6%.

Figure 6 shows results using the Unfair splitting policy to

select train and validation datasets. Also in this case the small

amount of training data impairs CNN learning capabilities when

PT = 0.1. However, as soon as the percentage of training data is

increased, the evaluation accuracy reaches 94.4%.

Both the Fair and the Unfair splitting policies show a gap

around 3.3% between validation and evaluation accuracies. This

kind of behavior might be an indicator of some instance specific

features learned during the training process.

A comparison between the Fair (Figure 4) and the Unfair

(Figure 6) shows that there is not much gain in carefully splitting
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Figure 5. Fair balanced splitting policy results. Training (blue), validation

(green) and evaluation (red) set.

Figure 6. Unfair splitting policy results. Training (blue), validation (green)

and evaluation (red) set.

training and validation scenes. A possible motivation for this re-

sults stands in the small size of the patches used in this context.

In fact, a 64× 64× 3 patch extracted from a full resolution pic-

ture (as the ones in the Dresden Image Dataset) contains only a

few details from the image, and rarely some scene specific con-

tent that might be found only in larger patches. This motivates

even further the use of small patches for this learning task.

Comparison with the State-of-the-Art
After validating the performance of CNNs standalone (i.e.,

using the InnerProduct-2 output as score for each class), we fo-

cused on the evaluation of the entire pipeline (i.e., with SVMs and

majority voting) in comparison with the recently proposed state-

of-the-art method by Chen et al. [15]. In particular we stopped the

forward step of MConv4 at the end of the ReLU-1 layer in order

to extract from each patch Pk a feature vector Vk. As dataset, we

considered the Fair-balanced-60 splitting policy.

Figure 7 shows how the average classification accuracy on

shots from DE varies while increasing the number of voting

patches for each image. The proposed CNN-based approach is

depicted by the green line. Benchmark result using the approach

proposed by Chen et al. [15] on 64× 64 color patches followed

by majority voting is shown with the red line. As the method pro-

Figure 7. Comparison between the overall pipeline considering the CNN

MConv4 trained with Fair-balanced-60 splitting policy and the state-of-the-art

algorithm by Chen et al. [15].

posed by Chen et al. is not specifically tailored to small patches,

we also tested it on full resolution images without voting proce-

dures (i.e., blue line of Figure 7). It is worth noting that, despite

the high accuracy obtained by Chen et al., our method approaches

within 1% their result by using considerably less input data (i.e.,

just a few patches and not the full image).

As a final remark, notice that the number of features gener-

ated at the output by the CNN for each patch is only 128, less

than one tenth with respect to the 1,372 generated by Chen et al.

This confirms that we are able to characterize camera models in a

space with reduced dimensionality. In principle, this enables the

use of simple classifiers, which can be trained more efficiently.

Conclusions
In this paper we showed the possibility of using CNNs for

camera model identification. Specifically, we focused on a pro-

cessing pipeline making use of a CNN for feature extraction and

a set of SVMs for classification. We first tested different CNN

architectures, in order to select a valid structure candidate balanc-

ing accuracy and computational complexity. We then investigated

the effect of training a CNN on different data splits in order to

highlight the dependency between accuracy, training set size, and

training-testing splitting policy.

This study shows that it is possible to achieve high camera

model attribution accuracy (i.e., around 96% ) even with fairly

small network architectures (i.e., four convolutional layers), pro-

vided that a minimum amount of training images are available.

Indeed, the use of larger configurations determines a negligible

accuracy increment, at least on the selected dataset of 18 camera

models.

Future work will be devoted to studying the impact of large

networks on bigger datasets, in which the increased number of

layers may be crucial. We will also explore the possibility of

devising ad-hoc data augmentation routines to enlarge the used

training set.
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