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Abstract
OCT (Optical coherence tomography) has become a popular

method for macular degeneration diagnosis. The advantages over
other methods are: OCT is noninvasive, it has a high penetration
and it has a high resolution. However, the always present speckle
noise and the low contrast differences make it hard to segment the
layers for the measurements correctly.

The aim of this paper is to show the importance of optimizing
the retinal segmentation process. Actual automatic segmentation
algorithms are capable of detecting up to eleven layers in real
time, but often fail at images with (strong) macular degeneration,
which are complicating the separation of the layers from each
other.

This paper sums up some actual aspects of developments in
retinal segmentation and shows the limits of actual algorithms. As
a comprehensive test process for this paper, we tested all common
image processing algorithms and implemented found promising,
modern OCT segmentation methods. The result is a wide scale
analysis which can be used as a roadmap for optimizing the pro-
cess of retinal segmentation.

Promising algorithms were found with the Canny edge de-
tector, graph cuts and dynamic programming. Combining these
algorithms results, the graph-, gradient-, intensity information,
and decreasing the search region step by step has shown to be a
fast and reliable solution. All tests were using 2D image data, 3D
data could be used as well but plays no role in this paper. The
testing process includes pre-filtering for image denoising, which
can be done fast and is creating better preconditions for the seg-
mentation process.

Introduction
To analyse OCT images one has to deal with multiple prob-

lems. Speckle noise is disturbing edge detectors as well as the in-
tensity based techniques. Blood vessels creating shadows through
all the layers making it harder to follow a border, and motion arti-
facts complicate the 3D analysis even more than the 2D analysis.
To handle these problems a lot of strategies have been developed.

In [39] the gradient information of two “scales” were com-
bined with dynamic programming to have always reliable border
information of different layers. [58] presents a global approach
with active contours for refining the outer boundaries and a k-
means edge detection for the inner ones.

Another segmentation method based on dynamic program-
ming was presented in [59], a robust detection of three layers on
noisy images was reached.

We developed a layer detector which is capable to detect
eight boundaries. We tried to find as many of them as possible
robustly. A following test process was done to configure the al-
gorithms to leave out the ones which were mostly false detected.
Our approach is based on a combination of Canny edge detection
and dynamic programming.

Denoising
Most of the presented segmentation methods are starting

with a denoising pre-filter. Median/Mean filters, directional fil-
ters and nonlinear diffusion filters are the most common and the
fastest. In our tests we have shown that the detection quality is
enhanceable using a better denoising filter. In [60] modern de-
noising filter for OCT images were developed and tested. We can
confirm their results but have chosen the BM3D [29] filter for our
framework.

Needless to say, execution time is an important point and a
prefiltering takes extra time, so we used well optimizable algo-
rithms and tested GPU supported processing successfully. The
images 1 to 3 show an unfiltered original OCT image and several
examples for filtered results. Obviously, if the noise is reduced
the edge detection can work more successfully.

Segmentation
Algorithms like graph cuts or k-means segmentation have

been tested successfully [1], but need a more intense initializa-
tion process and are computational more costly then the following
algorithms.

It was shown that robust edge detection can be established
by the Canny edge detector. The parameters have been adapted in
multiple detection steps in different image regions. Starting with
the more prominent edges to the lesser ones.

The following images 8 and 9 show the segmentation results
with automatic multiple layer boundary detection in an unfiltered
and filtered image, respectively. Even without denoising some of
the boundaries were well detected. The preprocessed (denoised)
image shows a more precise detection, which is clearly visible.
This helps especially if the images are even more corrupted by
artifacts than the example.

Algorithm
For example, a solution was developed using dynamic pro-

gramming. Thus, eight borders are identified in OCT images of
healthy eyes and without the nerve fiber head present in the im-
age. Test images of the described eye diseases were not available
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Figure 1. Original OCT image.

from the test device. In order to achieve the goal, the improved
noise reduction was used by the BM3D algorithm and the already
proven dynamic programming method [37].

Fig. 5 shows the algorithm flow. The original image is first
denoised by the BM3D filter. For this, the best values determined
in the above tests (see annex) were determined. An optional Gauss
filter with a small kernel size of three pixels has been found to
be advantageous in various receptacles for suppressing the vein
shadow. This produces a Sobel and a Canny edge image, which
are then combined with the OR operation. In the image thus com-
bined, one of the lateral columns (left / right) is searched for the
highest brightness values (strongest gradients), which at the same
time have a certain distance from each other. These are the start-
ing points for the search in the DP graph. By their order, number
and intensity, it is possible to estimate the limit. The strongest
three are the most representative boundaries, the top of which is
the vitreous / NFL, the second the IS / OS and the third the RPE
/ Chroroidea boundary. Then the graph is created after dynamic
programming. In this, the first boundary (vit./NFL boundary) is
found first by the uppermost starting point. The area above (glass
body) is removed from the graph. Secondly, the bottom limit is
detected by its start point and the area under it is removed from the
graph. At the third and middle of the stronger border, the image
is divided into two regions, each of which is searched separately.
A new endpoint finding, limited to the search areas, is possible
here but not necessary. Since only two equidistant boundaries
are searched for in the lower region, the thickness of the latter is
trimmed and the starting points are set on the thirds. Of these, the
lower, i.e. the receptor toothing / fraction K boundary is found
first, the search range is reduced after the detection and the con-
nection site / OS boundary is searched. In the upper area of NFL
to IS, the remaining starting points found by the search are already
well-recognized. Again, a new search is not required, but would
positively influence the reliability. The NFL / GCL boundary is
recognized first. For this, the parametrization of the Canny algo-
rithm is crucial, otherwise the limit may change from the fovea to
the IPL / INL boundary. This is detected and recognized as the

next prominent boundary, after which the upper region is cut off.
The next higher limit is the OPL / ONL. In order to avoid recog-
nition errors, the search space was limited to 20 pixels above the
IS / OS.

The result of the algorithm can be seen in Fig. 9. The promi-
nent borders show no mistakes. In the RPE area, vein shad-
ows produce slight bulges. Only the mean limit (OPL / ONL)
runs partly into the INL / OPL boundary. However, the prob-
lem can be solved by re-detecting the superimposed Canny edges
with adapted parameters. This would simultaneously lead to the
recognition of two new boundaries, since the altered search space
and the edges of the Canny algorithm, which are more visible
by the parameter changes, would then allow this. In general, the
parametrization was kept simple compared to [39].

A great advantage of the developed method lies in the sim-
plicity and its further development potential. Since the number
of the eight borders detected here, as described, can be further
increased by parameter adaptation and re-detection of certain re-
gions. A parameter setting of all values is sufficient here to detect
all eight borders. The straightening (horizontally flattening) of the
RPE was not required in order nevertheless to achieve similar and
partly better results than in the elaborate designed algorithm in
[37].

Summary and Discussion of Results
Within the scope of this thesis, a number of methods for

noise reduction, segmentation and boundary finding in OCT im-
age data were investigated. The findings of the tests were com-
bined in a segmentation program. B-scans of healthy patients can
be automatically segmented with the help of this. It recognizes
eight layer boundaries.

The basic approach of improving the de-noise pre-filter
proved successful. As a result, not only the complexity but also
the error rate of the algorithm has been reduced. Compared to
comparable work fewer processing steps are also required.

The computational speed of the developed method has been
neglected and requires optimization to achieve speeds of one
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Figure 2. Denoising results.
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Figure 3. Denoising results (continued).
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Figure 4. Combining segmentation results
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Figure 5. Algorithm flow

Figure 6. Result of algorithm of Fig. 5

Figure 7. Block-matching filtered OCT image.
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Figure 8. Segmented unfiltered OCT image.

Figure 9. Segmented layers in filtered OCT image.
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minute for the calculation of a C-scan.
During the research of the OCT segmentation procedures in

the course of this work it was found that each author uses different
methods for the evaluation. In the best case a selection shot of a
certain manufacturer is segmented and compared with the manual
results of eye doctors for deviation in pixels. A standardized pub-
lic database with recordings from all manufacturers would make
sense for the objective quantitative comparison of the procedures.
Templates for ideal results could also be filed here. To evaluate
the quality of the segmentation algorithms, such an approach al-
ready exists at the University of Berkeley [50].

During the compilation of this thesis, the currently popular
development of the processing of OCT recordings has, if neces-
sary, produced procedures which have not been included in the re-
search. Many new publications of recent years and months show
the existing development potential in this area.

Improvement possibilities
The OCT segmentation approach developed here also has de-

velopment potential. This starts with the exclusion and segmenta-
tion algorithms, which are excluded in this work, which are worth
a further investigation, as well as new developments in this field.

The developed algorithm is real-time without the step of
BM3D de-noise. However, since speed was not the focus of this
work, the computing time was considered secondary. Here an
optimized continuation makes sense. For this, current GPU im-
plementations of the BM3D filter could serve to shorten the pro-
cessing time.

Simple, fast de-noise filters with a simultaneous search range
limitation also offer confident examination approaches.

The algorithm should be further improved by adjusting the
parameters of the edge detector in each new search area as in [39].

The potential of several artefact-corrected edge images in
combination can be seen in Fig. 10. This is best automated achiev-
able result, synthesized from the results of out tested algorithms,
here 14 borders are detected.
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