
A Study of IoT MQTT Control Packet Behavior and its Effect on
Communication Delays
Brian Bendele, David Akopian; University of Texas at San Antonio; San Antonio, Tx/USA

Abstract
An important aspect of enabling Smart Grid and other

similar technologies is the development of communication
networks that efficiently gather information from remote
locations and reliably deliver the data to a world of connected
devices. In this context, the concept of Internet of Things (IoT)
has emerged and led to the development of several lightweight
communications protocols optimized for various environments.
This study will focus on the Message Queue Telemetry Transport
(MQTT) protocol as used in a remote sensor network setting with
the goal of characterizing delay patterns to improve reliability of
large scale sensor networks in a publish/subscribe
communication environment. Revealing the connection between
data size, data collection intervals, network traffic, and delay, an
approach for modeling an MQTT network design based on
experimentation and inspection of behavior at the packet level is
presented, and statistical distributions are explored to develop a
method for real-time analysis.

Introduction
Utilities around the nation are increasing their focus on

Smart Grid technologies and methodologies to better understand
and control the flow of energy across the grid. It is needed to
optimize its distribution and predict real time energy needs
through an integrated information network [1]. The goal of using
IoT in Energy production and distribution chains is to enable
utilities to monitor operational and environmental variations that
effect grid viability allowing improved stability, efficiency, and
durability [1].

A few obstacles to the realization of a smart grid network
include interoperability and communication across a multitude of
devices and software applications [2]. For this reason, an Open
Field Message Bus (OpenFMB) standardization process is
launched with the goal of permitting devices and systems to easily
communicate with one another in a shared contemporary
framework that will utilize publisher/subscriber type of IoT
communication and IP networking protocols [3]. OpenFMB
spawned from a recent effort by Duke Energy and several
working partners to combine IoT technologies with advanced
interoperability for the power grid. The result was the
development of a framework for a distributed intelligence
platform to enable Smart Grid technologies [2]. The Smart Grid
Interoperability Panel (SGIP) has taken on the responsibility of
further evolving and standardizing the specifications of
OpenFMB to offer power systems field devices the ability to
exercise a non-proprietary and standards based architecture
consisting of Internet Protocol (IP) networking and IoT
communication protocols [3].

Many utilities and test beds are participating in OpenFMB
simulations, tests, and interoperability demonstrations including
San Antonio based CPS Energy as noted in their 2014 public
request for partners to test the “grid of the future” [4]. In
coordination with CPS Energy, the Texas Sustainable Energy
Research Institute (TSERI) and the University of Texas San

Antonio (UTSA) have agreed to test multiple smart grid
applications and interoperability demonstrations to better
understand and optimize implementations of power systems field
devices that communicate on a common schematic definition and
a scalable publish/subscribe architecture.

Numerous publish-subscribe communication protocols have
been developed to enable IoT communications with multiple
detailed surveys performed [5-6]. Many studies have compared
these protocols in head to head trials with mixed results [7-11].
Available protocols tend to excel in divergent, specific situations,
with no single protocol considered ideal for every situation [5].
Message Queue Telemetry Transport (MQTT) protocol offers a
publish-subscribe method of communication supported by the
TCP/IP protocol [12]. “Due to its light-weight, simple design,
MQTT has become a popular protocol for IoT communications”
[13].

Utilizing multiple platform trials, this paper will focus on
detailed packet inspection to characterize delay patterns found
within MQTT enabled, IoT communications. Delay in MQTT
communications has been studied using a closed private network
[14]; however, publishing frequency, packet size, and the role
TCP plays in the characterization of delay was not considered. A
correlation analysis of delay and packet loss to Quality of Service
levels offered by MQTT has been measured with mixed results
[9]. In a comparison of MQTT to CoAP, it was shown that
MQTT’s performance is dependent on differing network
conditions when experiencing controlled packet loss [11]. Still,
more detailed packet level analysis has not been performed on the
variations of communication delay patterns which may indicate
on issues with integrity, and security, as well as provide a
generalized observation of the overall health of the connection.

This paper offers multiple novel contributions including: (i)
a deep packet inspection of MQTT to better understand the
behavioral relationship to TCP; (ii) integration of a real-time IoT
server using Amazon Web Services to deliver brokered
communications; (iii) multiple publisher-subscriber nodes
operating from geographically separated locations to deliver real
world network traffic conditions; and (iv) a methodology for
establishing a baseline delay pattern in various environments that
could prove useful for monitoring connection health.

The subsequent sections of this paper are organized as such:
A more detailed examination of the MQTT protocol is presented
and directly followed by a description of the experimental setup
used to test and evaluate the protocol, including the
communication architecture of the system. The final sections of
this paper present the experimental procedures with results,
conclusions, and future work.

Message Queue Telemetry Transport
(MQTT) Overview

The following section briefly examines the basic connection
and transmission methods of MQTT. All information regarding

120
IS&T International Symposium on Electronic Imaging 2017

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.6.MOBMU-311
© 2017, Society for Imaging Science and Technology

specifics of the protocol were taken directly from the MQTT
Standard, Version 3.1.1.

Why MQTT?
MQTT is described as a lightweight, open, simple

publish/subscribe messaging transport protocol [13]. The
protocol is ideal for use in situations where a code footprint is
small and network bandwidth is scarce [12]. MQTT was chosen
as the test protocol for this study due to its compatibility with the
process of collecting data from large sensor networks, and
organizing the data at one central location. This is an ideal
scenario for the collection of sensor data at solar, wind, and other
remote energy smart grid applications.

The protocol was originally designed to operate over TCP/IP
providing “ordered and lossless bidirectional connections.” [12].
The publish/subscribe method is enabled by a central server, often
called a broker. The broker sorts incoming messages by topic and
forwards the traffic to subscribers of the topic. MQTT provides
three options for quality of service (QOS), as well as “small
transport overhead” [12]. The MQTT protocol follows a basic
flow of communication that only adds minor complexity with
changes to QOS.

Connection Method
To begin an MQTT session one must first establish some

connection parameters with a broker. Every control packet has a
fixed header that gives instructions to the server to describe what
the client wants to do, and a variable header (Fig. 1) to stablish
the parameters that characterize the action type allowed by the
protocol.

A basic MQTT session connection scenario would follow a
two-packet request/response format. Once a connection is
established a client can then either send a PUBLISH request, a
SUBSCRIBE request, or any other control packet.

Publish Messages and QoS Levels
A PUBLISH request contains a payload with a topic/label

attached to it. This topic is what the broker will use to transfer
data to the appropriate destination on the subscription side. If a
QOS level of zero is selected, then the publisher is in “fire and
forget” mode as there will be no acknowledgement packet from
the MQTT server [12]. If the QoS level is greater than 0, the
acknowledgement scenario changes.

QOS level one requires that after the publish message is
received and processed, the server will return a PUBACK
message [12]. This is nothing more than an acknowledgement for
the publisher to log that the message was processed [12]. If this
acknowledgement is not verified, the packet will be resent with
the DUP flag set to 1 to indicate that the packet may be a
redelivery [12].

For a QOS of level 2, a PUBREC packet is sent back to the
publisher as the second packet in the four-way handshake. with
the PUBREL being the third packet sent back to the server by the
publisher to let the server know the second packet was received
[12]. The PUBCOMP is the fourth and final packet in the QOS 2
protocol exchange. The packet is sent by the server to the
publisher to let the publisher know that the server is ready to
receive the next packet of published data. Figure 2 generalizes
the communication process for QOS levels one and two.

Asynchronous Publication QoS-1
A sliding window can be defined by the designer to permit a

specified number of published packets through to the Server
before the Client receives an acknowledgement. This type of
asynchronous publication behavior results in the possibility of
duplicate packets received after one of its successor messages.
This can be avoided by narrowing the window to size one packet,

resulting in messages not being sent until its predecessor has been
acknowledged [12].

Subscribe, Unsubscribe, and Other Processes
The subscribe side of the protocol operates in a slightly

different manner than that of the publish side. A SUBSCRIBE
request contains a fixed control type header with a variable header
that contains desired topic name, wildcards, and QOS level. A
SUBSCRIBE request is always followed by a SUBACK that
specifies whether a subscription was successful as well as the
granted QOS level [12].

Other control options include UNSUBSCRIBE which allows
clients to unsubscribe from topics. This type of request requires
the sever to send an unsubscribe acknowledgement
(UNSUBACK), complete any QOS 1 or QOS 2 messages
transactions, and then delete the client subscription.
PINGREQ/PINGRESP are packets used to test the liveliness of a
connection, and the DISCONNECT packet is an indication from
the client to the server that the client is requesting a clean
disconnection [12]. The newest version of the protocol, MQTT
v3.1.1 allows for message transport across TLS and Websocket
protocols as well as the TCP/IP protocol.

Experiment setup

The Texas Sustainable Energy Research Institute has multiple
locations utilizing National Instruments products [15] designed
for wired and wireless sensor networks. This experiment will
leverage these pre-existing setups to test data collected from these
locations. The distribution of collected data is handled by a
modified version of a publishing virtual instrument (VI) currently
operating in a remote location. An established LabVIEW MQTT

Figure 2 QoS Level 1 & 2 Flow Diagram

Figure 1 CONNECT Packet, Variable Header Example

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 121

API [16] was used to implement the publisher side of the protocol,
while a Linux based Mosquitto™ Broker [17] was deployed on
an Amazon Web Server [18] to enable live network traffic
conditions. Multiple subscribers were used to collect the data
from the Mosquitto™ Broker. These subscribers reside on
Windows 7 and Windows 10 based systems running a LabVIEW
subscriber VI, while a third publisher/subscriber exists on a Linux
based Raspberry Pi [19] utilizing the Eclipse PAHO project’s,
open source Python version of the MQTT protocol [20]. The
network traffic was monitored at the server/broker, as well as the
publisher, by means of a popular packet capture software package
called Wireshark and Tshark [21, 22]. The collected data was
then imported into R for statistical analysis [23].

LabVIEW Development Environment
LabVIEW is a virtual instrument (VI) engineering workbench

with a visual programming language platform [24]. Publisher and
Subscriber VIs were developed in LabVIEW for use on the
Windows based systems. Implementation fragments are shown in
Fig. 3. The Subscriber developed for this experiment is a simple
state machine VI that contains the following states: CONNECT,
SUBSCRIBE, UNSUBSCRIBE, DISCONNECT. The goal of
this VI was simply to establish a connection with the broker to
simulate typical use in a live environment.

The Publisher developed for this experiment is a modification
of a Publisher currently deployed in the field at a TSERI/CPS
solar energy site. The modifications include the ability to adjust
the byte size of the data to be published, a modification to change
the data publishing interval, the ability to add multiple topics, and
the capability to reset the TCP connection; all while the publisher
is in operation. Comparable to the Subscriber VI, this code is
designed as a simple state machine with the following states:
INITIALIZE, CONNECT, PUBLISH, DISCONNECT, EXIT.
The INITIALIZE stage incorporates user selected session
attributes in preparation for the connection. In the CONNECT
state, a TCP connection is established, followed by the MQTT
CONNECT request. If the CONNECT state is successful, the
code moves into the PUBLISH state. The PUBLISH state
publishes the data to the server under the selected topic. In this
state the user can control the message size, and the interval in
which the message is published. This allows the evaluation of
delay based on the publishing interval during packet inspection.
From this state the user may also reset the TCP connection. This
is useful in establishing a new initial round trip time which is used
in the delay calculation. This code continually attempts to
establish a connection in the event of a disconnect due to network
issues. In the event of a user initiated exit, the code will end the
MQTT session with the broker and signal to terminate the TCP
connection during the DISCONNECT state. The EXIT state exits
the program.

LabVIEW MQTT API
LabVIEW Client API in native LabVIEW is a community

project that implements MQTT v 3.1.1 standard protocol using
the LabVIEW 2013 or later development environment [16]. A
thorough examination of this API was performed including
header and packet formation and disassembly on the publishing
and subscribing sides. Compatibility tests were performed to
ensure seamless performance with the server/broker. It should be
noted that this API does not provide the method for establishing a
sliding window for QoS > 0. This is instead left up to the
designer/engineer as suggested by the MQTT standard.

Eclipse Mosquitto™ Broker
Eclipse Mosquitto™ is an open source (EPL/EDL licensed)

message broker that implements the MQTT protocol versions 3.1
and 3.1.1 [17]. This API is installed on the Ubuntu 16.04 Server
to act as the broker between publish and subscribe client requests.

The default settings were used in this study with the exception of
adjustments made to the sliding window size in QoS-1
communication.

Ubuntu Server 16.04
Ubuntu Server is a Debian-based Linux operating system

developed to run network servers [25]. This is an open source
operating system, and it is offered as an option with Amazon Web
Services compute package.

Packet Capture Software
Wireshark is an open source network protocol analyzer [21].

Wireshark provides live capture and offline analysis of the
TCP/IP protocols as well as support for MQTT traffic. Wireshark
was used on all Windows platforms for capture and analysis.

TShark offers a network protocol analyzer that allows the
same capture ability of Wireshark, but for console based systems
[22]. Tshark was used on the Ubuntu server to capture network
traffic at the Mosquitto™ Broker. The created pcap files were
then transferred to a Windows based system for analysis in
Wireshark.

(a)

(b)

(c)

Figure 3 LabVIEW Code Sample of Subscriber State Machine (a),
Publisher User Interface (b), Publisher Code Fragment (c)

122
IS&T International Symposium on Electronic Imaging 2017

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

Python MQTT
Python is open source software utilized by the Eclipse PAHO

project to implement MQTT protocols [20]. In this experiment,
Python code was used to publish and subscribe to topics from a
Raspberry Pi.

Elastic Compute Cloud (EC2)
Amazon Web Services (AWS) offers a cloud based compute

platform called Elastic Compute Cloud (EC2) [18] which is used
as the server for this project. This compute instance was launched
with Ubuntu Sever 16.04 and hosts the Eclipse Mosquitto™
broker used to implement the MQTT v3.1.1 protocol over a TCP
connection.

Windows Platform Systems
Four Windows based systems were used to perform

publishing and subscribing duties. A Windows 7 platform
computer referred to as TSERI Labs is located on campus at
UTSA, while two Windows 10 platform desktops, referred to as
the pink box and the black box, are geographically separated from
the TSERI Lab. A fourth Windows 10 laptop is used to access
the Mosquitto™ Broker for coordinating TShark network traffic
captures. All the Windows based systems contain the LabVIEW
Publisher and Subscriber VIs designed for this experiment, as
well as Wireshark for network traffic analysis.

Raspberry Pi
A Raspberry Pi is used as a publisher and subscriber [19],

implementing the Python based MQTT API created by the Eclipse
PAHO project [20].

Vaisala Weather Transmitter
Vaisala WXT520 Weather Transmitter offers six weather

parameters including wind speed and direction, precipitation,
atmospheric pressure, temperature and relative humidity [26].
The WXT520 outputs to serial data collected by the myRIO using
RS-232 interface.

Pyranometer
Kipp and Zonen CMP11 Pyranometer is a “radiometer

designed for measuring short-wave irradiance on a plane surface”
[27]. This pyranometer’s micro-Volt output is amplified to a 4-
20mA signal. Using a translation table, the analog signal is
converted to irradiance prior to publishing. The analog signal is
captured and processed by the myRIO.

myRIO
National Instruments myRIO is an embedded hardware

device with multiple, configurable, digital and analog IO [28].
This device gathers and formats all the sensor network data prior
to publishing. Sample data gathered in the field by this device is
used in the experiment.

System Architecture
The system architecture consists of a collection of hardware

and software that perform two main functions, gathering data and
processing data. A sensor network consisting of the above-
mentioned hardware was placed at a solar array site to collect
relevant data. A MQTT network was also built to process this
data in a manner consistent with live operations. Fig. 5 and Fig. 6
generalize the arrangements of the MQTT network and sensor
array respectively.

MQTT Network
The MQTT network was designed with flexibility in mind.

The layout enabled multiple publisher and subscriber nodes at
geographically separated locations to connect simultaneously to
the AWS EC2 Mosquito Broker. The system operated in a live
network traffic environment to achieve an accurate representation
of real world conditions. Wireshark collected TCP and MQTT
traffic at the client nodes, while TSHARK collected the same type
of traffic at the broker.

Sensor Network
The sensor network gathered environmental information and

reported the data to the myRIO. From that point, the publisher
software residing on the myRIO organized and published the data
to which clients could then subscribe. This data was captured and
stored for use with this study. The VIs created to run on the
Windows systems used in this study, accessed the data captured
from the sensor network and published to the MQTT Network.

Figure 4 TSERI Labs Publish/Subscribe Nodes

Figure 6 Sensor Network Architecture

Figure 5 MQTT Network Architecture

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 123

Experiment
The following experimental procedures were informed by

initial observation and packet inspection. The process of
identifying and separating TCP behavior from MQTT behavior
helped establish the conditions under which the delay trials were
performed.

Packet Inspection
Over the course of this study, packet inspection remained an

integral process to the development of delay analysis. From
packet inspection, behavioral characteristics of TCP and MQTT
can be separated and controlled, permitting a more accurate
approach to understanding MQTT delay characteristics. The
control process developed is detailed throughout the subsequent
sections.

The process of packet inspection was performed in two steps.
i. Capture the packets with TShark and/or Wireshark

ii. Analyze the packets by means of Wireshark’s user
interface.

Capture filters were used to isolate the network traffic to the nodes
of concern. An example of one such filter is as follows:

This TShark code will capture 10k packets (-c 10000) of all traffic
from a host defined by an ip address (-f"(host ip address) and port
not 22"). Port 22 is ignored to eliminate the capture of SSH
protocol packets. Inspection of the packets in Wireshark is
performed with display filters, and column filters were used to
configure exported .csv files used for statistical analysis. Figure
7 demonstrates results of a typical capture session.

Delay in General Terms
End-to-end delay in a network connection is made up of

various events that can be expressed in typical situations by
Equation 1. For any given node, there exists delay due to
processing, queuing, transmission, and propagation [29].
Processing, queuing, and transmission delays occur at the node,
while propagation delays occur between node. In this study, some
of these variables are found to be controllable at times, while
others are merely defined by a mean or median value through
repeated experimentation.

Transmission Delay, QoS-0 and QoS-1 with
Asynchronous Publication

Special attention must be paid to transmission delay when
aggregate data from multiple sensor networks is distributed
through a single node. Transmission delay can be defined by
Equation 2 [29]. Publishing intervals can influence transmission
delay inversely, which has a consequential effect on queuing
delays. When the TCP initiates its 3-way handshake between
communicating nodes, an initial round trip time (IRTT) is

recorded by the packet inspection software. This interval
represents an estimate for the latency of the connection between
the TCPs. From the perspective of the node, Dpropagation can be
approximated by IRTT/2. When MQTT data is published at
intervals at least two times the IRTT, the publishing node’s TCP
will forward the single publish request at a rate roughly equivalent
to the publishing interval minus the IRTT; however, if the publish
interval is reduced below the IRTT threshold, the TCP will begin
to queue published MQTT messages and push them as a single
segment causing an increase in the packet length transmitted.
Figure 8 demonstrates the TCP’s behavior in relation to the IRTT
threshold. An inverse variation begins to takes shape as the
publish interval breaches the IRTT threshold. This relationship
between the publishing interval and the segment length can be
estimated by Equation 3, where k is an integer >= 1.

The increase in packet length is limited by an established
Maximum Segment Size (MSS) regulated by the TCP. Once the
MSS is reached, the TCP begins segmenting the packets into
smaller portions to keep up with the transmission requirements.
Increased Packet Length has a direct relationship with Dtransmission,
which in turn directly effects Dqueuing (Equation 4). It is important
to understand and control this behavior to facilitate accurate
MQTT delay calculations without TCP interference while using

Dnode = Dprocessing + Dqueuing + Dtransmission + Dpropagation

Equation 1 End to End Delay Equation

k-1(IRTT) ∝ k (min [Segment Length])

Equation 3 Relationship Below IRTT Threshold

tshark -c 10000 -f"(host ip address) and port not 22"

Figure 7 WireShark Display Example

Figure 8 TCP Behavior at IRTT Threshold

Dqueuing = Dtransmission * (Length of queue)

Equation 4 Queuing Delay

Dtransmission (sec) = Segment Length(bits)/Rate(bits/sec)

Equation 2 Transmission Delay Equation

124
IS&T International Symposium on Electronic Imaging 2017

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

QoS-0 or Qos-1 with asynchronous publication. Figure 9
demonstrates this behavior as the published data was held
constant at 238 Bytes, while the publishing interval was decreased
from 65ms to 5ms. The IRTT was recorded at 62.5ms and the
Maximum Segment Size (MSS) negotiated by the TCP was 1460
Bytes. It is shown that the segment length is broken up at 10ms
due to the segment exceeding the MSS.

Measuring Delay
Visually, the measured delay involved in the process of

sending and receiving packets at the Client and Server is shown
in Fig. 10. The packet capture software is used will capture two
packets per publish interval in normal network conditions. These
packets include the published data and either the MQTT or TCP
acknowledgement. In the special case of QoS-2 multiple packets
will be sent in the exchange between the client and server as
discussed in section 2.3. The calculated delay will be split up into

two sections; delay at the node, and round trip time. From the
perspective of the sending node, RTT includes the delay at the
receiving node as well as the propagation delay to send data and
receive the corresponding acknowledgement. Having described
the publishing behavior for QoS-0 and Qos-1 with a sliding
window, the remaining experiments include an examination of
IRTT to set a baseline delay pattern, testing the effects of packet
length on delay, and an analysis of delay in the presence of heavy
network traffic.

Initial Round Trip Time (IRTT) Test
As previously stated, the initial round trip time is recorded

when the Client establishes a connection with the Server by way
of the TCP three-way handshake. Through deep packet
inspection, the IRTT has potential to be a good indication of
connection latency and may be used to establish a baseline for
measuring delay shifts during an MQTT session. The IRTT test

Figure 10 Components of Delay in RTT Timestamp

Figure 9 Publish Interval vs. TCP Segment Length

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 125

performed for this study involved a TCP connection loop in which
a connection was established and then terminated at two second
intervals. Each connection and termination cycle required a 6-
packet exchange. 10,000 packets were captured, yielding ≈ 1600
IRTT samples per test. The tests were performed at the TSERI
labs and Pink Box locations to establish reference points for each
node with the intention of illustrating that the propagation
difference two geographically separated nodes might experience
has a minimal effect on the distribution of the IRTT. Figure 11
establishes the IRTT distributions for both Clients. Outliers
totaling less than 10% of the data sets were removed from both
distributions using the five number summary method [30].
Though the propagation delay of IRTT is different in time at the
nodes, the distribution over the median yields a similar curve from
both locations; however, the spread of the data collected at the
Pink Box location was slightly larger than that of the TSERI Labs
location. A deviation calculation was performed on the data to
justify the use of the TSERI Labs node over that of the Pink Box
node for the remaining tests as a more stable connection could
reduce error in delay interpretation and calculation. Median
absolute deviation was used as it is considered a more robust
method for handling outliers in a univariate data set [31]. Table
1 shows the median absolute deviation along with the median for
each location.

TABLE I. Robust measure of variability in IRTT

Published Packet Length Trial
The packet length test involves changing the published packet

size from 40 Bytes to roughly 9 KBytes. While the MQTT
standard allows control packets of up to 256MB in length, the
Ethernet standard breaks this down even further to a maximum
transmission unit (MTU) at 1500 Octets [32]. The AWS Server

allows Jumbo frames [33] with a MSS value of 8960 established
by the Server. Packet inspection revealed that indeed the limits
per publishing interval rest at roughly 8 Kbytes and breaching this
limit leads to unpredictable behavior and data loss.

Determining a round trip time for QoS-0 proves difficult due
to the lack of a MQTT acknowledgment from the Server. A TCP
acknowledgment is sent from the Server however, and it provides
a close approximation to the round-trip time when the publishing
interval is greater than two times the IRTT. At publishing
intervals near or below the IRTT threshold, these
acknowledgments become less reliable. The Server, to maximize
efficiency, begins to stack acknowledgements which increases the
difficulty of accurately measuring delays. QoS-1 with
asynchronous publication can yield similar results below the
IRTT threshold, though reliable data can be gathered due to the
MQTT acknowledgement requirement.

For this test, quality of service levels examined were
published at an interval of 65ms. This interval was chosen for
reasons previously discussed in sections 5.2.1 and 5.3.1. QoS-0
and QoS-1 with asynchronous publication display the stacking
behavior detailed in section 5.2.1 due to contributory increases in
both Dtransmission and Dqueuing. In this state, instability increases
producing variations in the delay of the system. This pattern
continues until the TSERI Labs MSS is exceeded at which point
the RTT stabilizes due to the delay in the system reaching a level
of process equilibrium as seen in Figure 12.
QoS-1 with synchronous publication was held to the same
publishing interval of 65ms, though publishing interval in this
situation only sets the minimum as the next MQTT packet will
not be published until the previous packet has been
acknowledged. This eliminates the variable delay patterns caused
by increases to Dqueuing since the queue never exceeds one MQTT
packet.

In this circumstance, delay for QoS-1 with synchronous
publication remains remarkably stable while the MQTT packet is
kept below the MSS as seen by the RTT distribution in Fig. 13
(top). As the packet length exceeds the MSS, the distribution of
delay shifts to a less predictable pattern shown in Fig. 13 (bottom).
This is due in large part to the processing of the packets at the
Server. While the MQTT packet length is held below the TSERI
Lab’s MSS, the TCP and MQTT acknowledgements are
combined into a single ACK; however, packet inspection reveals
a separation of the TCP and MQTT acknowledgements when the

Median and Deviation Table of IRTT

Client
Median
IRTT (s)

Median Absolute
Deviation

Pink Box 0.08911979 0.007440069
TSERI Labs 0.06247810 0.000901661

Figure 11 IRTT Distributions

126
IS&T International Symposium on Electronic Imaging 2017

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

MQTT packet length exceeds the MSS. This is caused by the
increased processing time required by the MQTT broker to
examine and acknowledge the receipt of the larger MQTT
packets. In this scenario, the TCP ACK is followed by the MQTT
PUBACK reducing efficiency at the Server and increasing traffic
in the channel.

The packet length test revealed a good candidate for
establishing a predictable delay pattern that can be used to detect
shifts in delay during live sessions. QoS-1 with synchronous
publication (a sliding window set to size one) and a MQTT packet
length set below the smallest established MSS results in a stable
and controllable system that may allow for reactive monitoring of
the delay.

Network Traffic Trial
Network traffic tests were performed using multiple nodes to

generate traffic to the server. The test involved publishing a fixed
payload to the Server from a single node, and then gradually
adding traffic to the server. Packets were captured at the Client
of interest, as well as the Server. This method allows a
comparison of delay measured at the Client, to traffic (in Bytes)

measured at the Server. Figure 14 (top) shows the distribution of
the delay before the increased traffic, while Fig. 14 (bottom)
displays the shifted delay distribution recorded as the network
traffic was increased.

The results of the network traffic test are promising in that
they display a perceived shift in the established delay pattern.
Using a combination of MSS load balancing, IRTT, and expected
deviations, one could conceivably create a reactive monitoring
system used to report unexpected behavior based on an expected
distribution.

Conclusion and future work
 This paper presents an approach to establish an expected

delay pattern for MQTT based communications which could be
used to enable live reactive monitoring of an MQTT connection.
Through deep packet inspection the relationships between data
size, data collection intervals, network traffic, and its effect on
delay were examined. It was shown that the initial round trip time
(IRTT) established during the TCP three-way hand shake can give
a reliable estimation for the propagation delay of the connection,
which in turn can be used to establish a baseline for expected delay

Figure 12 RTT(s) vs. MQTT Packet Length (bytes)

Figure 13 QoS-1 RTT for Synchronous Publication; Packet Length<MSS (top), Packet Length >MSS (bottom)

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 127

in a connection. Through experimentation we demonstrated that
shifts in the distribution of the expected delay are measurable using
the combined application of MSS load balancing, IRTT, and
expected deviations. These shifts may indicate session integrity,
security, as well as generalize the overall health of the connection.

 Use of this proposed method to improve sensor network
designs in a publish/subscribe communication environment was a
goal of this project. We hope that this research provides some
insight into the development of Smart Grid IoT communications
in situations where MQTT and sensor networks play an important
role.

Further research into nodal behavior regarding the processing
of MQTT packets and delay effects caused by transport protocol
behavior at the node would be a future goal. This requires a more
detailed investigation of individual MQTT packets at both the
Client and the Server nodes. We believe a thorough study on
recovering from packet loss, and the impact the recovery has on
delay and throughput would provide a useful comparison of
MQTT to other IoT protocols for use in large-scale senor
networks. We would also like to further investigate modeling
ideal, scalable, remote sensor network designs for the MQTT
protocol to optimize performance and reduce data loss.

Acknowledgment
This project and the preparation of this paper were funded in part
by monies provided by CPS Energy through an agreement with
the University of Texas at San Antonio.
© CPS Energy and the University of Texas at San Antonio

Support for this project was also provided in part by Texas
Sustainable Energy Research Institute.

References
[1] Goel, S., Bush, S., Bakken, D, “IEEE Vision for Smart Grid

Communications: 2030 and Beyond.” 2013.

[2] Laval, S. and B. Godwin, “Distributed Intelligence Platform (DIP)
Reference Architecture, in Vision Overview”, S. Laval, Editor.
2015, Duke Energy.

[3] OpenFMB. 2016 [cited 2016 02 November]; Available from:
http://www.sgip.org/openfmb/

[4] Idell Hamilton, T. “CPS Energy seeking partners to test “grid of
the future” and bring more value to customers.” 2014 [cited 2016
02 November]; Available from:
http://newsroom.cpsenergy.com/grid-of-the-future/.

[5] Al-Fuqaha, A., Mohsen, G., Mohammadi, M., “Internet of Things:
A Survey on Enabling Technologies, Protocols, and Applications.”
IEEE Communications Surveys & Tutorials, 2015. 17(4): p. 2347-
2376.

[6] Al-Fuqaha, A., Mohsen, G., Mohammadi, M., "Toward better
horizontal integration among IoT services." IEEE Communications
Magazine, 2015. 53(9): p. 72-79.

[7] Beckmann, K. and O. Dedi. "sDDS: A portable data distribution
service implementation for WSN and IoT platforms." in Intelligent
Solutions in Embedded Systems (WISES), 2015 12th International
Workshop on. 2015.

[8] Fernandes, J.L., Lopes, I.C., Rodrigues, J., Ullah, S., "Performance
evaluation of RESTful web services and AMQP protocol." 2013
Fifth International Conference on Ubiquitous and Future Networks
(ICUFN), 2013: p. 810-815.

[9] Lee, S., Kim, H., Hong, D., Ju, H., "Correlation analysis of MQTT
loss and delay according to QoS level." The International
Conference on Information Networking 2013 (ICOIN), 2013: p.
714-717.

[10] Luzuriaga, J.E., Perez, M., Boronat, P., Cano, J.C., Calafate, C.,
Manzoni, P., "A comparative evaluation of AMQP and MQTT
protocols over unstable and mobile networks." 2015 12th Annual
IEEE Consumer Communications and Networking Conference
(CCNC), 2015: p. 931-936.

[11] Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.Y.,
"Performance evaluation of MQTT and CoAP via a common
middleware." Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), 2014 IEEE Ninth International
Conference on, 2014: p. 1-6.

Figure 14 Measured Delay Shift Due to Network Traffic

128
IS&T International Symposium on Electronic Imaging 2017

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

[12] Banks, A. and R. Gupta. MQTT Version 3.1.1. 2014 29 October
[cited 2016 02 November]; Available from: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.

[13] OASIS Message Queuing Telemetry Transport (MQTT) TC.
November 02, 2016 [cited 2016 02 November]; Available from:
https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=mqtt.

[14] Ahmed, T., D. Akopian, and R. Vega, "Measurement and
Characterization of Communication Delays for Internet of Things."
2015, UTSA, Texas Sustainable Energy Research
Institute(TSERI).

[15] National Instruments, A Global Leader in Test, Measurement, and
Control Solutions. [cited 2016 04 September]; Available from:
http://www.ni.com/en-us.html.

[16] Peter-daq.io. Community: MQTT Client API in native LabVIEW -
National Instruments. 2016 Aug 9, 2016 [cited 2016 05
September]; Version 12:[Available from:
https://decibel.ni.com/content/docs/DOC-32539.

[17] An Open Source MQTT v3.1 Broker. 2016 [cited 2016 02
November]; Available from: http://mosquitto.org/.

[18] Ami. Elastic Compute Cloud (EC2) Cloud Server & Hosting –
AWS. [cited 2016 05 September]; Available from:
https://aws.amazon.com/ec2/?nc2=h_m1.

[19] Raspberrypi. [cited 2016 04 September]; Available from:
https://www.raspberrypi.org/.

[20] Paho - Open Source messaging for M2M. [cited 2016 05
September]; Available from:
http://www.eclipse.org/paho/downloads.php.

[21] WIRESHARK Go Deep. [cited 2016 05 September]; Available
from: https://www.wireshark.org/.

[22] tshark - Dump and analyze network traffic. [cited 2016 05
September]; Available from: https://www.wireshark.org/docs/man-
pages/tshark.html.

[23] R Studio. [cited 2016 02 November]; Available from:
https://www.rstudio.com/.

[24] National Instruments. 2016 31 October 2016 [cited 2016 2
November]; Available from:
https://en.wikipedia.org/wiki/National_Instruments.

[25] adconrad. Ubuntu 16.04.1 LTS ReleaseNotes. 2016 [cited 2016 02
November]; Available from:
https://wiki.ubuntu.com/XenialXerus/ReleaseNotes.

[26] Multi-Weather Sensor WXT530. [cited 2016 02 November];
Available from:
http://www.vaisala.com/en/products/multiweathersensors/Pages/W
XT530.aspx.

[27] CMP Series Pyranometer Instrunction Manual. 2006, KIPP &
ZONEN.

[28] myRIO - National Instruments. [cited 2016 05 September];
Available from: http://www.ni.com/myrio/.

[29] Network Delays and Losses. [cited 2016 08 November]; Available
from: http://www.d.umn.edu/~gshute/net/delays-losses.xhtml.

[30] Kerns, G.J., Introduction to Probability and Statistics Using R.

[31] Median absolute deviation. [cited 2016 13 November]; Available
from: https://en.wikipedia.org/wiki/Median_absolute_deviation.

[32] Association, I.S., IEEE Standard for Ethernet, in IEEE Std
802.3™-2015 (Revision of IEEE Std 802.3-2012). 2015, The
Institute of Electrical and Electronics Engineers, Inc.

[33] Jumbo frame. [cited 2016 18 November]; Available from:
https://en.wikipedia.org/wiki/Jumbo_frame.

Author Biography
Brian Bendele received his BFA from Texas State University (2000) and
spent time in Los Angeles working in post-production for film and TV.
Since receiving his BS in Electrical Engineering from the University of
Texas San Antonio (2014) and his MS in Electrical Engineering from the
University of Texas San Antonio (2016) he has worked designing test
equipment for data collection, with a focus on sensor network design,
wireless, and RF communications.

IS&T International Symposium on Electronic Imaging 2017
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 129

