
The A Priori Knowledge Based Secure Payload Estimation for
Additive Model
Sai Ma, Xianfeng Zhao, Qingxiao Guan, Chengduo Zhao
State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100093, China

Abstract
In this paper, we propose a practical method to estimate the

payload rate for individual cover before stego embedding. The
proposed method is adopted to the additive distortion model. The
a priori knowledge functions employed in the method contains the
relation function of steganalyzer’s detection error and stego dis-
tortion (PE −D), and the relation function of payload rate and
distortion(D−α) of the given cover. As it is not suitable to mea-
sure the stego security with stego distortion, we adopt PE as the
security metric. With the sender’s expected PE , the role of PE −D
function is to calculate the corresponding D, and then sender can
solve out his expected α with D−α function for the cover. The
PE −D function is acquired before estimating phase. During the
estimating, the most time-consuming part is calculating the D−α

function for the cover, which costs 1 time of stego embedding. Our
method is an efficient solution for estimating the secure payload
rate.

Introduction
Steganography is the technology of covert communication,

which tries to arouse no suspicion during communication. Dig-
ital image is one of the most widely-used media in steganogra-
phy. At the very beginning, the digital image steganography is
designed for resisting visual detection. To effectively detect the
stego image, statistical method is developed, which can figure out
the statistical difference between natural image and stego image.
The state-of-the-art steganalysis method is extracting the well-
designed stego feature of the image and adopting the machine
learning method to detect the stego image. The high dimensional
rich model steganalysis feature[1][2] has an appreciable accura-
cy of detection. To enhance the security of stego communication,
the designer of stego algorithm needs to minimize the statistical
detectability of stego image.

Historically, there is a strategy named as Model Preservation
or Model Based[3]. It preserves the statistical model of image
in order to minimize the statistical detectability. However, the
method has a disadvantage that the model is chosen, which can
be attacked via higher order statistical model steganalysis as so-
called ”beyond the model”. The prevailing stego strategy nowa-
days is adaptive method. It employs a special coding scheme
called syndrome trellis code(STC)[4] to embed the secret mes-
sage while minimizing the stego distortion. Such approach avoids
modeling the cover image, which overcomes the defect of Model
Preservation. The additive distortion model is a reasonable sim-
plification which makes adaptive method practical. The cost val-

ue assigned to every cover element evaluates the statistical impact
introduced by modification. In additive distortion model, the dis-
tortion of stego image is sum of cost values of changed image
elements, which reflects the statistical detectability of stego im-
age.

The fundamental models of adaptive distortion-minimizing
steganography are payload limited sender (PLS) model and
distortion-limited sender (DLS) model[5]. They are complemen-
tary tasks. The PLS model is to embed the fixed-length message
in the cover source and at the same time minimize the stego dis-
tortion. For DLS model, its task is to communicate as more infor-
mation as possible while not exceeding the given stego distortion.

On passive-warden channel, if sender focuses on the secu-
rity of the communication rather than efficiency, DLS is more
valuable. We name the task that estimating the maximum pay-
load length not exceeding the sender’s expected security metric
as secure payload estimation (SPE) problem. It is clear that the
SPE is within the framework of DLS. However, it is not conve-
nient for sender to measure the stego security with distortion, so
it is needed to define a security metric, and establish a mapping
of distortion and security. A feasible choice is detection error
rate of the steganalyzer(PE ), i.e., the out-of-bag error(EOOB) of
ensemble classifier[6]. In 2015, Zhang et al. proposed a SPE
method[7] which adopts the detection error rate as the stego secu-
rity metric. The method uses a texture complexity metric called
CO-occurrence Matrix Entropy Difference (COMED) to evaluate
the stego security of an image. The measurement of COMED is
divided into several levels. In each COMED level, it is needed to
fit a function of COMED and PE . However, this method needs to
storage PE −COMED function for every COMED level, which is
complicated.

In this paper, we propose a practical SPE method for indi-
vidual cover. The method estimates the payload rate based on the
a priori knowledge. We adopt steganalytic classifier’s error rate
as stego security metric. We establish the relation function of se-
curity metric and stego distortion (PE −D function). The PE −D
function is generated from training. With the relation function,
the sender can calculate the corresponding stego distortion of his
expect security metric. To estimate the secure payload for a par-
ticular cover image with the calculated distortion, the sender first
conducts an stego embedding on the cover to resolve the covers
relation function of distortion and payload rate(D−α function),
then computes the payload from the D−α function. Both PE −D
function and D−α function are called a priori knowledge func-
tion. Our work is valuable under DLS scenario to estimate the
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message length for individual cover.

Preliminaries
Notations

Capital boldface symbol X represents matrix, and the capital
normal symbol with subscript Xi j denotes the element of matrix X
in the position (i, j). The boldface lowercase symbol v represents
the vector.

The symbols X and Y denote the cover image and stego im-
age, respectively. They will always be 8-bit grayscale spatial im-
ages in this paper, so the dynamic range of the pixel is 0 to 255.
The symbols {X} and {X} denote cover image library and stego
image library, respectively. The function D(X,Y) represents the
stego distortion caused by changing cover X to stego image Y. In
theoretical deduction, as the modification pattern is more focused,
the stego distortion is abbreviated to D(s), s denotes the modifi-
cation pattern. For additive model, the cost value of change pixel
Xi j to Yi j is written as ρi j .

Additive Distortion Model
The additive distortion model is the common model in the

application of adaptive steganography. It is the simplification of
the real steganographic embedding procedure. The main assump-
tion of additive model is that the statistical impact of the modifi-
cation of image element is independent. So the additive distortion
is defined as sum of cost values whose pixels are changed.

D(X,Y) = ∑
i, j

ρi j|Xi j−Yi j| (1)

PLS and DLS
Payload Limited Sender. The description of the task is as

follows: with a given message m, the sender needs to find a mod-
ification pattern s that has minimal distortion. To formalize the
model, the optimization problem of PLS is to find a distribution
p(s) which has a minimal distortion expectation E(D(s)) intro-
duced by modification. The math expression is:

argmins ∑
s

D(s)p(s),s.t.−∑
s

p(s) log(s) = m (2)

Distortion Limited Sender. The DLS has a fixed distortion
Dε . The sender attempts to embed the message to the greatest ex-
tent, while the distortion caused by modification does not exceed
Dε . The optimization form of the task is to determine distribution
p(s) that has a maximal entropy m with a given distortion:

argmax
s
−∑

s
p(s) log(s),s.t.∑

s
D(s)p(s) = Dε (3)

From expressions we can see that the two problems are dual
to each other. We can use Lagrange multipliers to solve these two
problems[8]. The solutions have an identical form:

p(s) = Ae−λD(s) (4)

which is called Gibbs distribution. A is the partition function,
which A−1 = ∑s e−λD(s). This form of solution is the optimal
distribution of two problems. The scalar λ is the parameter de-
termined by the constraint. For PLS, the constraint is the payload
capacity m, while for DLS, the constraint is distortion Dε .

In additive model, the distortion can be transformed into sum
of cost values. The optimal distribution (4) can be written as:

p(s) = Ae−λD(s) =
n

∏
i=1

Aie−λρ(si) (5)

in the expression, A−1
i = ∑si

e−λρ(si), which is the partition func-
tion of the single pixel.

Distortion Function
The distortion function is used for evaluate the impact caused

by stego embedding. The distortion function which can be used
in practical scenario should be additive. With additive model, the
algorithm assigns a cost value to every image element based on
the neighboring elements properties.

HUGO[9] is the first distortion model, which is based on
the steganalytic feature SPAM[10]. Then, in 2013, Holub et al.
proposed WOW[11] on spatial domain. It utilizes Daubechies-
8 wavelet filter. Later, UNIWARD[12] was proposed, which is
similar to WOW. In 2014, Li et al. proposed HILL[13], which
makes the stego modification gathering in the complex-textured
area.

In this paper, we employ S-UNIWARD to demonstrate the
proposed method. To have a further understanding, here is a brief
description of S-UNIWARD. The algorithm consists of two steps,
which are filtering and distortion calculating.

Step 1: filtering. The filtering is to acquire the wavelet co-
efficients of cover image and stego image. The masks for filtering
are constructed from one-dimensional high-pass and correspond-
ing low-pass wavelet decomposition filters. We use h and g to
denote high-pass filter and low-pass filter, respectively. There are
three sub-band filter masks: HL filter K(1), LH filter K(2), and
HH filter K(3). They are constructed as following manner.

K(1) = h ·gT ,K(2) = g ·hT ,K(3) = h ·hT (6)

The filtering operation is as follows:

W(k)(X) = K(k)⊗X,W(k)(Y) = K(k)⊗Y (7)

W(k) is k-th sub-band of wavelet coefficient matrix, k = 1,2,3.
The symbol W (k)

uv denotes the element of matrix W(k) in the posi-
tion (u,v).

Step 2: calculating. The cost value of a pixel is the relative
change of the wavelet coefficients. The distortion function of Y is
the sum of cost values.

D(X,Y) =
3

∑
k=1

n1

∑
u=1

n2

∑
v=1

|W (k)
uv (X)−W (k)

uv (Y)|
σ + |W (k)

uv (X)|
(8)

In the expression, σ is a constant. In the original version of S-
UNIWARD, it is set to 1. To exclude the interference introduced
by image size, in this paper, we adopt average distortion D(X,Y)
instead of D(X,Y). Note that image size is n1×n2:

D(X,Y) =
1

n1×n2
D(X,Y) (9)
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Proposed Work
Stego Security Metric

To formalize the stego security, we define the security metric
MS. In the proposed method, we adopt steganalyzer’s detection
error rate as MS. The common practice of evaluating the safety
of stego algorithm or the power of steganalytic feature extractor
is generating the stego images from standard image database, i.e.,
BOSSbase[14], and extracting the stego features, then training the
ensemble classifier with these samples. The EOOB of the classifier
is an estimation of PE . The PE agrees with the designing intention
of MS, we define:

MS = PE (10)

General Framework
Figure 1 is the general framework of proposed SPE algo-

rithm. The algorithm consists of two parts: preparation part and
estimation part. The preparation part is to generate the PE −D,

Figure 1. general framework of proposed method

which is based on the training with the image library. The esti-
mation part is to estimate the secure payload rate for a particular
cover.

A Priori Knowledge Function
The a priori knowledge of the proposed method consists of

two parts, which are PE −D function and D−α function.

PE −D Function
PE −D function is the mapping function of security metric

and stego distortion. It is universal to cover source. Distortion
function is a reflection of detectability. The effect of stego payload
is embodied by distortion. As mentioned above, the SPE problem
is within the framework of DLS. Here, the PE should be error rate
of blind steganalysis with various payload rate.

Our method to establish the PE −D function is cure fitting.
So the main task is to generate enough valid data points (D,PE).
There are four steps, which are building image library, sampling
sub library, generating training set, and fitting curve.

Step 1: building image library. In order to obtain a suffi-
cient number of data points, we need to generate a large number
of stego sample. Given an images library {X} containing L im-
ages and a group of payload rates {α} with M rates, we build a
stego image library {Y} with L×M images though embedding
random information via STC.

Step 2: sampling sub library. With cover image library
{X} containing L images, we also need to choose L images from
{Y} to form a sub image library {Y}sub with M payload rates. We
adopt a random sampling method that choose L elements from a
set containing L×M elements. The sampling method is illustrated

by Figure 2. The matrix in the Figure 2 represents the stego image

Figure 2. sampling stego images from {Y}

library {Y} and every single grid is a stego image in the library.
M is the number of payload rates and L is the number of images
in {X}. In the matrix, the pair (m, l) is the position of the grid,
represents the stego image Y generated from l-th cover image in
{X} with m-th payload rate in {α}. The gray-colored grid indi-
cates that the corresponding stego image is chosen. To ensure that
images in {Y}sub have M payload rates, we choose L/M stego
images in every payload rate. The sampling order is showed in
Figure 2. The order ensures that every cover image in {X} is able
to form a feature pair with stego image and does not repeat at the
same time. To generate more {Y}sub, we can randomly permute
the image index l again, and re-conduct the sampling procedure.
With the permutation, each time the sampled {Y}sub is different
from other {Y}sub. The purpose to generate multiple {Y}sub is to
obtain more data points for fitting the PE −D curve.

Step 3: generating data points. Suppose that we are going
to generate Q (D,PE) data points to fit the function curve with
{X} and {Y}sub at one time, we need to accumulate correspond-
ing Q training sets. We note that every instance in the training
set is a steganalysis features pair (v+,v−), in which the positive
feature v+ is the feature of a stego image and negative feature v−
is the feature of the stego image’s cover source.

In each training set, the distortion values of corresponding
stego images are distributed within a interval. The mid-value
of the interval is Dmid . To build a training set with a mid-value
distortion Dmid , we first set an interval [Ddown,Dup), then find
out every training instance whose stego image distortion value
is within the interval. In [Ddown,Dup), Ddown = Dmid −∆D and
Dup = Dmid +∆D. ∆D = (Dmax−Dmin)/2Q , in which Dmax is
the maximum distortion value in {Y}sub and Dmin is the minimum
value in {Y}sub. After split [Dmin,Dmax] into Q sub-intervals, we
can extract the stego feature of images in {Y}sub and {X}, then
sort these features into Q training sets according to the distortion.

Assume that we sample R sub libraries from {Y}, and for
each {Y}sub we can generate Q points (D,PE), we will obtain
R×Q identical data points totally.

Step 4: fitting curve. After generating data points, we can
fit the PE −D function’s curve PD = f (D). Note that the valid
interval for estimation is [Dmin,Dmax], the function f should have
following two properties:
property 1: monotonicity.

∀x1 < x2 ∈ [Dmin,Dmax], f (x1)> f (x2) (11)
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property 2: slow-attenuation.

lim
x→+∞

f (x) = 0 (12)

The detection error or the security metric should decrease as the
stego distortion increasing. Property (11) ensures that f is avail-
able for estimation. Property (12) ensures that f has a large in-
terval for estimation, while the D of various kind of image may
distributed in a large range. In this paper we recommend sigmoid
function or gaussian function as f ’s model.

D−α Function
The D−α function is another a priori knowledge adopted

in proposed method. The function reflects the property of indi-
vidual cover. With optimal embedding, the D−α function is the
performance limitation of practical embedding method, which is
also called rate-distortion bound.

In the proposed work, to estimate an α for cover X under a
expected PE , we need to calculate the D−α function of the cover
X. As digital image is a kind of complex high-dimensional signal,
it is hard to calculate the closed-form expression of D−α func-
tion. Alternatively, like PE −D function, we can fit the function
with data points (α,D). To obtain the data points, we can choose
some payload rates α and embed the random information in the
cover, then calculate the D introduced by the embedding. As the
proposed method is a practical method, we adopt STC instead of
optimal embedding.

We find that the power model is a good model to fit the D−α

function:

D = k×α
b (13)

In the expression, k,b is the parameter to be determined. The
value of power index b is less than 2. To simplify the fitting pro-
cedure, we set b = 1. With the linear model, we only need to
embed once, and need not fit the function:

D = k×α (14)

Here we need to solve the parameter k. With a data point (α ′,D′),
k = D′ \α ′.

Algorithm
As illustrated in Figure 1, the procedure of proposed work

can be divided into two parts, which are preparation part and es-
timation part. The mission of preparation part is to establish the
PE−D function. The estimation part is to estimate the secure pay-
load rate α̂ for a given cover X according to sender’s expecting
security metric P̂E . We note that the stego embedding algorithm
is Emb(X,α), stego feature extracting algorithm is Ext(X), and
classifier training algorithm is Trn({(v+,v−)})

Preparation Part
The Algorithm 1, 2, 3, 4 are the preparation part, they are the

corresponding step 1, 2, 3, 4 for generating PE −D function.

Estimation Part
To estimate the cover X’s secure payload rate, we need to

calculate the valid estimation interval (P̂E min, P̂E max]. The sender
chooses an expected P̂E within the interval. Algorithm 5 describes
the estimation procedure.

Algorithm 1 Building image library
Require: {Xl}: cover library

M: number of payload rates
∆α: increment of payload rate

Ensure: {Ym
l }: stego library

1: for l = 1 to L do
2: for m = 1 to M do
3: Yl

k = Emb(Xl ,m∆α);
4: end for
5: end for
6: return {Ym

l };

Algorithm 2 Sampling sub libraries
Require: {Y}: stego library

R: number of sampling rounds
Ensure: R sub libraries of {Y}

1: for r = 1 to R do
2: Randomly sampling {Y}r

sub as illustrated in Figure 2;
3: end for
4: return {Y}1

sub,{Y}
2
sub, ...,{Y}

R
sub;

Algorithm 3 Generating data points

Require: {Y}1
sub,{Y}

2
sub, ...,{Y}

R
sub

{X}: cover library
Q: number of points will be generated in one sub library

Ensure: R×Q data points of (D,PE)
1: for r = 1 to R do
2: find out Dmin and Dmax of {Y}r

sub;
3: ∆D = (Dmax−Dmin)/2Q;
4: for q = 1 to Q do
5: Dq

mid = Dmin +(2q−1)∆D;
6: end for
7: allocate Q independent memory spaces to storage training

sets {(v+,v−)}q,q = 1,2, ...,Q;
8: for l = 1 to L do
9: v+ = Ext(Yl), Yl is in the {Y}r

sub;
10: v− = Ext(Xl), Xl is corresponding cover of Yl in {X};
11: if D(Yl) ∈ [Dmin +(q−1)∆D/2,Dmin +q∆D/2) then
12: put (v+,v−) in the q-th sub set {(v+,v−)}q;
13: end if
14: end for
15: for q = 1 to Q do
16: Pq

E = Trn({(v+,v−)}q);
17: form the data point (Dq

mid ,P
q
E);

18: end for
19: end for
20: return the generated data points (Dmid ,PE);

Algorithm 4 Fitting curve

Require: data points (D,PE) generated in 3
Ensure: PE −D function PE = f (D)

1: choose a suitable model to fit the curve f ;
2: return PE = f (D);
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Algorithm 5 Estimate the secure payload rate
Require: cover X

function PE = f (D)
αmax: the largest α in {Y}

Ensure: estimated payload rate α̂

1: Dmax = Emb(X,αmax);
2: P̂E min = f (Dmax);
3: P̂E max = f (0);
4: inform the sender inputs his expected P̂E which is within the

interval (P̂E min, P̂E max];
5: α̂ = f−1(P̂E)×αmax/Dmax;
6: return α̂;

Experiment
Generating PE −D function

We randomly choose 8000 images from BOSSbase to build
the cover library {X}, and remaining 2000 images are for testing
later. We adopt S-UNIWARD and ternary STC to generate the
stego images, SRM and ensemble classifier for steganalysis. We
set ∆α to 0.05, M to 10, R to 10, and Q to 20.

To make the element numbers of training sets uniformly dis-
tributed, we use

√
D instead of D. To ensure every training set

has enough samples for training, we set a threshold T , and the set
whose number of element is not larger than T will be merged into
other set. For the merged new set, its

√
Dmid will be re-computed.

Here T = 100.
The curve of generated PE −D function is showed in Figure

3, its expression is:

PE =
37.82

76.76+ e7.698×
√

D
(15)

Figure 3. data points and fitted PE −D curve

Fitting D−α function
In this section, we will illustrate the D−α function. We will

show the profile of the function with points and the linear simpli-
fied form of the function. We choose 6 images in BOSSbase as the
example, whose indexes are: 9000, 9010, 9020, 9030, 9040, 9050.
We select 100 payload rates uniformly in the interval [0.005,0.5].
To generate the points, we embed the random information in the
covers with ternary STC. The points reflect the practical situation

of stego embedding. The Figure 4 shows the profiles of D−α

function of 6 images. We fit the D−α functions of 6 images with
power model, the parameters are showed in Table 1.

Figure 4. (α,D) points of 6 images

Parameters of 6 D−α functions
image index k b
9000 0.5920 1.308
9010 1.180 1.391
9020 0.5167 1.308
9030 0.8106 1.408
9040 0.6906 1.332
9050 0.8698 1.360

As we can see, power indexes are within the interval
[1.3,1.5]. To simplify the estimation, we use linear model instead
of power model, Figure 5 shows the comparison of the linear for-
m and the power form. Such simplification causes some ”coding
loss”, which will be discussed in the following section. Without
the linear model, the sender needs to embed with STC two times
at least for solving two parameters and run the nonlinear regres-
sion for fitting the function.

Figure 5. comparison of linear model and real function
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Performance Of Proposed Work
As mentioned in Introduction, The SPE problem is within the

framework of DLS model. In [4], Filler et al. proposed ”coding
loss” to evaluate the performance of DLS stego algorithm. The
definition of coding loss is as follows:

coding loss =
|m|max−|m|
|m|max

×100% (16)

In the expression, |m| is the message length of practical embed-
ding(STC) with a given distortion, while |m|max is the maximum
message length within the given distortion. |m|max is the perfor-
mance bound of DLS, which can be calculated by optimal sim-
ulator, but can not be reached practically by state-of-the-art STC
embedding. The coding loss is the relative difference between
practical method and performance bound. To calculate the DLS
performance bound, we implement a DLS embedding simulator
based on the PLS embedding simulator.

To test the performance proposed SPE method, we calculate
the coding loss under 9 PE s which are within the available esti-
mating interval of generated PE −D function. Covers for testing
are reserved 2000 images in BOSSbase. Each point illustrated in
Figure 6 is the average coding loss of 2000 covers under a PE .

Figure 6. average coding loss of 2000 images

The Figure 6 shows that the coding loss goes up with the in-
creasing of PE . The reason is that we simplify the D−α function
with linear function. As illustrated in Figure 5, given a distortion
D′, the estimated payload rate α with linear function has a differ-
ence ∆α to the real D−α function. At the expense of some stego
capacity, the linear D−α form shorten the running time of esti-
mation. To balance the efficiency and performance of proposed
method, the simplification of D−α function is acceptable.

Because PE −D function is calculated via machine learning
method, and D−α function is simplified, the result is not a pre-
cise value. We note that the estimated payload rate is a reference
to the sender. Before embedding the message in the cover, sender
can adjust his payload rate according to the estimated value. To
have a better performance, the sender can choose more powerful
steganalyzer beyond the SRM, for example, maxSRM[2].

Conclusion
In this paper, we proposed a practical SPE method based on

a priori knowledge functions. The named a priori knowledge con-

tains PE −D function, and the D−α function. The PE −D func-
tion, which is relation function of steganalysis detection error and
stego distortion, is the common knowledge for covers and not re-
lated to the particular cover. To estimate the secure payload rate
for a cover, the sender needs to calculate the D−α function of
the cover. The most time-consuming procedure is running STC,
its purpose is to acquire an actual data point of (α,D) for fitting
the D−α function. The sender first get the stego distortion cor-
responding to his expecting security from PE −D, then calculates
the D−α function of cover image, and solves out the payload rate
via the D−α function. If the sender needs to estimate a suitable
stego capacity for the cover before communication, the proposed
work is a valuable approach.
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