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Abstract

Recent studies have shown that the steganalytic approaches
based on deep learning frameworks cannot surpass their rich-
model features based companions in performance. According to
our analysis, one of the main causes of the unsatisfactory per-
formance of deep learning frameworks is that training procedure
tends to get stuck at local plateaus or even diverge when starting
from a non-ideal initial state. In this paper we will try to investi-
gate how to fit deep neural network to a rich-model features set.
We regard it as a pre-training procedure and study its effect on
deep learning for steganalysis. The state-of-the-art JPEG stegan-
alytic features set DCTR is selected as the target and its features
extraction procedure is divided into multiple sub-models. A deep
learning framework with similar sub-networks is proposed. In the
pre-training procedure we train the framework from bottom to up,
fitting the output of each sub-network to the actual output of the
corresponding sub-module of DCTR. The motivation behind the
scenario is that we reinforce the proposed framework learn to fit
the nonlinear mapping implicit in DCTR and expect when it is
trained from an initial state which represents an approximate so-
lution of DCTR, we can get better performance compared to what
DCTR has achieved.

Motivation

For the past few years, rich-model features combined with
ensemble classifiers [1] reign supreme in image steganalysis.
In spatial domain, SRM (34,671 dimensions) [2] performs be-
yond the majority of steganalytic algorithms. In JPEG domain,
DCTR (8,000 dimensions) [3] achieves very promising perfor-
mance with relatively low dimensionality, while PHARM (12,600
dimensions) [4] provides better performance with higher dimen-
sionality. Their common characteristic is that they all include
multiple sub-models with tens of thousands of features, which ex-
hibits similarity to deep learning approaches [5, 6], e.g, the Con-
volutional Neural Network (CNN).

With rapid development of parallel computing ability pro-
vided by GPU (Graphics Processing Units) acceleration, deep
learning seems to be a promising alternative [5]. Many re-
searchers started to applying deep learning frameworks in image
steganalysis. In [6], Tan and Li proposed a CNN based stegana-
lytic detector and explored the effect of unsupervised pre-training
on the performance of the proposed detector. In [7], Qian et al.
proposed another CNN based steganalytic detector in which a
hand crafted high passed filter (KB filter) is introduced in the pre-
processing procedure. With the help of GPU, the performance of

their proposed detector can get close to that of SRM. In [8], Pibre
et al. verified that deep learning is a good steganalysis tool when
embedding key is reused for different images. Xu et al. [9] pro-
posed yet another CNN based steganalytic detector featured with
its Batch Normalization (BN) layers. Although pre-processing
with KB filter is still indispensable, their proposed framework
outperforms SRM. However, our extensive experiments show that
the performance improvement of their approach comes at the ex-
pense of more fragile to the cover-mismatch problem. Further-
more, all of the above methods focus on spatial-domain steganal-
ysis. None of them addresses the application of deep learning
frameworks in JPEG domain steganalysis. The feasibility of deep
learning frameworks in images steganalysis still needs to be fur-
ther addressed, especially in the JPEG domain.

One of the main causes of the unsatisfying performance of
deep learning frameworks in steganalysis is that the training pro-
cedure tends to get stuck on local plateaus or even diverge when
starting from a non-ideal initial state. Traditional deep learning
frameworks use unsupervised pre-training to go over the obsta-
cle. However, our previous paper [6] showed that the effect of
unsupervised pre-training on the performance of deep learning
frameworks in steganalysis is not obvious. In this paper we try an-
other way and explore the possibility to fit CNN to a rich-model
features set. We regard it as a pre-training procedure and study
its effect on deep learning for steganalysis. The state-of-the-art
JPEG steganalytic features set DCTR is selected as the targeted
rich-model features. The features extraction procedure of DCTR
is divided into multiple sub-models. A deep learning framework
with similar sub-networks is proposed. In the pre-training proce-
dure We train the framework from bottom to up, fitting the output
of each sub-networks to the actual output of the corresponding
sub-module of DCTR. The motivation behind the scenario is that
we reinforce the proposed framework learn to fit the nonlinear
mapping implicit in DCTR and expect when the deep learning
framework is trained from an initial state which represents an ap-
proximate solution of DCTR, we can achieve better performance
compared to what DCTR has achieved after the final supervised
training procedure.

In the following section, we give a brief overview of DCTR
features set and discuss the similarities and differences between
rich models (including DCTR) and CNN. In the third section, we
propose a supervised pre-training deep learning framework via
fitting a deep CNN network to DCTR features extraction proce-
dures. Then in the fourth section, results for experiments con-
ducted on images extracted from ImageNet [10] dataset are pre-
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sented. Finally, we conclude the proposed approach in the last
section.

Preliminaries

We go through the DCTR features extraction procedure
firstly. And then briefly explore the similarities and differences
between rich features model and CNN to prepare the basis foun-
dation of our proposed pre-training strategy for deep-learning ste-
ganalytic frameworks.

DCTR

Similar with other state-of-the-art JPEG rich-model based
steganalytic algorithms [4], DCTR [3] takes decompressed JPEG
images as input and its features extraction procedure can be di-
vided from bottom to up into three steps:

o Convolution: Given a M X N JPEG image, we decompress
it to the corresponding spatial-domain version X € RM*V,
Sixty-four 8 x 8 DCT basis patterns are defined as B&) =
(B 0<k1<7,0<mn<T:

wiw;  mwk(m+1) #©l(n+1)
——cos cos s

(k.0)
B _
mn 4 16 16

ey

where wy = %, wy = 1 for k > 0. X is convolved with Bk

to generate 64 noise residuals U(k’l), 0<kI<T:
UKD = X kD )

The purpose of this step is to suppress the image contents as
much as possible.

e Quantization and truncation: The elements in each UKD
are quantized with a predefined quantization step ¢ and then
truncated with a given threshold 7. The purpose of this step
is to reduce the computational complexity.

e Pooling operation: The DCTR features set is eventually
built by summing up the absolute values of the quantized
and truncated elements in each U%) , to further reduce fea-
tures dimensions and obtain the final JPEG steganalytic fea-
tures set.

From rich model to CNN

Basically, rich steganalytic models can be regarded as one-
staged features extraction system with a cascade of convolution,
quantization/truncation and pooling operation. Likewise, CNN
can also be regarded as a cascade of several convolutional lay-
ers, regulation layers and pooling layers. By virtue of the struc-
ture, rich steganalytic models exhibit similarity to CNN [6]. How-
ever, unlike hand-crafted rich steganalytic models, CNN is a deep-
learning framework with a great deal of learnable parameters. Re-
gardless of the types of the layers, CNN is made up of units that
have learnable weights and biases. Backpropagation algorithm is
used in the training procedure of CNN.

Although rich steganalytic models and CNN have a lot in
common, CNN is still hard to surpass the rich steganalytic mod-
els. This may due to the following reasons: Firstly, the training
procedure of deep learning frameworks easily gets stuck on local
plateaus or even diverges when starting from a non-ideal initial
state. Secondly, CNN is commonly used to identify image con-
tents. However in steganalysis the primary task is to identify stego
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noises. Image contents tend to be mixed up with stego noises, and
traditional data pre-processing strategies used in CNN, including
mean subtraction, normalization, and whitening cannot help to
suppress image contents and retain stego noises at the same time.
Therefore, An attractive proposition setting before us is that: Is
it possible to take advantage of the domain knowledge of rich
models in the training procedure of deep CNN steganalytic frame-
work? Based on previous reports [6-9] and our own work [11] we
have already noticed that Two crucial components of rich models
can not be efficiently learned by CNN: the convolutional kernels
used to extract diverse noise residuals and the threshold quantizers
used to reduce model complexity. Based on the above reasons, we
directly introduce hand-crafted convolutional kernels and thresh-
old quantizers in the bottom layers of our proposed deep-learning
framework, as reported in [11]. And furthermore, in this paper we
try to use supervised pre-training scheme to pre-train the upper
layers of our proposed deep-learning framework via fitting CNN
to rich-model features extraction procedure, to make the perfor-
mance of the proposed framework close to or even exceed what
rich model can achieve.

Our proposed CNN steganalytic framework and
the pre-training scheme

We imitate the DCTR JPEG steganalytic features set and
propose a CNN steganalytic framework with a pre-training
scheme.

The framework structure

At the current stage, the size and the complexity of deep
learning models in steganalysis is still constrained by limited GPU
memory. Therefore the DCTR JPEG steganalytic features set
is selected as our object of imitation due to its relative simplic-
ity and satisfactory performance in the family of rich-model ste-
ganalytic features. However, the sixty-four residual sub-features
adopted in DCTR features set is still too large from the per-
spective of saving GPU memory. Therefore we adopt twenty-
five 5x 5 DCT basis patterns in the bottom convolutional layer
of our proposed deep learning framework, which is defined as
B&D = (BED) 0 <k, 1<5,0<mn<5:

kD) _ WkWi mk(2m+1) nln+1)
B, = ——cos cos s

m 5 10 10
wo=1, wi = V2 for k > 0. 3)

On top of the the bottom convolutional layer, we introduce
a specific layer which acts as a threshold quantizer. Opposite to
what reported lately by Xu et al. [9], our extensive experiments
show that quantization and truncation are hard to imitate by ex-
isting deep learning frameworks. Therefore this layer is hand-
crafted and the quantization step and the truncation threshold in
this layer are both set to 4, as those used in DCTR.

In the first convolutional layer twenty-five residual maps are
obtained via convolving the target JPEG image with twenty-five
5% 5 DCT basis patterns in (3). Then in the second layer, quanti-
zation and truncation both reduce the data range and bring in non-
linearities. On top of the two bottom layers, we use twenty-five
sub-networks with identical structure to collect 125 dimensional
sub-features from each of the twenty-five quantized and truncated
residual maps. We set the output dimension of each sub-network
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Our proposed deep-learning framework. (a) illustrates the final assembled deep learning JPEG steganalytic detector. (b) illustrates the structure of the

sub-networks. The network contained in the red dashed rectangle is the network structure to be pre-trained and later cloned in the final assembly process.

to 125 for the reason that DCTR also set the output dimension
of each sub-model to 125, and we will pre-train the sub-networks
via fitting them to the features extraction procedure of each DCTR
sub-model, as mentioned in the following subsection.

The output of the sub-networks, the twenty-five 125 dimen-
sional sub-features are concatenated together to generate the fi-
nal 3,125 dimensional features. They act as the input of the top
three-layer fully-connected neural network which output the final
prediction. Our proposed deep CNN steganalytic framework is
illustrated in Fig. 1(a). The detailed structure of the twenty-five
sub-networks is illustrated in Fig. 1(b).

The pre-training procedure

In the pre-training procedure, we try to train the sub-
networks to imitate the output of the corresponding DCTR sub-
models. We construct a compact sub-network prototype which
takes a single output feature map of the second layer as input and
output 125 dimensional feature vector. The prototype is trained
by using the quantized and truncated DCTR residual maps from

cover images as input, and minimizing the fitting errors between
the outputs of the sub-network and the actual DCTR sub-features
generated by DCTR sub-models with Euclidean Loss function, as
illustrated in Fig. 1(b). We expect that with the supervised pre-
training phase via fitting the sub-networks to the corresponding
sub-models, the final assembled deep CNN JPEG steganalytic de-
tector can absorb the domain knowledge provided by DCTR. So
that it can converge better and jump out of the local plateaus in
the classification space.

In the final assembly process, twenty-five clones of the pre-
trained prototype are inserted into the framework as illustrated in
Fig. 1(a). Each of them takes one of the twenty-five quantized and
truncated feature maps of the second layer as input. Their outputs
are concatenated together to constitute the final 3,125 dimensional
output features. Those output features will be fed into the top
fully-connected neural network. After the assembly process, the
training data including cover and stego images will be fed into the
assembled model to further fine-tune our proposed framework.
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Experimental results

All of the experiments are conducted on a GPU cluster with
eight NVIDIA® Tesla® K80 dual-GPU cards. Based on ma-
chine capacity considerations, we restrict the size of the target
images to 256 X 256. 50,000 JPEG images with size larger than
256 X 256 are randomly picked out from ImageNet [10]. Their
left-top 256 x 256 regions are cropped, greyed and then JPEG re-
compressed with quality factor 75. 50% of them are randomly
selected for training and the rest 50% are for testing. Our imple-
mentation is based on the publicly available Caffe toolbox [13]
with a hand-crafted convolutional layer (with twenty-five 5x5
DCT basis patterns) and a threshold quantizer, which are both
implemented by ourselves. J-UNIWARD [12], a state-of-the-art
JPEG domain steganographic scheme is our attacking target in
the experiments. In the traing procedure of all of the models, we
use mini-batch stochastic gradient descent with “step” learning
rate starting from 0.01 (step-size=5000) and a momentum fixed
t0 0.9.

The effect of pre-training procedure

We further randomly picked out 5,000 JPEG images from
the 50,000 converted images in the dataset. In order to fully ex-
plore the fitting ability of the pre-training procedure, the images
are permuted. 80% of them are randomly selected for training
and the rest 20% are for testing. From each one of them, twenty-
five residual maps are generated by twenty-five 5 x5 DCTR ker-
nels. The corresponding twenty-five 125 dimensional DCTR sub-
features are generated by the DCTR features extraction procedure
as well. Therefore there are 25x 5,000 x 0.8 = 100,000 resid-
ual maps and the corresponding DCTR sub-features for training.
The rest 25 % 5,000 % 0.2 = 25,000 residual maps and the corre-
sponding DCTR sub-features are for testing. The batch size in the
pre-training procedure is 64 and the maximum number of the iter-
ations is set to 50x 10*. The fitting error is measured by Euclidean
Loss.

In Fig. 2, the outputs of the pre-trained sub-network proto-
type after 50 x 10* training iterations and the corresponding ac-
tual DCTR sub-features for some selected residual maps of an
ImageNet image are plotted. It is amazing that in the pre-training
procedure, the fitting errors between the outputs of the pre-trained
sub-network prototype and the actual DCTR sub-features can
converge to a quite small value, which indicates that the first-
order statistics used in DCTR can be well represented by the pre-
trained sub-network prototype from the perspective of minimizing
Euclidean distance. The variation trend of the outputs of the pre-
trained sub-network prototype is approximate to the actual DCTR
features. In the experiment, The best average Euclidean Loss for
all of the testing images is 0.153631.

We can directly concatenate the outputs of the twenty-five
clones of the pre-trained sub-network prototype together to gen-
erate a 3,125 dimensional steganalytic features vector. One in-
teresting problem is that is it possible to directly feed this fea-
tures vector into ensemble classifier [1] and use it to replace the
DCTR features set. In Tab. 1, we compare the performance of the
original 8,000 dimensional DCTR features set, the 3,125 dimen-
sional DCTR features set with twenty-five residual maps gener-
ated by 5x5 DCTR kernels, and the 3,125 dimensional stegana-
lytic features vector concatenated from the outputs of the twenty-
five clones of the pre-trained prototype. They are trained and
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TABLE 1. The performance of the original DCTR features set, the
3,125 dimensional DCTR features set and features vector con-
catenated from the outputs of the twenty-five clones of the pre-
trained prototype. The results are all with ensemble classifier.

Steganalytic Features Sets Dimension ~ Accuracy
DCTR 8000 62.59%
DCTR 3125 58.61%
Concatenation of the outputs 3125 56.59%

of 25 sub-networks

tested on the 50,000 JPEG images we mention at the beginning
of this section. The corresponding stego images are generated
by J-UNIWARD [12] with 0.4bpnzAC. The results show that the
original 8,000 dimensional DCTR features outperform the other
two. The accuracy of the 3,125 dimensional DCTR features set is
also about 2% better than the features vector concatenated from
the outputs of the clones of the pre-trained prototype. Certainly,
the result show that the output of the pre-trained prototype still
can be directly used for steganalysis in a certain extent. We ex-
pect that the clones of the pre-trained prototype can behave better
when they are integrated into our proposed deep CNN stegana-
lytic detector.

Fig. 3 shows the effect of pre-training procedure on the per-
formance of our proposed framework. In Fig. 3, we compare the
performance of the framework in which the sub-networks are ran-
domly initialized, and the framework in which the sub-networks
are the clones of the pre-trained prototype. This experiment is also
conducted on the 50,000 JPEG images. The corresponding stego
images are also generated by J-UNIWARD [12] with 0.4bpnzAC.
The training batch size here is set to 20 due to the computation
capacity. The experimental results indicated that with or with-
out pre-training procedure, the performance of our proposed deep
CNN steganalytic detector can surpass that of DCTR as well as
that of the ensemble classifier fed with 3,125 dimensional stegan-
alytic features vector concatenated from the outputs of the twenty-
five clones of the pre-trained prototype. However, we can also
see that the framework with randomly initialized sub-networks re-
quires a great deal of iterations to converge to a good place. The
pre-traing procedure for the sub-networks can considerably boost
the convergence speed, however with cost of slightly performance
reduction. Certainly, the experimental results also show that the
framework with pre-trained sub-networks can obtain more stabil-
ity than that with randomly initialized sub-networks.

Comparison to prior arts

In Fig. 4, we compare the performance of our proposed
frameworks (with pre-trained sub-networks) with other stegana-
lytic models including two JPEG domain rich models (DCTR [3]
and PHARM [4]), and a deep-learning steganalytic model pro-
posed by Xu et al. [9] (referred as Xu’s model in the context). The
experiments are all conducted on the 50,000 JPEG images. The
corresponding stego images are also generated by J-UNIWARD.
From Fig. 4 we can see that our proposed framework (with
pre-trained sub-networks) can obtain significant performance im-
provement compared with DCTR, but is still inferior to PHARM.
By the way, in Fig. 4 we can also observe the the effect of BN
layers on the performance of our proposed framework. BN layers
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of ImageNet image “n00440382.15279.jpg”. (b) The fitting result of DC (0,0) residual map (with Euclidean Loss=0.204945). (c) The fitting result of AC (0,3) residual
map (with Euclidean Loss=0.103903). (d) The fitting result of AC (3,3) residual map (with Euclidean Loss=0.164526. (e) The fitting result of AC (4,1) residual map (with
Euclidean Loss=0.133274. Please note that we only show the results for the features with index in interval[0,50] for the sake of clarity.

are also crucial to the performance of our proposed framework.
The performance of our proposed framework without BN layers
is poor.

Conclusion

Up to now, no domain knowledge in image steganalysis is
utilized in the design and training of deep learning based stegan-
alytic detector except the KB filter used in previous works. And
furthermore, only unsupervised pre-training is concerned in the
literature of deep machine learning. In this paper for the first
time we explore how to fit deep neural network to a rich-model
steganalytic features set. We regard it as a pre-training proce-
dure and study its effect on deep learning for steganalysis. Us-

ing this way, we propose a supervised pre-training deep learn-
ing framework, which can learn the domain knowledge implied
in the state-of-the-art DCTR features set. With the help of BN
layer, well designed pre-training procedure and large amount of
pre-training/training data, our proposed framework can get better
performance compared with the DCTR features set. The contri-
bution of pre-training procedure is obvious. Our future work will
focus on finding more effective deep-learning steganalytic frame-
works with higher detection accuracy.
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