
Benefits of combining forensic image creation and file carving
York Yannikos, Martin Steinebach, Michael Rettig
Fraunhofer SIT, Darmstadt, Germany

{firstname.lastname}@sit.fraunhofer.de

Abstract
Typical tasks in a forensic investigation are data acquisi-

tion, checksum calculation, file recovery, or content identification.
These tasks can be performed mostly without user interaction but
are still time-consuming, especially when a large amount of data
has to be processed. Individual tasks (or sub-tasks they have in
common) often do not perform efficiently and the corresponding
implementations could be improved.

In this paper we present stream carving, an approach to
speed up tasks that are typically performed in a forensic inves-
tigation. By identifying and combining similar or identical sub-
tasks and parallelizing most data processing, we are able to de-
crease the overall processing time significantly. We implemented
a stream carving tool that is able to copy, recover, and identify
known visual content. The general idea behind stream carving
can help developing forensic multi-purpose tools that run several
tasks very efficiently.

Introduction
Today a typical digital forensics case involves large amounts

of data to be inspected and analyzed. Therefore, a forensic in-
vestigator must rely on analysis tools that provide a reasonable
trade-off between speed and accuracy. Tasks that are often part
of a forensic investigation are creating a forensically sound copy
of storage devices, calculating checksums, and recovering deleted
files. However, these tasks are often done ineffectively or ineffi-
ciently, costing too much time or human resources. One reason
for this is that sub-tasks that the individual tasks have in common
can be very similar or identical but are performed separately in
each task. In the worst case, this results in doing exactly the same
work multiple times. This is a waste of resources where efficiency
is really important.

Another important aspect in forensic investigations is the
handling of multimedia files: If deleted, these files are often diffi-
cult to recover (e.g. large collections of illegal video files), espe-
cially if they are fragmented. Also, the number of individual files
is often too big to process manually (e.g. vast image collections).
Methods based on robust hashing (e.g. [22, 25, 26]) are known to
be of significant help here, allowing to identify multimedia files
even after modifications. However, these methods are not applied
until a forensic disk image has been created. This means again
that first a time-consuming copy process takes place that is then
followed by another slow carving, robust hashing, and look-up
process.

Contribution
In this paper we present an optimized workflow for foren-

sic investigations based on creation and analysis of disk images.

We introduce stream carving, an architecture to process forensics
tasks more efficiently by identifying and minimizing redundant
work in typical forensic tasks. With stream carving we utilize
well-known forensic methods but orchestrate them in a novel and
improved way. Using this architecture we implemented a tool
that is capable to perform data acquisition, checksum calculation,
file carving, and robust hashing. We evaluated our approach and
found that we were able to complete all tasks almost 4 times as
fast as compared to standard approaches.

In previous works we focused on the optimization of mul-
timedia file carving with respect to carving recall [23] and the
successful retrieval of as many media files as possible [24]. This
work is a realization of a concept we introduced in [18] where the
basic idea of stream carving is described but an actual implemen-
tation and evaluation is not presented.

The remainder of this paper is organized as follows: Sect.
Multimedia File Carving gives a brief overview about different
existing file recovery approaches for multimedia data like pictures
or videos. In Sect. Content Identification we describe techniques
used for content identification, namely cryptography hashing and
robust hashing. In Sect. Stream Carving we explain the stream
carving approach and give an overview about how our stream
carving tool works. Sect. Evaluation covers the evaluation of
the approach. In Sect. Related Work we give an overview about
similar work and conclude in Sect. Conclusion.

Multimedia File Carving
Multimedia file carving describes the process of recovering

deleted multimedia data from a storage device by analyzing it as
one large binary data stream. Basic carving techniques use header
and footer signatures of different multimedia file formats to rec-
ognize the beginning or end of a file in the binary data stream. If
the header signature of a specific file format is found, e.g. from a
JPEG file, the carver searches for the corresponding footer signa-
ture. If the search is successful, the data between both signatures
is assumed to be valid JPEG data and can be recovered, i. e. stored
as a file on a recovery device.

More advanced carving techniques comprise the verification
of the file structure of different multimedia file formats as pro-
posed by Garfinkel in [5]. In the same work, Garfinkel proposed
bifragment-gap carving, a technique to validate file contents with
one gap in between. Memon and Pal proposed using greedy
heuristics to reassemble multi-fragmented images that works well
for bitmap images [10]. In later works, the authors proposed se-
quential hypothesis testing to find fragmentation points of frag-
mented image files [12]. With this approach the authors were able
to successfully recover most of the fragmented JPEG files of two
testsets from DFRWS 2006 and 2007.

22
IS&T International Symposium on Electronic Imaging 2017

Media Watermarking, Security, and Forensics 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-321
© 2017, Society for Imaging Science and Technology



Examples of open source file carvers that support basic file
carving are foremost [2] and scalpel [13] as well as photorec [6]
that also supports advanced file carving techniques especially for
multimedia data. Another very effective file carver for fragmented
image recovery is the commercial Adroit Photo Forensics that is
based on the mentioned works of Memon and Pal.

Content Identification
Automatic identification of known content is an important

task in most digital forensic investigations: Whitelists, i. e. lists
that contain known harmless content, can help to drastically re-
duce the amount of data a forensic investigator has to inspect,
whereas blacklists, i. e. lists that contain known harmful content
like child pornography, can even help to end an investigation in
shorter time, e. g. if blacklisted content was found that leads to an
indictment against the suspect.

One of the main problems in content identification are error
rates: High false-negative rates, i. e. content that is reported to be
unknown although actually being black- or whitelisted, may result
in overlooked evidence data and more data that has to be inspected
manually. High false-positive rates, i. e. content that is reported to
be black- or whitelisted although actually being unknown, also
result in more data to inspect and, in the worst case, may lead to
wrong conclusions.

Cryptographic Hashing
Cryptographic hashing is a standard technique to identify

known content: It is very reliable in identifying data that is binary-
identical to known content but cannot be used to identify data
that is very similar but not identical. This leads to a high false-
negative rate especially when analyzing visual content like images
or videos. In digital forensics cryptographic hashing is used for
creating checksums of evidence data and for black- and whitelist-
ing. Widely supported cryptographic hash functions are MD5,
SHA-1, or the SHA-2 family.

For several cryptographic hash functions weaknesses were
found regarding collision resistance [20, 19]. However, these
were not relevant for content identification where resistance
against preimage attacks is required, i. e. it must be hard to find
corresponding content for a given hash or other content that gives
the same hash. Thus even MD5, nowadays considered broken, is
still a reasonable choice as checksum for content identification.

Robust Hashing
Compared to cryptographic hashing, robust hashing is a very

different approach as it is able to recognize similarity based on
human perception: If for instance a human finds that two images
are very similar to each other, e. g. a picture with the same content
but stored in two different file formats (and therefore not being
binary-identical), then a robust image hash would be able to also
recognize both pictures as being similar. Fig. 1 shows an example
of robust image hashes for two similar pictures.

There exist many different robust hashing approaches for all
kinds of visually or auditory perceivable data. Current approaches
mainly differ in robustness against different kind of attacks, e. g.
Roover’s image hash which is robust against geometrical opera-
tions like scaling or rotation [3]. Other approaches are based on
random noise similarity [4] or histograms [21]. With pHash there
is also a set of robust hash functions available for development

Figure 1. Visual representation of robust image hashes for two pictures

(hash difference is marked in red)

[1]. However, most existing algorithms do not provide robustness
especially against cropping attacks.

In [15] we proposed rHash, an efficient robust hash for im-
age files with low error rates, based on a block mean value based
perceptual image hash by Yang et al. [22]. We improved the ro-
bust hash in several ways with respect to processing speed, error
rates, and robustness e. g. against mirroring. The rHash algorithm
to generate a robust hash for an image file is basically the follow-
ing (cf. [16]):

• Convert the image to grey scale and normalize the original
image into a preset size.

• Let n denote the bit length (e. g. 256 bit) of the final hash
value. Divide the pixels of the image I into non-overlapped
blocks I1, I2, . . . , In.

• Calculate the mean of the pixel values of each block, i. e.
calculate the mean value sequence M1,M2, . . . ,Mn from the
corresponding block sequence. Finally obtain the median
value Md of the mean value sequence.

• Normalize the mean value sequence into a binary form and
obtain the hash value

h(i) =

{
0 if Mi < Md

1 otherwise

An example of a 256-bit rHash generation using a sample
image is given in Fig. 2.

Since the initial rHash approach was vulnerable to cropping
attacks, we first used face recognition to create individual robust
hashes for any faces found in images [17]. Later we could im-
prove cropping resistance by using image segmentation in order
to create one robust hash for each segment of an image [16].

2IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017 23



Figure 2. Original image (left), down-scaled and converted to gray scale

(middle), visual representation of the final rHash (right) (cf. [14])

Stream Carving
A forensic investigation typically includes the previously de-

scribed techniques for file recovery and content identification.
Our goal was to use these techniques in a more efficient way than
just applying them consecutively. Therefore, we identified the fol-
lowing 4 tasks of a typical forensic investigation that we wanted to
focus on in order to make the whole process less time-consuming:

1. Creation of a forensically sound copy of the input data
2. Checksum calculation of the input data using cryptographic

hashes
3. File recovery within the input data
4. Robust hashing of recovered image files and video frames

All 4 tasks need to process (read) the complete input data
which is typically done separately by each task. Since reading the
same data multiple times is very time-consuming, we created the
stream carving architecture in such a way that the input data is
read only once and most processing is done in RAM. By that we
could significantly decrease the total time required to complete all
tasks because reading from a storage device is much more time-
consuming than e. g. reading from RAM. The general architecture
of the stream carver is shown in Fig. 3.

Output 
(Copy of 

Input)

Cons. #1
Output

Shared BufferConsumer #1

Input Reader
(Producer)

Input

Consumers

Data Flow

Communication Flow

Figure 3. Stream carving architecture with multithreading (one producer,

multiple consumers)

For the first task we implemented an input data reader with
a shared buffer, running in its own core thread (producer). Each
time the shared buffer has been filled with a new chunk of input
data, the input reader sends notifications to any other threads that

need to process the data (consumer). The consumers then process
the data currently in the buffer in parallel and notify the producer
again when they are finished. The producer then continues to fill
the buffer with the next chunk of input data. When no input data
is left the producer notifies the consumers again so that they can
finalize their individual data processing task.

For the other tasks we implemented consumers that wait for a
notification from the producer, each running in a separate thread.
The first consumer calculates a checksum of all data that going
through the shared buffer (task 2). The second consumer applies
image file carving with header verification (similar to [5]) on the
data (task 3). Each time the carver recognizes a known image file
header signature in the buffer, it creates an in-memory copy of
all subsequent data until it finds a corresponding footer signature
or a threshold is met. The copied data is then safely stored as a
recovered (complete or incomplete) image file.

Additionally, the image file carving consumer puts each re-
covered image file into a queue and notifies the third consumer:
This is a queue manager that is responsible to distribute all image
files in the queue to different consumers which perform robust
hashing (task 4). For this the queue manager checks the status
of the queue in regular intervals and after a notification from the
file carving consumer. Each time the number of image files in the
queue passes a specific threshold (currently 10), the queue man-
ager creates an additional thread for robust hashing. When the
number of image files sinks below that threshold again, the queue
manager stops any robust hashing consumers that are currently
idle. The resulting robust hashes make a fast identification of vi-
sual content possible that is identical or similar to known (black-
or whitelisted) content. An overview about the queue manage-
ment and its interaction with the robust hashing consumers is
shown in Fig. 4.

...
Image File

Carving Consumer

Queue Managing 
Consumer

Robust Hashing 
Consumer #1 Robust Hashing 

Consumer #2
...

Queue

Image File #1

Robust 
Hash #2

Robust 
Hash #1

...

Image File #2 ...

Figure 4. Queue management and dequeuing with robust hashing con-

sumers

Overall the stream carver is using a maximum of 13 threads
in parallel: 1 core thread, 3 threads for checksum calculation (1
for each cryptographic hash), 1 for file carving, 1 for queue man-
agement, and up to 7 for dequeuing/robust hashing. The maxi-
mum number of threads for robust hashing can be configured. We
also tested the impact of different maximum numbers of robust
hashing consumers in the next section.

Evaluation
In order to evaluate the performance of our stream carving

tool we run several tests with fixed test data and measured the
time required to successfully complete the test. We compared

3
24

IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017



our approach to consecutively processing each task mentioned in
Sect. Stream Carving. Additionally, we compared our approach
against a more advanced process where tasks 1 and 2 are han-
dled by dc3dd [8], a modified version of dd that uses parallel data
processing (see Sect. Related Work).

We executed our tests using Ubuntu 14.10 on a desktop com-
puter with an Intel Core i5 CPU (4 cores with 3.1 GHz each, no
hyper-threading), 4 GB DDR3 system memory, and a Samsung
840 EVO solid-state drive. As test data we decided to use a par-
tition representing a typical SDHC memory card used for digital
photography that is filled with a reasonable amount of pictures.
Therefore we created a 16 GB partition image and completely
filled it with random data. Then we formatted the partition im-
age with FAT32 using 8 KiB cluster size (default for that parti-
tion size). After these initialization steps we stored 1000 non-
fragmented and complete JPEG files in various sizes on the for-
matted partition. We did not use fragmented or corrupt JPEG files
because we did not focus on robust JPEG file recovery in the first
place.

We defined the following three test routines where we com-
bined the four tasks data acquisition, checksum calculation, data
recovery, and content identification in different ways:

Sequential In the first test routine dd is used for data acquisi-
tion, the standard tools md5sum, sha1sum, sha256sum are used
for calculating the corresponding checksums, photorec is used for
JPEG file recovery, and rHash for calculating a robust hash. All
six tools are run in consecutive order using the following Bash
code:

1 # f l u s h f i l e s y s t e m cache
2 echo 3 | sudo t e e / p roc / s y s / vm / d r o p _ c a c h e s
3 # copy $ i n p u t t o $ o u t p u t
4 dd i f = $ i n p u t o f = $ o u t p u t bs= $ b u f f e r s i z e
5 # c a l c u l a t e md5 , sha1 , sha256 o f $ i n p u t
6 md5sum $ i n p u t
7 sha1sum $ i n p u t
8 sha256sum $ i n p u t
9 # r e c o v e r a l l JPEG f i l e s w i t h i n $ i n p u t da ta

10 p h o t o r e c / d r e c o v e r e d _ f i l e s / cmd $ i n p u t
↪→ f i l e o p t , e v e r y t h i n g , d i s a b l e , jpg , enab l e
↪→ , wholespace , s e a r c h

11 # b u i l d r o b u s t has he s o f a l l
12 # r e c o v e r e d JPEG f i l e s
13 r h a s h r e c o v e r e d _ f i l e s /

Listing 1. Sequential test routine in Bash code

Parallel+Sequential The second test routine uses dc3dd which
efficiently combines data acquisition and checksum calculation
in one step. photorec is again used for JPEG file recovery, and
rHash is used for robust hash calculation. The three tools are run
in consecutive order. Therefore, we took the code from List. 1
and replaced lines 3–8 with the dc3dd call:

1 # f l u s h f i l e s y s t e m cache
2 echo 3 | sudo t e e / p roc / s y s / vm / d r o p _ c a c h e s
3 # copy $ i n p u t t o $ o u t p u t and c a l c u l a t e
4 # checksums on t h e f l y
5 dc3dd i f = $ i n p u t o f = $ o u t p u t b u f s z = $ b u f f e r s i z e

↪→ hash =md5 hash = sha1 hash = sha256
6 # r e c o v e r a l l JPEG f i l e s w i t h i n $ i n p u t da ta

7 p h o t o r e c / d r e c o v e r e d _ f i l e s / cmd $ i n p u t
↪→ f i l e o p t , e v e r y t h i n g , d i s a b l e , jpg , enab l e
↪→ , wholespace , s e a r c h

8 # b u i l d r o b u s t has he s o f a l l
9 # r e c o v e r e d JPEG f i l e s

10 r h a s h r e c o v e r e d _ f i l e s /

Listing 2. Parallel+Sequential test routine in Bash code

Stream Carving The third routine runs our stream carver that
processes all tasks as mentioned in Sect. Stream Carving in par-
allel. From List. 2 we replaced lines 3–10 with the call to our
stream carver:

1 # f l u s h f i l e s y s t e m cache
2 echo 3 | sudo t e e / p roc / s y s / vm / d r o p _ c a c h e s
3 # copy $ i n p u t t o $ o u t p u t , c a l c u l a t e
4 # checksums , r e c o v e r JPEG f i l e s and
5 # b u i l d r o b u s t has he s on t h e f l y
6 s t r e a m c a r v e r − i $ i n p u t −o $ o u t p u t −b

↪→ $ b u f f e r s i z e −md5 −sha1 −sha256 −j p g −
↪→ r h a s h

Listing 3. Stream Carving test routine in Bash code

To measure a potential impact of the buffer size used for
reading the input data, we ran all 3 test routines using a buffer
size of 8 KiB and 1 MiB for dd, dc3dd, and the stream carver.

We used dumbbench [11] for measuring the required time
for running each test routine. Each routine was run at least 20
times until we reached our target precision, i. e. the uncertainty
on our measurements was ≤ 10%. Additionally, we discarded
any detected outliers. Both photorec and our stream carver were
able to successfully recover the complete dataset of 1000 JPEG
files. We verified the integrity of each recovered file using SHA-
256 checksums.

Fig. 5(a) shows the measured time to finish the test routines
using the different buffer sizes. We can see that the combina-
tion of Parallel+Sequential processing as well as Stream Carv-
ing are significantly faster than running all tasks consecutively.
In Fig. 5(b) the speed improvements over Sequential processing
are given. While Parallel+Sequential processing runs 1.32 times
as fast as Sequential processing, Stream Carving runs 3.78 up to
3.91 times as fast depending on the used buffer size. Directly
comparing to Parallel+Sequential processing, Stream Carving is
still 2.85 up to 2.96 times as fast. The overall uncertainty of all
measurements was < 0.5%.

For Sequential processing as well as for Parallel+Sequential
processing we saw that both dd and dc3dd seem to take no benefit
from larger buffer sizes, both perform slightly slower when using
buffers with a size of 1 MiB instead of 8 KiB. In contrast to this,
Stream Carving slightly benefits from using larger buffers.

We also measured the impact of the maximum number of
consumers that are created to process the images in the robust
hashing queue. For this we used our 16 GB test image again and
run dumbbench with the stream carver using an 8 KiB buffer size
and different configurations for the maximum numbers of con-
sumers. In Fig. 6 the total processing time is shown in relation to
the number of consumers. We can see that using only 1 consumer
impacts the total processing time significantly (303 seconds). A
maximum number of 5 robust hashing consumers shows the best
results with a total processing time of 146 seconds (2.07 times as
fast as using 1 consumer).

4IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017 25



Sequential Parallel+Sequential Stream Carving
0

200

400

600 552.3

417.6

146.3

560.7

424.1

143.5

Data processing strategies

To
ta

lp
ro

ce
ss

in
g

tim
e

in
s

8 KiB buffer size
1 MiB buffer size

(a) Total processing time in seconds for each buffer size

Parallel+Sequential Stream Carving
0

1

2

3

4

1.32

3.78

1.32

3.91

Data processing strategies

Pr
oc

es
si

ng
sp

ee
d

im
pr

ov
em

en
tf

ac
to

r

(b) Processing speed improvements compared to sequential processing

Figure 5. Total time needed to process the 16 GB test image for each test

routine using different buffer sizes (a) and processing speed improvement of

the test routines compared to sequential processing (b)

1 3 5 6 7
0

100

200

300
303

151.6 146.3 148.5 154.6

Number of consumers for robust hashing

To
ta

lp
ro

ce
ss

in
g

tim
e

in
s

Figure 6. Total time needed to process the 16 GB test image with stream

carving using different maximum numbers of consumers for robust hashing

Related Work
A few other forensic tools also implement parallel data pro-

cessing for one or more tasks described in Sect. Stream Carving.
Two examples are dc3dd [8] that we also used in our evaluation,
and the very similar dcfldd [7]. Both are based on dd and use par-
allel processing for simultaneously copying and calculating dif-
ferent cryptographic hashes of the input data. While dcfldd is
quite old and has not been updated since 2006, dc3dd is available
as a patch for the latest dd version that includes several bugfixes
not included in dcfldd.

In [9] the authors modified the scalpel file carver to perform
multithreaded file carving using an NVIDIA G80 GPU. The au-
thors were able to substantially speed up the file carving process,
especially in experiments where they spawned a very large num-
ber of threads (1 thread per byte of the input buffer, 10 MB buffer
size) that simultaneously searched header and footer signatures in
the input buffer.

While many approaches focus on improving processing
speed for single forensic tasks such as file carving (scalpel), data
acquisition (dc3dd), or robust hashing (rHash), the overall pro-
cess of a typical forensic investigation is a combination of many
of these tasks (see Sect. Stream Carving). With stream carving we
focused on how to combine optimized single-purpose approaches
to build an efficient multi-purpose tool that can significantly speed
up the overall investigation process.

We did not look into how commercial or proprietary multi-
purpose tools like EnCase Forensics or FTK handle the different
tasks in detail because there is typically no technical documenta-
tion about internal data processing available.

Conclusion
We proposed stream carving, an architecture that helps to

speed-up a typical digital forensic investigation where storage de-
vices have to be inspected and analyzed. Our approach takes
common tasks such as data acquisition or image file recovery
and combines them in an efficient way that reduces cost-intensive
operations like multiple reads from a storage device. We imple-
mented a stream carving tool that is capable to create forensically
sound copies of input data, i. e. a seized hard disk, supports calcu-
lation of multiple checksums, and can perform file recovery and
robust hashing of recovered files. This can help investigators to
get data acquisition of seized material efficiently done and also
getting a first impression of whether or not known visual content
can be found in the data.

Our evaluation shows that minimizing redundant work and
parallel computing are important aspects for speeding up foren-
sic investigations. Many forensic tools still work only single-
threaded and therefore make not use of typically available multi-
core CPUs. Also tools often provide only one single functionality
such that investigators have to use multiple tools to get all re-
quired tasks done. That makes processing speed improvements
for the whole investigation process even more difficult. The dif-
ference to known solutions like photorec, scalpel or foremost is
that they may use parallel processing when it comes to linear jobs
to be executed on a number of items, but they do not utilize the
performance gain when carving and copying is done within one
process.

In the future we plan to implement support for carving addi-
tional multimedia file formats, a fast lookup of robust hashes in

5
26

IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017



hash databases, and a more robust handling of problems like file
fragmentation. We also plan to do more extensive testing with
various different hardware and larger as well as smaller datasets.

Acknowledgment
This work was supported by the German Federal Ministry

of Education and Research (BMBF) as well as the Hessen State
Ministry for Higher Education, Research and the Arts (HMWK)
within CRISP.

References
[1] Aetilius, Inc. pHash - The open source perceptual hash library.
[2] Air Force Office of Special Investigations and Center for Informa-

tion Systems Security Studies and Research. Foremost, 2001.
[3] Cedric De Roover, Christophe De Vleeschouwer, Frédéric Lefèb-

vre, and Benoit Macq. Robust video hashing based on radial pro-
jections of key frames. IEEE Transactions on Signal Processing,
53(10):4020–4037, 2005.

[4] Jiri Fridrich and Miroslav Goljan. Robust hash functions for digital
watermarking. In Proceedings of the International Conference on
Information Technology: Coding and Computing, pages 178–183.
IEEE Computer Society, 2000.

[5] Simson L. Garfinkel. Carving contiguous and fragmented files with
fast object validation. Digital Investigation, 4:2–12, 2007.

[6] Christophe Grenier. Photorec, 2007. Available at: http://www.
cgsecurity.org/wiki/PhotoRec.

[7] Nick Harbour. dcfldd, 2002. Available at: http://dcfldd.
sourceforge.net/.

[8] Jesse Kornblum. dc3dd, 2008. Available at: http://
sourceforge.net/projects/dc3dd/.

[9] Lodovico Marziale, Golden G Richard, and Vassil Roussev. Mas-
sive threading: Using gpus to increase the performance of digital
forensics tools. Digital Investigation, 4:73–81, 2007.

[10] Nasir Memon and Anindrabatha Pal. Automated reassembly of file
fragmented images using greedy algorithms. IEEE transactions on
image processing, 15(2):385–393, February 2006.

[11] Steffen Müller. dumbbench (perl module), 2010. Available
at: http://search.cpan.org/~smueller/Dumbbench-0.10/
lib/Dumbbench.pm.

[12] Anandabrata Pal, Husrev T. Sencar, and Nasir Memon. Detecting
file fragmentation point using sequential hypothesis testing. Digital
Investigation, 5(Suppl.):S2–S13, 2008.

[13] Golgen G. Richard III and Vassil Roussev. Scalpel: A frugal, high
performance file carver. In Proceedings of the 2005 digital forensics
research workshop (DFRWS 2005), 2005.

[14] Martin Steinebach. Robust hashing for efficient forensic analysis of
image sets. In Proceedings of the 3rd ICST International Conference
on Digital Forensics and Cyber Crime. Springer, 2011.

[15] Martin Steinebach, Huajian Liu, and York Yannikos. ForBild: Effi-
cient robust image hashing. In Nasir D. Memon, Adnan M. Alattar,
and Edward J. Delp III, editors, Media Watermarking, Security, and
Forensics 2012, volume 8303 of Proc. SPIE, pages 8303 0O–1–8,
2012.

[16] Martin Steinebach, Huajian Liu, and York Yannikos. Efficient
cropping-resistant robust image hashing. In Availability, Reliabil-
ity and Security (ARES), 2014 Ninth International Conference on,
pages 579–585, Sept 2014.

[17] Martin Steinebach, Huajian Liu, and York Yannikos. FaceHash:
Face Detection and Robust Hashing. In Pavel Gladyshev, Andrew

Marrington, and Ibrahim Baggili, editors, Digital Forensics and Cy-
ber Crime, volume 132 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engi-
neering, pages 102–115. Springer International Publishing, 2014.

[18] Martin Steinebach, York Yannikos, Sascha Zmudzinski, and Chris-
tian Winter. Advanced multimedia file carving. Handbook of Digital
Forensics of Multimedia Data and Devices, pages 219–269, 2015.

[19] Xiaoyun Wang, Yiqun Yin, and Hongbo Yu. Finding collisions in
the full sha-1. In Victor Shoup, editor, Advances in Cryptology –
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 17–36. Springer Berlin / Heidelberg, 2005.

[20] Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash
functions. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 19–35. Springer,
2005.

[21] Shijun Xiang, Hyoung-Joong Kim, and Jiwu Huang. Histogram-
based image hashing scheme robust against geometric deformations.
In Proceedings of the 9th ACM Workshop on Multimedia & Security,
pages 121–128. ACM, 2007.

[22] Bian Yang, Fan Gu, and Xiamu Niu. Block mean value based im-
age perceptual hashing. In International Conference on Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP),
pages 167–172, December 2006.

[23] York Yannikos, Muhammad-Nadeem Ashraf, Martin Steinebach,
and Christian Winter. Automating video file carving and content
identification. In Ninth IFIP WG 11.9 International Conference on
Digital Forensics, pages 195–212. Springer, 2013.

[24] York Yannikos, Jonathan Schlüßler, Martin Steinebach, Christian
Winter, and Kalman Graffi. Hash-Based File Content Identification
Using Distributed Systems. In Ninth IFIP WG 11.9 International
Conference on Digital Forensics, pages 119–134. Springer, 2013.

[25] Christoph Zauner, Martin Steinebach, and Eckehard Hermann. Ri-
hamark: perceptual image hash benchmarking. In Media Water-
marking, Security, and Forensics III, volume 7880 of Proc. SPIE,
pages 7880 0X–1–15. International Society for Optics and Photon-
ics, 2011.

[26] Xuebing Zhou, Martin Schmucker, and Christopher L Brown. Video
perceptual hashing using interframe similarity. In GI Sicherheit,
pages 107–110, 2006.

Author Biography
York Yannikos received a Diplom (equiv. MS) in computer science

from the University of Rostock, Germany (2008). Since then he has
worked in the Multimedia Security and IT Forensics division at Fraun-
hofer SIT in Darmstadt, Germany. His work has focused on the improve-
ment of standard processes and tools in digital forensics.

Dr. Martin Steinebach is the manager of the Media Security and IT
Forensics division at Fraunhofer SIT. From 2003 to 2007 he was the man-
ager of the Media Security in IT division at Fraunhofer IPSI. He studied
computer science at the Technical University of Darmstadt and finished
his diploma thesis on copyright protection for digital audio in 1999. In
2003 he received his PhD from the Technical University of Darmstadt for
his work on digital audio watermarking.

Michael Rettig received his MS in computer science from the
Hochschule Darmstadt (2016). He has worked in the Multimedia Secu-
rity and IT Forensics division at Fraunhofer SIT since 2013. His work has
focused on multimedia forensics.

6IS&T International Symposium on Electronic Imaging 2017
Media Watermarking, Security, and Forensics 2017 27

http://www.cgsecurity.org/wiki/PhotoRec
http://www.cgsecurity.org/wiki/PhotoRec
http://dcfldd.sourceforge.net/
http://dcfldd.sourceforge.net/
http://sourceforge.net/projects/dc3dd/
http://sourceforge.net/projects/dc3dd/
http://search.cpan.org/~smueller/Dumbbench-0.10/lib/Dumbbench.pm
http://search.cpan.org/~smueller/Dumbbench-0.10/lib/Dumbbench.pm

