

Two-Tier State-Machine Programming for Messaging

Applications

J.Morales, R.Escobar, S.Kaghyan, G.Natarajan, D.Akopian, The University of Texas at San Antonio; San Antonio; P. Chalela, A.

Ramirez, UT Health Science Center at San Antonio; San Antonio; A. McAlister, the University of Texas, School of Public Health at

Austin Regional Campus; Austin; TX/USA.

Abstract
Personal computers with Internet access are the most common

way to transfer information nowadays. Furthermore, messaging

technologies give us the ability to create dynamic interactions

between systems. The purpose of this research work is to introduce

an interactive messaging system that allows for a human user to

communicate with a dedicated software application via messaging

dialogues. The conversation is modelled as a system of

interconnected state machines. Several techniques are presented

that allow to manipulate complex dialogues preserving integrity,

even in multiple languages. A smoking cessation case study is also

presented, in which the proposed system holds 6-month long

personalized conversations with all users concurrently. In such case

study, the system monitors the smoking habits of these users

independently and helps them quit smoking. The two-tier

architecture provides a flexibility for relatively quick system updates

when intervention protocols are revised.

1. Introduction
 With the global prevalence of mobile technology, text

messaging has become a sound approach to promote patient

engagement and a proven method to promote health and behavior

change. Short message service (SMS) texting has been used for

health service appointment reminders, preventive activities,

medication adherence, smoking cessation, and monitoring and the

self-management of chronic disorders such as diabetes [1], [2], [3].

It provided an extraordinary opportunity for innovation in the

delivery of tailored interventions to improve the health of the US

population and reach traditionally underserved groups, by offering

services that can be used by participants in their natural environment

and in real-time, where the person is located, without them having

to attend services, and providing the anonymity people like.

Volume text messaging systems are currently broadly used for

health promotion and other campaigns. To avoid biasing impacts of

diverse mobile phone technologies, most of the health applications

use the least advanced, yet broadly utilized and inexpensive plain

text messaging feature. While simple, the texting allows to collect a

feedback from participants using polling mechanisms and process

related data. One can mention the following systems in reported

studies: Twillio [4], Rapid SMS [5], Frontline SMS [6], Mobenzi

Researcher [7], Magpi [8] and Trumpia [9] among many others.

They have been utilized for health diagnostic services, nutrition

surveillance, household surveys and marketing. Systems like Twilio

serve as message relay aggregators that offer API's to the developers

to send and receive messages programmatically. They also provide

simplistic automation capabilities such as confirmation responses.

While the text messaging applications are numerous, very few

systems provide automated services, when preprogrammed

protocols can be used to completely exclude human campaigners

from the communication chain. A smart server application will

know what to send and how to respond conditioned by the

interactions with the participants. The messages will be

communicated through API’s provided by the aggregators. This

paper provides a methodology for automated messaging systems

design. Smoking cessation is selected as the case study.

Smoking remains the leading cause of preventable death in the US

and it is a well-known risk of twelve types of cancers, cardiovascular

disease and other health problems, imposing substantial health and

financial costs on our nation [10],[11],[12]. In fact, smoke related

issues account for more deaths than the aggregate of drug abuse,

suicide, motor accidents, murder, and AIDS [13]. Thousands of

people die of active and passive smoking every year. As such,

several intervention techniques have been designed to help with

smoking cessation.

The proposed smoking cessation program aims to create a flexible

two-tier state machine architecture that allows for relatively quick

system adjustments with protocol revisions. There are similar

smoking cessation programs which help people quit smoking. Few

of existing programs are reported such as Text2Quit [14], Miquit

[15], and Quitplan [16]. These systems typically use pre- and post-

quit messages, peer-ex smoker messages, medication reminders and

multiple opportunities for reminders. Unfortunately there are no

reports on upgrade flexibility of these systems. Meanwhile, any

health promotion campaign needs continuous adjustments to

optimize intervention efficiency. In addition, multiple language

support might be needed to involve diverse population segments.

Thus both upgrade flexibility and scaling up the system for

multilingual support motivated the development of a two-tier

system, where one tier is used for the protocol definition, while the

second tier maps any protocol definition onto a system architecture.

In particular, the first tier of the software application consists of

“state machine definition files". These files contain the logic of the

conversation. A designer can create a complex, interactive

conversation simply by modifying these configuration files. The

second tier of the system is the subsystem that takes these

configuration files and uses them to implement an automated text

messaging system.

2. Dialogue trees

There are cases in which the conversation between machine and user

may be more complex than just a sequence of questions and

answers. In a complex conversation, the system may need to

evaluate variables in real-time before deciding which message or

question to send next to the user. A decision tree is a simple way to

program such type of conversations. This technique has been

applied in the so-called multiple-choice games (MCGs). In these

type of games, the player traverses a decision tree. At each node, the

player gets a multiple choice question (i.e., "you find a dragon: do

you want to kill the dragon or do you want to ride the dragon?") and

he must choose among the available answers. ChoiceScript is a

programming language for designing these type of games [17].

Interactive novels are another example application of decision trees

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 155

https://doi.org/10.2352/ISSN.2470-1173.2017.6.MOBMU-315
© 2017, Society for Imaging Science and Technology

to conversations. These novels have become more popular with the

arrival of HTML since now the reader only needs to click on a

hyperlink to get the text that corresponds to the decision he has made

in the story. Nowadays, the reader does not need to be referred to

the page number or fragment of the book that contains the text that

corresponds to the decision he has made, as it was done before with

the printed version of interactive stories. Conversation tree logic is

used in the video-game industry as well. This type of logic allows

human players to have a conversation with non-player characters

(NPCs). In a menu-driven conversation with a magician, for

example, the NPC may ask the player “How can I help you?”. The

player may then be offered three choices: A) to buy a potion, B) to

buy a spell or C) to learn where the dragon is hiding. Keyword-based

conversations have also been used to program NPCs. This allows

the player to access specific conversations on-demand, which can

also be applied to automated messaging systems.

3. State machine constructs
The proposed system models conversations between the user

and the messaging agent as a set of interconnected state machines.

A conversation is specified with two configuration files. The first

file contains the definition of each state or node (i.e., an action such

as sending a message, or a sequence of actions). The second file

specifies the transitions between different nodes in the state

machine. We refer here to the first file as the imports file and the

second file as the successors file. Additionally, conversations that

repeat very often can be encapsulated into their own routine-state-

machines to which the system can transition in and out as it moves

through the main-state-machine/conversation. An example of a

conversation broken down into states and actions is shown in Fig. 1.

Blocks in the diagram are stored in the imports file. Arrows are

stored in the successors file.

Figure 1. Example conversation broken down in states and actions

3.1. States and actions
 Different types of actions can be executed inside a node or

state. There is no limit to the number of actions that can be

performed on a single node. An example of a node with several

actions is shown in Figure 2. The system allows for five different

action types, denoted as follows:

B: This action can be utilized for delivering a broadcast message. A

reply is not expected from the user. The action is completed as soon

as the message is sent to the user.

Figure 2. Each state consists of one or more actions

P: This action is used for sending a poll message. The action is

completed as soon as the state machine receives a reply from the

user, whether it is an automatic reply or an actual reply from the

user.

U: This action is used for updating the response from the user to a

previous poll. An example of an update command is as follows:

UPDATE(previous->poll); R(new->poll))

This command indicates to the state machine that it should update

the reply to the action previous->poll with the reply to the action

new->poll.

T: This action indicates to the state machine that it should wait for

some time before transitioning to a new state. It can be used to insert

an artificial delay. The delay starts as soon as the state to which the

T action belongs is entered.

D: This action is used for loopback (i.e., sending back the user to a

node in the protocol where he has been before). In this case, the

user’s history between such previous node and the current node is

deleted. Disabling history is needed to avoid having the system

traverse the entire state machine, all the way back to the current node

by processing the user’s history. History disabling and loopback are

graphically depicted in Fig. 3 below.

Figure 3. The system can loopback to a previous point in the conversation

and disregard the user’s replies to any message from then on

3.2. Action scheduling
The system is able to perform actions via timestamp-based and

delay-based scheduling. In some cases it may be desirable to send a

question, for example, at a specific time of the day, while in others,

the question should be sent some time after the system has

performed the previous action. These scheduling is available for any

action type. Examples of timestamp-based and delay-based

scheduling for poll type of action is shown in Fig. 4.

156
IS&T International Symposium on Electronic Imaging 2017

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

Figure 4 Output log from a simulation of a system that uses timestamp and
delay-based scheduling.

4. Nodes file

States and actions are specified in an imports file. This file

contains one row for every action. The columns in the file specify

the node that the action belongs to, the order in which the action is

to be executed with regards to other actions in the same node, the

action type, scheduling (i.e., execute action after a certain delay or

at a specific time of the day), whether the action is the entrance point

of the system or the exit point of the system. Some of the fields apply

only to polls (i.e., actions of type P), such as, the number of times

the system should resend the poll if the user does not answer, the

delay between such repetitions, and the prefix and suffix that should

be appended to the last repetition. There is also a field that can be

used to pass an indexing parameter which may be used by a

broadcast action to index messages from a table. The layout for the

imports or nodes file is shown in Fig. 5.

Figure 5. Import file

5. Transitions file
Transitions within the main state machine are specified in the

successors configuration file. Entries in the successors file specify

source nodes (i.e., states) and destination nodes. Regular

expressions are used to check for validity of answers from the user.

Conditional expressions are then used to decide where the user

should go in the state machine depending on his response. All source

and destination nodes must be specified in the imports file, unless

the destination is another state machine, such as a routine state-

machine. Routine state-machines are specified in their own imports

and successors files. The last transition made in a routine state-

machine must be a transition to a return node. This node takes the

system back to the main state machine. Figure 6 shows the part of

the “successors” file. The first column shows the initial state. The

next column shows the last action associated with the state. As

mentioned before, more than one action (such as sending a message)

may be executed by the system within a single node, in sequence.

Actions can have arbitrary names and the name can be the same as

the state name, as shown in Fig. 6. Even though the system can

transition out of a node from any action within the node, it is more

convenient to always transition out of the last action in the node, as

this simplifies the state machine design and maintenance of the

design.

The third column shows whether it is a broadcast message or a

polling message. If it is polling (i.e., question) message, then there

must also be a regular expression associated specified with the

transition, which is specified as R={exp}. For broadcast messages,

this parameter is specified as S, indicating that the transition to the

destination node should be made right after the last message in the

current node is sent, or the last action in its sequence is executed.

The fourth column specifies whether the expression is a numerical

comparison or a regular expression. The last column shows the

destination state.

Figure 6. Successor File

6. Polling data from users
In any messaging system, users are sometimes reluctant to

answer a question, or the system may not receive a reply due to

temporary technical issues. To deal with these situations, the system

can retransmit the poll message for a certain number of times with a

delay between each repetition, which can be specified by the

designer of the conversation. If no answer is received from the poll

the system can proceed to move to the next action by using a default

answer to the poll, but a flag is raised to indicate that the user did

not actually reply the default answer that the system is using for

branching or content publishing purposes. For politeness, the

designer could also specify a message to be prepended or appended

to the body of the last repetition of the question or poll.

Figure 7. Example application where poll data is taken from the user, printed
in a message and used for decision-making

To have insight into how polling and recalling of poll data

works, an example is illustrated in Fig. 7. The figure also covers data

recall (printing an answer from the user in a later on message).

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 157

7. The default pathway

Assuming a default answer whenever the user does not reply to

a poll means that there is a predefined path that the user will follow

if he/she does not reply to any poll. This is shown in Fig. 8.

Designers and testers of the state machine can travel to different

places inside the state machine by moving through this default road

and deviating from it wherever needed for maintenance purposes.

However, relocation may be a better idea in cases in which only a

small region of the protocol is to be tested. Continuity of default

pathways should always be verified in order to avoid having the user

reach a dead end by default.

Figure 8. After every node, there is a default path that the system will follow if
the user does not reply to any poll messages

8. Ability to update user data

The user can update his/her answers to specific questions in the

conversation. This is done via on-demand conversations. For

example, at the beginning of the conversation the system may ask

the user about his/her age. The system then lets the user know that

he may text the word AGE if he/she wants to change his answer

later. At any point, the user may text AGE and the system sends him

to an on-demand conversation that asks him about his new “age”.

The answer to the original “age” question is then replaced by the

answer to the question given in this on-demand conversation. Any

subsequent parts of the system that make use of the “age” parameter

will then be using the updated data.

9. On-demand conversations
Throughout the program, participants can send a variety of

keywords at any time to receive additional help. These keywords are

called on-demand keywords. For instance, the user could send the

word HELPNOW anytime. The system reacts by entering into a

state machine that has a conversation of its own. Once the on-

demand conversation is over, the system will exit this on-demand

sate machine and return to the state that is next in the main state

machine. Figure 9 depicts the concept of on-demand text messaging.

Figure 9. On-demand a text messaging state machine

10. Conversation routines
 There are cases in which the designer of the state machine

might need to use a sequence of states and actions more than once.

For example, consider a scenario in which the system must have a

conversation with the user every day. As part of the conversation,

the system must first salute the user every day before sending any

other message. In such scenario, the salutation may include saying

'Hi! How are you?', and a specific message must then be sent

depending on whether the user replied ‘good’ or ‘bad’. In such case,

it is desirable to have a routine for saluting the user, and to replicate

this routine every day in the morning. This approach is similar to

calling a routine several times in a computer program. This routine

is modelled in the system as a state machine of its own. But to the

main state machine it looks as a single node with an entrance and an

exit. The concept of routine state machines is depicted in Fig. 10.

Figure 10. State machine that uses states and state machines encapsulated
into routines

This approach means that any change in logic or content that is

done in the master copy of the routine state machine will propagate

through the entire multiday conversation, which can save a

significant amount of work to the designer of the dialogue tree. The

first state specified for a routine would be the entrance point. A

Return state would be used to indicate to the state machine engine

that it should exit the routine state machine and return to the main

state machine. State machine routines are used when a sequence of

messages repeats in many places, for efficient debugging and to

cope with rapidly changing specifications. Figure 4.5 shows how an

entire routine can be treated as a single node within the main state

machine. Figure 11 depicts a conversation that makes use of state

machine routines.

158
IS&T International Symposium on Electronic Imaging 2017

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

Figure 11. General structure of a routine and their connection

11. Message rotation and indexing
For more human-like behavior, the designer of the state

machine might want to use the same state machine routine several

times, but modify the content to seem less repetitive to the user. For

example, in the salutation routine the designer may want to say

“hello” to the user in some cases and “hi” in other cases. The

architecture of the routine state machine (i.e., transitions between

nodes, scheduling, regular expression evaluations) may need to

remain intact since only the content of the messages needs to be

changed. In such cases, the designer could specify content variations

for the messages delivered by the routine. These variations are

specified in a separate table. This feature is useful when

implementing routines inside a state machine. In cases where the

branching logic is the same, but the content of the messages is

different, the system should be able to use the same routine, but

rotate the content of the messages inside the routine. For these

scenarios, the system has the ability to either rotate messages from

a given table, or to choose particular messages which are specified

with an index given to the routine state machine as a parameter. The

screenshot in Fig. 12 shows an example of a rotation table, the crave

table. In this case, each time user sends the keyword CRAVE, a

different message is sent back to the user. Message variations are

not restricted to on-demand messaging. They can occur at any action

in the system.

Figure 12. Screenshot explaining message rotation

12. Translation table
 Users can have conversations with the system in different

languages. This is done by signing up with a keyword that

corresponds to each language. Once the user signs up, he sends and

receive messages in whichever language he has chosen. The logic

of the system remains the same. By using translations tables,

broadcast messages are translated from English to whichever

language the user has chosen before they are sent to the user.

Incoming messages, on the other hand, are translated to English with

a different translation table before they are interpreted by the state-

machine. Figure 13 shows a translation table for incoming

messages.

Figure 13. Example translation table for user replies

13. Relocation capability
For maintenance purposes, system admins can immediately be

transported to specific places of the conversation, allowing them to

bypass the delays associated with state machine transitions, which

are often due to traffic, scheduling, and processing overheads in the

server. In such cases, the system makes use of default conditions for

content publishing and branching purposes, since some states and

transitions may need to make use of historical data, which in this

case may be non-existent. If this historical data needs to be

initialized to test its effect in other parts of the conversation, the

administrator must first relocate to the state(s) to be initialized

before relocating to the state(s) that he wants to explore. Relocation

of a user is shown in Fig. 14. The ability to immediately relocate a

user without the need to traverse the state machine nodes between

the two locations is a valuable tool when it comes to debugging the

conversation.

Figure 14. Relocation capability allows for administrators to perform
maintenance faster

14. User migrations
There is a portability feature that allows admins to transfer

active users from one state machine to another. This feature is used

whenever the dialogue tree has been updated to a new version. This

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 159

migration feature is critical for being able to make changes to an

active project.

To migrate the active users, the users must be located in a

transfer state. A transfer state is any state that is common between

two state machines (i.e., has the same name in both state machines).

Figure 15 depicts the migrations of users from one version to

another. A user can be migrated to an updated version only if there

is a common state located in both, the source and the destination

state machines. Migration is scheduled in such a way that it does not

affect the functionality of the protocol, i.e., to prevent the new state

machine from executing a broadcast or delay action that was already

executed by the previous state machine.

Data like polling replies and default flags are transferred to the

new state machine so that historic data is available to the new state

machine. This historic data may be needed for branching or content

publishing purposes. The new state machine will make use of

default answers in case historic data is unavailable. This may be the

situation when a new question has been introduced into the

conversation.

Figure 15. Migration of users from one version of the automated messaging
system to another

An example of a migration is shown in Figure 5.3. The user is

asked for his/her gender, and he/she is then migrated to a destination

project. His/her answers are recalled later on in the destination

project.

Figure 16. Example of a migration of users from one state machine to another

15. Simulation Mode

Being able to simulate an automated messaging system is

essential. Simulation is needed mainly due to the limitations of

messaging technologies (possible delays), and also the limitations

of human testers. SMS technology in particular introduces many

delays so there is a limit to how fast the system can be tested in the

deployment environment. Also, it would be extremely difficult for a

human to test a long protocol such as the use case presented in this

work. If the protocol is very long and it contains many branches, it

may turn out to be very burdensome for a human to traverse it by

hand. In fact, it would take many years to traverse by hand every

branch of the test case presented here, given that the default

conversation pathway takes more than 200 days.

A screenshot of the simulator web page is shown in Figure 17.

The interface allows for the user to specify the segment of the state

machine that he wants to test (i.e., entrance node and exit node), the

project or conversation protocol that he wants to test, the language,

and an answer sheet to any questions asked in the conversation.

Additionally, the tester can specify a participant number, in case he

wants to traverse the conversation using the answers given by

another participant, which may be useful in case the tester wants to

recall a previous simulation. There is also a time acceleration feature

which allows the tester to simulate delays.

Figure 17. Screenshot of the online simulation environment

16. Time acceleration Feature

The system can work with an accelerated time for a tester to be

able to traverse the entire program in a matter of hours or days and

not months. The designer can choose a time acceleration factor. For

example, if an acceleration factor of 60 is chosen, an entire day of

the real system can be simulated in 24 minutes.

Figure 18. Automated messaging interactions can be accelerated with an
adjustable acceleration factor for testing purposes

However, the acceleration factor should not be too high

because the overhead time (i.e., time it takes for the system to

process an event, such as a transition) cannot be accelerated. This

means that the time interval between two events in the log file of the

simulation, ∆tl, will not be exactly the same as the difference

160
IS&T International Symposium on Electronic Imaging 2017

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

between the times at which the two events are scheduled to happen

in the real system. The interval between the two events in the log

file can be modeled using following formula:

 ∆tl = (∆ts/a + T0) ∗ a,

where T0 is overhead time, and a is the acceleration factor. The

lower the acceleration factor, the more accurate the simulation will

be. A pictorial representation of the simulation acceleration process

is shown in Fig. 18.

17. System architecture

 The architecture of the messaging system is composed of

several logical components, including a database server, a sender

process, a set of processing queues and executors, a web server, a

receiver process, and one or more data aggregators. Internally, the

system represents a project as a state machine. Each project has a set

of states, actions, participants, and messages associated with it. This

organization allows the users to execute more than one state

machine (i.e. a project) in the same system. Execution of tasks

related to a given state machine is distributed among different

servers. This feature allows the users to process in parallel multiple

actions corresponding to participants and at the same time it allows

to increase our processing resources using a scale-out paradigm. The

design of the system is presented in Fig. 19. The functionality of

each component is described in detail below.

Project

Participants States

Actions

Broadcasts/
Polls

Participants_states_history

Participants_actions

Figure 20. Main entities and their relationships

18. Database servers
The database server provides the required persistence for all

components across the system. The data stored in the system

database per project includes a state machine, participants, actions,

messages (broadcast, polls or on-demand), and logs, among others.

Figure 20 presents the main entities part of the system and their

relationships. Projects, states, actions, and texts messages are

usually static after they are defined in the formerly described MS

Excel files and imported into the database. After the state machine

has been imported, the most changes come into the database from

new participant registrations, logging records corresponding to

executing participant actions, moving participants from one state to

another and logging messages that are sent/received to/from each

participant. Such records are inserted into the database as soon as

they occur.

19. Processing queues and executors
 In the system, executors are entities that are in charge of

processing participants received from the sender process. Each

executor is associated with a processing queue on the sender

process. The sender process serializes and sends participant objects

to the executors. The executors then process the participants and

return a status value to the sender process. Status values that can be

send to the sender process after processing a participant include:

processing error, success, or time to wait for the next action.

Processing queues are priority queues managed by the Sender

process. Each processing queue is associated with an executor.

20. Sender process
The sender process is the main component of the proposed

automated messaging system and is in charge of performing all

actions that need to be executed for all participants of a project. It

uses a poll mechanism that traverses the whole set of participants in

a project and inserts each participant into one of the processing

queues. Under this insertion mechanism, participants are assigned

low priority. Each processing queue managed by the sender process

corresponds to an executor that runs in a separate physical server.

Executing a participant means that it is checked to see if an action is

due to be performed for that particular participant. As mentioned in

section 3.1, there are several types of actions that can be executed

for participants. For each participant, at most one action is executed

before it is removed from the processing queue and has to wait for

the next round of processing. Each processing queue has a thread

pool associated with it on executor side.

There is a use case possible when the next action to be executed

may need to occur after a certain period of time. This can happen,

for example, when the next message should be sent to the participant

two hours after the regular expression leading to it has been

evaluated. In such case, the sender caches the time when the next

action is due and refrains from inserting the participant into any of

the processing queues before that time.

Figure 19. Automated messaging system architecture

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 161

This caching mechanism is used to reduce the workload on the

database server and improve processing performance and texting

interactivity with users. During low activity hours, the average CPU

consumption in main server is reduced from 80% to 5% when this

cache mechanism is used since many queries are not sent to the

database server for actions that are known to be due at a later time.

21. Receiver process

The receiver process is in charge of processing messages that

are sent by users to the system. Two components intervene in the

receiving process: 1) a web server and 2) a receiver process. The

web server is used to receive messages from our data aggregators.

Once a message sent by any of our users is received on the data

aggregator side, an HTTP Post request is sent to our web server.

Each request contains details such as originating phone number,

content of the message, and time. The web server then stores the

received message into the database. The receiver process takes each

message received on the web server and associates that message

with a participant in the database. This association is based on the

originating phone number (i.e. the user’s phone number). The

receiver process checks whether the message is the reply to a

previously sent poll message, whether or not the message

corresponds to an on-demand message.

Depending on the outcome of this check three different

scenarios might occur:

1. Received message is an on-demand message: In this case the

participant has sent a message to the system that matches one of the

registered on-demand keywords. These type of messages usually

trigger a conversation between the system and the user. In such cases

the system transports the user to another state machine. Once the on-

demand state machine is traversed, the user is moved back to the

main state machine.

2. Received message is a reply: For poll messages sent from the

system an answer from the user is expected. For each poll message,

a regular expression is used to define the format of all possible valid

answers. For each message received from users that are not on-

demand keywords, the receiver process checks whether the content

of the message matches the regular expression specified for a

previously sent poll. In case a match is found, the body of the

message is associated to the poll for that particular user.

3. Received message is not an on-demand keyword nor a reply: In

case the received message is not either an on-demand keyword or a

reply to a poll message, the system sends an “Invalid message” text

to the user.

Scenarios 1 and 2 are very likely to start an interactive session

with the system. In order to maintain a high interactivity, once

messages are processed by the receiver process, the system inserts

the participant into one of the processing queues and assigns the

maximum priority to that participant.

In addition to the previous tasks, the receiver process

periodically (once per minute) contacts the data aggregators to

check if any messages that were received by them were not received

by the web server. Situations like this may arise due to network

errors or any other issue causing a server downtime.

22. QUITXT as a use case: a smoking cessation
protocol

QUITXT is a mobile text messaging service for young adult

smokers aged 18-29 living in South Texas to assist them quit

smoking . This service has been implemented as a case study of the

described platform. The Quitxt system responds to text codes with a

sequence of interactive messaging, beginning with collection of

baseline data on demographics, cigarette smoking, e-cigarette use

and binge drinking. Cessation is assessed with a texted question

about abstinence from cigarette use approximately at one, three and

seven months (222 days) following the quit date selected. After

providing baseline data in reply to texted questions, Quitxt

participants are prompted to either choose to “quit tomorrow” or to

set a “quit date” within 14 days. The service then provides daily

messages with expanded mobile content including links to nine

mobile webpages with content appropriate for point-of-progress in

the cessation process: (1) recommendation for use of nicotine

replacement but discouraging e-cigarette use, (2) motivations for

quitting, (3) obtaining social support, (4) avoiding binge drinking,

(5) increasing physical activity, (6) breathing exercises for

managing stress, (7) things to do instead of smoking

(counterconditioning), (8) avoiding relapse by talking yourself out

of smoking, and by (9) predicting, planning and practicing for

difficult situations. Each of these mobile webpages contained

educational tips and information, links to peer modeling videos and

music with lyrics reinforcing the messages on each topic. The Quitxt

texting system is designed to send prompts, motivational messages

and messages about the nine content areas listed above, sequenced

according to the enrollees’ progress from pre-quitting preparation

through initial and longer-term cessation. Participants can text

specific code words when they need help, i.e., if they experience

cravings, are in a bad mood, have slipped, or if they want to exit the

program. It is split into stages that are displayed in Fig. 21. In each

stage the users get different messages throughout the day.

Figure 21. Flow diagram for smoking cessation protocol

Start/Intake: Initially when the participant wants to enroll into the

system, he sends a text message with the enrollment keyword to a

short code phone number which sets him in the intake stage of the

state machine. This stage is a conversation that collects basic

information such as gender, ethnicity, nicotine addiction, alcohol

use, and so forth. Each poll message (i.e., question such as age) will

be asked three times, with an interval of 24 hours between each

repetition. At the end of the questionnaire, the user is given the

choice to quit tomorrow or to go through a pre-quit stage.

162
IS&T International Symposium on Electronic Imaging 2017

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

Pre-Quit Days: Pre-quit days are the days between enrollment day

and quit day. This period can last between 1 and 7 days as decided

by the user. During the pre-quit stage, the participant receives

motivational messages for successful quitting. After the stage is

completed, participants are given the choice to be redirected to the

quit stage of the state machine or to start the pre-quit stage again.

Quit days: The first month is the most important phase of the

smoking cessation service (called here the quit stage). Participants

can opt out of the system whenever they want to by texting EXIT as

the keyword. The users holds conversations with the system every

day during the quit stage. The system starts conversations with the

user at times that the user has chosen. The user can also start

conversations with the system by sending certain keywords, such as

HELPNOW, or CRAVE. The wording in these conversations may

vary for a more human interaction. Cessation is assessed at days 7

and 28 of the quit stage, participants are asked whether they have

managed to remain smoke-free. After the stage is completed, the

participant are redirected to the post-quit part of the state machine

where follow-up assessment are repeated at 72, 32 and 222 days.

Post-quit days: Post-quit days are the days that last from days 29 to

222. This is the longest lasting stage, in which conversation with the

user is intermittent and does not happen every day. After 222 days

is passed, the program is completed.

23. Conclusion and Further Work
This paper proposes an automated messaging platform. The

platform greatly enhances the capabilities of automated messaging.

Designers can build very complex dialogue-tree conversations by

interconnecting state machines and manipulating them at ease.

Conversational logic blocks may be easily replicated in different

parts of the system by implementing routines and the delivered

content may be configured to change from one instance to another.

Users may be migrated from one version of the conversation to

another without even noticing. The system also offers on-demand

conversations so that the users may trigger a specific conversation

(i.e., a request for help) at any point without disrupting the principal

conversation. The system is also very robust to some of the problems

associated with text messaging. For example, the system may repeat

a question if the user fails to answer or the answer is invalid. Any

replies made by the user can also be changed later on. A simulation

environment has also been built which allows administrators to

quickly simulate long conversations, such as the 222 day long

conversation used as a test case for the system. Messages from the

user are provided to the simulation as an answer sheet.

Administrators may also “jump” from one place of the conversation

to another instantly. For future work, we wish to give the system the

ability to map open-ended answers to multiple choice answers via

natural language processing techniques.

References:
[1] B. Holtz, C. Lauckner, “Diabetes management via mobile

phones: a systematic review,” Telemedicine and e-Health,

Vol. 18, No.3, 2012, pp. 175-184.

[2] R. Whittaker, H. McRobbie, C. Bullen, A. Rodgers, Y. Gu,

“Mobile phone-based interventions for smoking

cessation,” Cochrane Database of Systematic Reviews,

Issue 4. Art. No. CD006611, 2016. [Accessed October

2016].http://onlinelibrary.wiley.com/doi/10.1002/1465185

8.CD006611.pub4/epdf

[3] C. Free, G. Phillips, L. Watson, L. Galli, L. Felix, P.

Edwards, V. Patel, A. Haines, “The effectiveness of

mobile-health technologies to improve health care service

delivery processes: a systematic review and meta-

analysis,” PLoS Med, Vol. 10, No.1, 2013, p.e1001363.

[4] Twilio messaging system. https://www.twilio.com/ .

[Accessed October 2016].

[5] RapidSMS messaging system. https://www.rapidsms.org/.

[Accessed October 2016].

[6] FrontlineSMS messaging system.

http://www.frontlinesms.com/. [Accessed October 2016].

[7] Mobenzi Technologies.

http://www.mobenzi.com/researcher/home. [Accessed

October 2016].

[8] Magpi messaging system. http://home.magpi.com/

[Accessed October 2016].

[9] Trumpia messaging system. http://trumpia.com/ [Accessed

October 2016].

[10] R.L. Siegel, E.L. Jacobs, C.C. Newton, D. Feskanich, N.D.

Freedman, R.L. Prentice, A. Jemal, “Deaths due to

cigarette smoking for 12 smoking-related cancers in the

United States. JAMA internal medicine,” Vol. 175, No.9,

pp. 1574-1576.

[11] US Department of Health and Human Services. (2014).

The health consequences of smoking—50 years of

progress: a report of the Surgeon General. Atlanta, GA: US

Department of Health and Human Services, Centers for

Disease Control and Prevention, National Center for

Chronic Disease Prevention and Health Promotion, Office

on Smoking and Health, 17.

[12] Centers for Disease Control and Prevention. (2016).

Smoking and Tobacco Use Fact Sheet: Current cigarette

smoking among adults in the United States. Available

https://www.cdc.gov/tobacco/data_statistics/fact_sheets/ad

ult_data/cig_smoking/

[13] G.M.T. Ahsan, I.D. Addo, S. I. Ahamed, D. Petereit, S.

Kanekar, L. Burhansstipanov, L. U. Krebs, “Toward an

mHealth Intervention for Smoking,” In Proc of

COMPSAC 2013, doi: 10.1109/COMPSACW.2013.61.

[14] L.C. Abroms, M. Ahuja, Y. Kodl, L. Thaweethai, J. Sims,

J. P. Winickoff, and R.A. Windsor, “Text2Quit: Results

from a pilot test of a personalized, interactive mobile

health smoking cessation program,” Journal of Health

Communication, Vol. 17, No.sup1, May 2012, pp. 44-53.

[15] F. Naughton, S. Cooper, K. Bowker, K. Campbell, S.

Sutton, J. Leonardi-Bee, M. Sloan, T. Coleman,

“Adaptation and uptake evaluation of an SMS text

message smoking cessation programme (MiQuit) for use in

antenatal care,” BMJ Open 2015; 5: e008871.

doi:10.1136/bmjopen-2015-008871.

[16] Quitplan service. https://www.quitplan.com/ [Accessed

October 2016].

[17] Introduction to ChoiceScript, Choice Of Games.

https://www.choiceofgames.com/make-your-own-

games/choicescript-intro/. [Accessed October 2016].

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 163

https://www.twilio.com/
http://home.magpi.com/
https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/
https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/
https://www.quitplan.com/

