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Abstract
The depth of field (DOF) of an auto-stereoscopic display

refers to the depth range in 3D space in which objects can be
depicted with small amount of blur. It provides a measurable in-
dex on the display’s performance in reproducing light fields of
3D scenes. Previous studies have analyzed the maximum spatial
frequencies of aliasing-free images depicted on planes parallel
to the display’s surface. For multilayer displays, several formu-
lae representing the upper bounds on the maximum frequencies
have been given. However, these formulae provide little informa-
tion on how much blur would be present in the reproduced fields,
since contributions of low frequency signals are simply neglected.
Such signals are frequently damaged on multilayer displays es-
pecially when the angular range of viewing angles becomes wide.
To address these drawbacks, we present a novel framework for the
DOF analysis of multilayer displays. The analysis begins with a
close look at the synthesis of layer images, which can be consid-
ered as solving a linear least squares problem with nonnegativity
constraints. This numerical procedure is then reinterpreted in the
context of multilayer displays, where part of the connections be-
tween “depth” and “blur” are observed. Finally, experimental
results supporting these observations are presented.

Introduction
Depth of field (DOF) is a common term in photography re-

ferring to the distance between nearest and farthest objects in a
scene that appear acceptably sharp. It is also called “focus range”
or “effective focus range”. The DOF of a camera varies depending
on the camera type, aperture and focusing distance.

Zwicker et al [8] extended the concept of DOF to quantify
the capabilities of 3D displays in reproducing stereoscopic im-
ages. They defined DOF of a 3D display as the range of planes
parallel to the display’s surface on which images can be displayed
at maximum spatial resolution. This definition was obviously dual
to photographic DOF or the range of exact refocusing in light
field photography [5]. Zwicker et al. derived analytic formulae
of DOF, which were applicable to displays based on parallax bar-
riers, lenticular sheets, integral lens sheets, and multi-projector
systems.

More recently, Wetzstein and Lanman et al. [2, 6] studied
DOF of 3D displays based on stacks of semi-transparent flat-panel
imaging devices. We will simply call such type of displays “mul-
tilayer displays” in the remainder of this paper. In a series of stud-
ies, Wetzstein and Lanman et al. applied signal processing meth-
ods to the light fields emitted from multilayer displays, analyzed
the light fields in the frequency domain, and derived formulae
representing the upper-bounds of the DOF of multilayer displays.
However, since the formulae were based on the maximum spa-
tial frequencies “achievable” with multilayer displays, the actual
DOF corresponding to a particular light field could be substan-
tially lower. Moreover, the formulae did not contain any factors

dependent on the range of viewing angles. In practice, we often
observe that visual artifacts are more present in the reconstructed
light field when the angular viewing range becomes wider. Such
dependence on the viewing range is missing in the derived DOF
formulae.

In this paper, we present a novel approach to the DOF analy-
sis of multilayer displays. We first take a close look at the synthe-
sis of layer images, where light fields are transformed and mapped
to images on multiple layers. This process can be considered
as solving linear least squares problems with nonnegativity con-
straints (NNLS). Recent findings in linear algebra enable us to
derive a semi-analytic formula expressing the solutions of NNLS
problems. The formula provides the foundation of our DOF anal-
ysis. We will then reinterpret the formula in the context of mul-
tilayer displays, where part of the connections between “depth”
and “blur” will be observed. In particular, “depth selective light
field reconstruction method” will be presented as a substitute for
an NNLS solver, which will bring us an intuitive view on the DOF
of multilayer displays. Finally, several experimental results will
be presented supporting this intuitive view.

An Analytic View on Multilayer Displays
A multilayer display is an autostereoscopic display consist-

ing of a stack of multiple liquid crystal (LC) panels and a back-
light [4]. The panels in the display are arranged in parallel with
equal spacing between neighboring panels. Images shown on
these panels are superimposed and delivered to viewers. The su-
perimposition of images is direction-dependent, and forms a light
field representing a 3D scene.

The optical properties of the stack of LC panels have been
studied by many researchers. Nowadays most LC panels embed-
ded in LC displays are multi-domain LC panels. When such types
of LC panels are stacked, the following linear model[1]

b j =
n

∑
i=1

Ai jxi (1)

gives a good approximation of the ray’s intensity b j passing
through pixels x j1,x j2, · · · ,x jN , where N is the number of layers.

backlight

bjx j1

x j2

x j3

x j4

Figure 1. Ray emitted from a 4-layer display. According to the linear model

of stacking multi-domain LC cells, the ray’s intensity b j is equal to the sum of

pixel’s intensity x j1 + x j2 + x j3 + x j4.
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Fig. 1 shows an example of a 4-layer display illustrating that b j
is equal to the sum of 4 numbers x j1 + x j2 + x j3 + x j4. Equation
(1) describes a more general situation, where the total number of
n pixels residing in N layers are involved. The coefficient Ai j is
either 0 or 1 depending on whether the ray b j passes through pixel
x j or not.

We need to control the light field emitted from a multilayer
display. The only way to control the light field is to adjust the
pixels’ intensity (i.e., transmittance of light). Let b ∈ Rm be the
light field (i.e., array of rays’ intensities) to be reproduced by the
multilayer display, x ∈ Rn be the array of pixels’ intensities in the
display, and A ∈ Rm×n be the matrix representing the geometri-
cal relationships between rays and pixels. The vector x can be
determined by solving the following least squares problem

min
x∈Rn

∥Ax−b∥ subject to 0 ≤ x ≤ 1 (2)

where we have assumed that each element xi of x is normalized to
fit in the range xi ∈ [0,1].

In our experience with multilayer displays, the upper bound
constraint x ≤ 1 is rarely broken. Therefore, even if we solve the
modified problem,

min
x∈Rn

∥Ax−b∥ subject to 0 ≤ x (3)

the solution of (3) is the same as that of (2). On the other hand,
the lower bound constraint x ≤ 0 is frequently broken. In most
cases, the solution of the unconstrained problem (4).

min
x∈Rn

∥Ax−b∥ (4)

contains negative xi’s, and is different from the solution of (3).
We therefore adopt (3) as the basis of our analysis. Recent

progress in linear algebra has revealed that a semi-analytic ex-
pression of the solution of (3) exists as described in the next sub-
section.

Solving the Nonnegative Least Squares Problem
The nonnegative least squares problem (3) can be solved us-

ing the modulus transformation x = z+ |z|, where z ∈ Rn is a real
vector. Note that the vector z does not have to be a nonnega-
tive vector. Even if some elements of z are negative, the trans-
formation ensures that the corresponding elements of x are all 0.
This means that x is guaranteed to be nonnegative by the modulus
transformation.

Zheng et al. [7] developed several numerical methods to
solve (3) using the modulus transformation. Referring to some
earlier work, they argued that the solution of (3) can be obtained
by solving the fixed-point equation

(I +AT A)z = (I −AT A)|z|+AT b (5)

and setting x = z+ |z|. Suppose that the fixed point z∗ of equation
(5) is actually found. It then follows that

AT A(z∗+ |z∗|) = AT b+(|z∗|− z∗) (6)

AT Ax∗ = AT b+ c (7)

x∗ = (AT A)−1(AT b+ c) (8)

where c = |z∗|− z∗ is a nonnegative vector. It is worth to mention
that vector c can be determined only after the solution of (5) is
found. Equation (8) gives a semi-analytic expression of the solu-
tion of (3) although it contains an unknown nonnegative vector c.
If one can estimate the amount of c, the analysis of the solution
x∗ becomes possible using equation (8).

Novel Framework of Depth of Field Analysis
The semi-analytic expression (8) of the solution of non-

negative least squares problem (3) provides many clues to the
DOF analysis of multilayer displays. The expression is simple,
and consists of only three terms: (AT A)−1, AT b and c. In the
following subsections, we will interpret the first two terms (i.e.,
(AT A)−1 and AT b) in the context of multilayer displays. We will
also try to interpret the last term (i.e., c), which turns out to be
a difficult task. In our experience with multilayer displays, the
magnitude of c is modest in many cases. Therefore the dominant
factors affecting the quality of the light fields emitted from dis-
plays are AT A and AT b.

Light Accumulation on Layers
The matrix-vector product AT b can be interpreted as the ac-

cumulation of light on layers. To see this, let us review the fol-
lowing equation.

b j =
n

∑
i=1

Ai jxi (9)

Each ray b j passes through several pixels. The coefficient Ai j
describes whether the ray pass through pixel xi (i.e., Ai j = 1) or
not (i.e., Ai j = 0). The coefficients A0 j,A1 j, · · ·An j forms the j-th
row vector of matrix A ∈ Rm×n. If we look at the i-th column of
matrix A, we notice that the {0,1} pattern in the column represent
which ray passes through pixel xi.

Now consider the i-th value of vector AT b. The value can be
obtained by computing the inner product of the i-th column vector
of A and light vector b. The inner product represents the sum of
all rays’ intensities ∑ j A jib j passing through pixel xi.

Fig. 2(a) illustrates the accumulation of light via the compu-
tation of AT b. Optically equivalent accumulation of light using
a refractive lens is shown in Fig. 2(b). Here, the aperture of the
refractive lens (b) corresponds to the angular viewing range of the
multilayer display (a). As the viewing range becomes wider, more

layers

rays

pixel xi

Apibp
Aqibq

A
ri
b
r

A
si
b
s lens

(a) (b)

Figure 2. Accumulation of light on the same pixel. As shown in (a), the

weighted sum of rays’ intensities ∑ j A jib j represent how much light accumu-

lates on pixel xi. Such accumulation of light can be re-interpreted as focusing

light on pixel xi using a refractive lens.
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Figure 3. Accumulation images formed on layers, where layer = 1 indi-

cates the nearest layer, and layer = 4 the farthest from the viewer; H and W

represent the range of horizontal and vertical viewing angles, respectively.
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Figure 4. The weighted sum of pixels’ intensities within a pyramid, whose

apex is located at pixel xi as shown in (a), is equal to the i-th element of AT Ax.

The weighted sum can be computed by averaging the pixels’ intensities in

each layer, and adding the averaged values together (b).

focal blur is to be introduced in the images formed by light accu-
mulation. Such images are called “accumulation images” in the
rest of the paper. Accumulation images are formed only on layers.
Fig. 3 shows series of accumulation images under two viewing
conditions. Top row images correspond to the condition where
the horizontal viewing angle ranges between −5.0◦ and 5.0◦, and
vertical angle between −2.5◦ and 2.5◦. Bottom row images cor-
respond to the condition where the viewing ranges are 1.8 times
wider than the top ones in both horizontal and vertical directions.

The formula (8) states that the accumulation images (as rep-
resented by AT b) are the input sources for computing the solution
vector x∗. If these images are already blurred, the resulting solu-
tion vector x∗ will also be blurred, leading to blurry reconstruction
of the light field.

Conversion from Accumulation to Layer Images
Given the vector x representing the array of pixels’ intensi-

ties, the matrix-matrix-vector product AT Ax can be interpreted as
collecting the pixels within a pyramid illustrated in Fig. 4, and
computing the weighted sum of intensities of these pixels. In
Fig. 4(a), a 2D slice of a pyramid is drawn, whose apex is located
at pixel xi. The pyramid is a solid consists of lines passing through
xi, and the base of the pyramid is an rectangle, whose shape is de-
termined by the horizontal and vertical ranges of viewing angles.
The weight applied to each pixel is inversely proportional to the
number of pixels lying on the same layer as shown in Fig. 4(b).
The derivation of such interpretation of AT Ax is almost obvious.

Here we only remark that (Ax) j corresponds to the sum of pixels’
intensities that lie along ray b j.

We then examine the equation (7), which is equivalent to
(8). As explained, AT Ax can be rewritten as the weighted sum
of pixels’ intensities. The weighted sum can be obtained by
first applying an appropriate mean filter to each layer, and then
merging the resultant images. Let g1,g2, · · · ,gN be the “layer im-
ages” (i.e., images displayed on layers) represented by vector x,
and let f0, f1, f2, · · · , fN−1 be the set of mean filters applicable
to the layer images. In the illustrated example shown in Fig. 4,
filters { f0, f1, f2} are applied to images {g1,g2, · · · ,g4}, which
gives f1 ∗ g1 + f0 ∗ g2 + f1 ∗ g3 + f2 ∗ g4. Here, fr ∗ gs repre-
sent the convolution of filter fr and layer image gs. Computing
f1 ∗g1 + f0 ∗g2 + f1 ∗g3 + f2 ∗g4 is equivalent to computing the
weighted sum (AT Ax)i for each pixel xi on the second layer. Gen-
eralizing this observation will lead to

[AT Ax]k =
N

∑
i=1

fabs(k−i) ∗gi (10)

where [y]k represent the 2D array of real numbers extracted from
vector y ∈ Rn lying on the k-th layer. The equation (7) is now
rewritten as

N

∑
i=1

fabs(k−i) ∗gi = [AT b]k = hk. (11)

Notice that [AT b]k represents the accumulation image formed on
the k-th layer, which is denoted as hk for the brevity of explana-
tion.

Finally, Fourier transforms are applied to (11). This result is
a system of N simultaneous equations

H1
H2
...

HN

=


F0 F1 . . . FN−1
F1 F0 . . . FN−2
...

...
. . .

...
FN−1 FN−2 . . . F0




G1
G2
...

GN

 (12)

where Fk(u,v) = F ( fk(i, j)), Gk(u,v) = F (gk(i, j)), and
Hk(u,v) = F (hk(i, j)) represent Fourier transforms of the mean
filter fk, layer image gk, and accumulation image hk, respectively.

The equation (12) gives a convenient tool for analyzing the
conversion from accumulation images {h1,h2, · · · ,hN} to layer
images {g1,g2, · · · ,gN} in the frequency domain. The con-
version is governed by a N × N matrix in which elements in
{F0,F1, · · · ,FN−1} are arranged in a symmetric manner. The ma-
trix are dependent on the window size of the mean filter denoted
by f1.

Fig. 5 shows three plots of the condition number of the ma-
trix appearing in (12). Note that the matrix depends on the spa-
tial frequency (u,v), and the condition number can be evaluated
independently for each frequency. The horizontal axis represent
the ratio of the frequency to the maximum frequency in percent-
age(%), and vertical axis represent the condition number. Three
plots corresponding to different window sizes of the mean filter f1
are shown here, where w = 5,10, and 15 indicate that the filter’s
window sizes are 5%, 10%, and 15% of the image size, respec-
tively. The image size used for this simulation is 640x360, and
the number of layers is 4 (i.e., N = 4).
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Figure 5. Distribution of the condition number of the matrix appearing in

equation (12). The horizontal axis represent the ratio of spatial frequency

(u,v) to the maximum spatial frequency (umax,vmax), and vertical axis repre-

sent the condition number. The number is evaluated independently for each

frequency. Three plots are shown here, which differ in the window size of the

mean filter f1 used to make up the matrix. For example, w = 5 indicates that

the window size is 5% of the image size.

In Fig. 5, plots corresponding to the first 2 frequencies (i.e.,
lowest 2 frequencies) are dropped from the graph since the condi-
tion numbers are extremely large. However, in all other frequen-
cies including the highest, the condition numbers stay within the
rage of [1,4]. This implies that equation (12) is stable in almost
all frequencies, and no cut-off of frequency components will take
place in the conversion from the accumulation to layer images.

Evaluating Nonnegativity Constraint
Among the three terms included in formula (8), we have al-

ready discussed (AT A)−1 and AT b. We have seen that AT b may
introduce blur in the reconstructed light field, while (AT A)−1 will
retain high-frequency components as much as possible. The re-
maining task is to evaluate the last term c.

Unfortunately, we have not arrived at any convincing models
of c. We only know that c is certainly related to the nonnegativity
constraint in (3). Once the solution to (3) is obtained, we could
evaluate the magnitude of c, and its influence to the reconstructed
light field. However, before the solution of (3) is computed, we
have little information to evaluate the magnitude and influence of
c. Described below are a few attempts to locate the regions in 3D
scenes, where ci will likely take a positive value.

Let us start our discussion by analyzing the solutions of a few
sample scenes. Since c ∈ Rn is a vector whose dimension is the
same as the number of pixels in the display, it is possible to map
c on the layers. The superimposition of the mapped images can
be observed from various directions, which provide stereoscopic
views.

Fig. 6 shows four sample scenes and their corresponding im-
ages representing vector c. Here only the central views are shown.
Each vector c is computed from the solution of an NNLS problem
(3) , where the same 4-layer display is used to determine the ma-
trix A. Details of the display’s configuration are omitted here since
the general tendency of c is the same. Bright pixels in the bottom
row images indicate that magnitude of c is large at some layers.

From the results shown in Fig. 6, one could speculate that the
magnitude of c would become large at such pixels where large di-
rectional variations exist in the intensity of light. One could also
conjecture that bright objects occluding dark background would
be the sources of positive c. To validate these hypotheses, two

scene1 scene2 scene3 scene4

scene 

view

scene1 scene2 scene3 scene4

error 

view

Figure 6. Visualization of vector c in 3D space. Top row images show

the central views of 4 sample scenes directly extracted from the light fields,

while bottom row images show the corresponding views obtained by solving

the least squares problem using a 4-layer display, and mapping the resultant

vector c onto the same display. The intensity of each pixel xi is determined

by the magnitude of ci, where larger ci results in brighter intensity of xi. The

vector c is computed independently for each color channel.

scene1 scene2 scene3 scene4

maximum 

difference

scene1 scene2 scene3 scene4

inter-layer 

contrast

Figure 7. Estimation of vector c using two methods. The maximum differ-

ence method measures the difference between the maximum and minimum

intensities of rays passing through the same pixel, while the inter-layer con-

trast method measures the differences in the accumulation images between

pairs of layers neighboring to each other.

methods have been developed for estimating the magnitude of c.
One is the maximum difference method, which, for each pixel in
a multilayer display, measures the difference between the maxi-
mum and minimum intensity of light passing through that pixel.
The other method is called inter-layer contrast method, which
measures the difference in the accumulation images between any
pairs of layers neighboring to each other. In the latter method,
the pixels are first traced along each ray, then differences between
consecutive pairs of pixels are calculated, and finally averaged
over all rays passing through the same pixel. In averaging the
differences, we only deal with cases where bright pixels appear
nearer than darker pixels.

Fig. 7 shows the results obtained by applying the maximum
difference and inter-layer contrast methods to the sample scenes
as in Fig. 6. Compared to the maximum difference method, the
inter-layer method produces darker and less blurry images. This
is probably due to the non-linear nature of the inter-layer contrast
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Figure 8. Frequency analysis of the solution vector and accumulation im-

ages for scene1, which appeared in Fig. 6. The horizontal axis represent the

ratio of spatial frequency to the maximum spatial frequency, and vertical axis

represent the magnitude of frequency components.

method, which chooses only bright-dark pairs of pixels. How-
ever, there are distinct differences between the bottom row images
shown in Figs. 6 and 7. First, images in Fig. 6 exhibit higher con-
trast than those in Fig. 7. Secondly, some irregular patterns are
visible in the dark, background areas in Figs. 6, while any such
patterns are invisible in Fig. 7.

To summarize, the inter-layer method provides only a partial
solution to estimating the magnitude of nonnegativity vector c.
Developing a handy and more accurate estimation method is left
as the task for future research.

Experiments
In the previous section, we have identified three key factors

that affect the quality of the light field reproduced by a multilayer
display. These three factors are symbolically referred to as AT b,
(AT A)−1, and c. While the c factor is very difficult to evaluate,
the AT b and (AT A)−1 factors are not. Leaving aside the c factor,
it has been suggested the computation of AT b is the main source
of blur. In fact, the (AT A)−1 operator has been shown to not cut-
off any high frequency signals. However, this does not necessar-
ily mean that conversion from the accumulation to layer images,
which (AT A)−1 is responsible for, is always done in the high-
est possible quality. The (AT A)−1 operator may change low fre-
quency signals, which could introduce blur in the resultant layer
images

Processing Accumulation Images
The equation (8) indicates that the solution vector x∗ can be

obtained by applying the (AT A)−1 operator to the combination of
accumulation image (represented by AT b) and error image (rep-
resented by c). Here we focus on how the accumulation image
is decomposed, modulated, and merged into the layer image (i.e.,
the solution vector x∗).

Fig. 8 shows the frequency signals of layer image (referred to
as “solution” in the figure) and accumulation images (referred to
as “layer1” ∼ “layer4”) corresponding to the scene1 that already
appeared in Fig. 6. Note that “solution” keeps the highest position
in all frequencies. As discussed previously, the (AT A)−1 operator
decomposes the layer images into several frequency components,
and apply the inverse of the filter matrix shown in equation (12).
The filter matrix is frequency-dependent implying that the number
of matrices are very large. However, if we simply average the
elements of all inverse matrices, we will obtain a single matrix
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Figure 9. Frequency analysis of the solution vector and modulated accu-

mulation images for scene1. The modulation done here is the weighted sum

of accumulation images denoted by equation (13). Compared to the signals

in Fig. 8, the signals of layer2 and layer3 are slightly enhanced, while those

of layer 1 and layer4 are slightly reduced.

such as
m1
m2
m3
m4

=


1.23 −0.34 0.05 0.06
−0.34 1.68 −0.40 0.05
0.05 −0.40 1.68 −0.34
0.07 0.05 −0.34 1.23




l1
l2
l3
l4

 (13)

where (l1, · · · , l4) represent “accumulation images” and
(m1, · · · ,m4) represent “modulated accumulation images”. The
values in the matrix are computed based on the size of the
viewing ranges and distance between layers. Frequency signals
of the modulated accumulation images obtained via (13) are
shown in Fig. 9. Here we observe that “layer2” and “layer3”
come near to “solution”.

Fig. 10 compares 4 reconstruction methods of the light fields
representing respectively 4 sample scenes. The reconstruction is
done on the same 4-layer display, where the resolution of each
layer is 640×360, and layer separation (i.e., the smallest distance
between pairs of layers) is 0.1 × width of the display. Part of
the central views are extracted from the light fields, and shown
in the figure. The “computational” reconstruction corresponds to
the ordinary multilayer reconstruction, where the solution x of (3)
is first computed, and then the resultant layer images are simply
merged into the view. The other three methods uses the accumu-
lation images rather than the layer images. In the “averaged” re-
construction, the accumulation images are simply averaged along
each ray path. This method is essentially equivalent to the classi-
cal photo-stereo-synthesis method invented by Lumière [3]. The
“depth selective” reconstruction is an improvement of the “aver-
aged” reconstruction, where depth maps of the scenes are used
as supplementary information. Using the depth maps, nearest two
layers are identified for each ray path, and pixels’ intensities of ac-
cumulation images belonging to the selected layers are weighted
and fused. Finally, the “modulated” reconstruction is a variant of
“depth selective” reconstruction, where modulated accumulation
images, obtained by (13), are used instead of the original accumu-
lation images.

Examining the PSNR (peak signal-to-noise ratio) scores in
Fig. 10, we notice that the “computational” reconstruction al-
ways gives the best results, while the “averaged” reconstruction
result in blurry images always in the worst quality. The “depth
selective” and “modulated” reconstruction stands in the midway
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PSNR=33.0 PSNR=29.9 PSNR=31.9 PSNR=32.0

PSNR=35.1 PSNR=33.5 PSNR=34.7 PSNR=34.5

PSNR=32.2 PSNR=29.8 PSNR=30.5 PSNR=30.6

PSNR=27.4 PSNR=25.4 PSNR=27.2 PSNR=26.7

Computational Averaged Depth Selective Modulated

Figure 10. Comparison of 4 reconstruction methods of the light fields rep-

resenting 4 sample scenes. The “computational” reconstruction refers to the

ordinary light field reconstruction, which computes the solution of equation

(3), and maps the solution to multiple layers. On the other hand, the “av-

eraged” reconstruction puts the accumulation images on those layers. The

other two methods make use of scenes’ depth maps as supplementary in-

formation to determine the layers’ weight before fusing the images. The

weight is computed for each pixel and for each view direction. The “depth

selective” reconstruction fuses accumulation images, while the “modulated”

reconstruction fuses modulated accumulation images.

between these two methods, where the “modulated” reconstruc-
tion tends to give slightly better results than the “depth selective”;
however, their differences are almost negligible. It is worthwhile
to mention that unless depth maps are available, neither the “depth
selective” nor “modulated” reconstruction method will work. De-
spite such practical limitations, these methods are theoretically
interesting since their performance is almost parallel to that of
the ordinary “computational” reconstruction method. This obser-
vation seems to provide direct insight into the DOF analysis of
multilayer displays

Accumulation Blur and Depth of Field
Suppose that the scene depth is constant, and every point in

the scene lies on the i-th layer. In this case, the output of the
“depth selective” reconstruction method will be the light field
generated by putting the i-th accumulation image on the i the
layer, and letting the other layers transparent. The quality of the
i-th accumulation image determine the quality of the light field.

This simple observation leads to the following question: if
the placement of layers is sufficiently dense and covers the entire
depth range, will the ordinary multilayer reconstruction method
perfectively recover the light field of the scene? The answer to this
question will be negative unless all objects in the scene are non-

layer=1 layer=22-layer display (PSNR=29.8)

layer=3 layer=44-layer display (PSNR=33.1)

layer=5 layer=66-layer display (PSNR=33.7)

layer=7 layer=88-layer display (PSNR=33.5)

Reconstructed View Accumulation Images

Figure 11. Incremental addition of layers and its effect on the reconstructed

light field. Starting from the 2-layer display, layers are incrementally added

to the rear side of the display, yielding 4-layer, 6-layer, and 8-layer displays.

These displays share the same set of accumulation images, where N-layer

uses the first N images for reconstructing the light field. Each color image is

associated with a black-and-white image, called “blur map”, which represent

the amount of blur visible in the color image. As seen in the PSNR scores,

the 6-layer display marks the peak performance. Since the blur maps of the

7-th and and 8-th layers are almost the same as that of the 6-th layer, the

PSNR scores of the 6-layer and 8-layer displays keeps the same level.

specular, i.e., exhibiting Lambertian reflectance. In addition, it
should also be recalled that we have not obtained any convincing
model of the “error image” representing vector c. Nevertheless,
it is interesting to investigate how the coverage of scene’s depth
range by multiple layers affects the quality of the reconstructed
light field.

Fig. 11 reports on such an investigation, where the number
of layers incrementally increases while keeping constant sepa-
ration between neighboring layers. Since the layer separation
is 0.1 × width, the N-layer display covers the depth range of
[0,0.1(N − 1)width]. In the left column of Fig. 11, the central
views of the reconstructed light field are shown along with black-
and-white images. These images exhibit the amount of blur in
the corresponding views. The blur is computed for each small
area within each view based on the comparison with the filtered
view of the original light field (i.e., vector b). Filters used for this
purpose are mean filters, and the filter’s window size is adjusted
to minimize the difference between the reconstructed and filtered
views. The resultant black-and-white image is called “blur map”
of the view. White pixels in a blur map indicate that the amount
of blur is large at these pixels. The right column of Fig. 11 shows
a series of accumulation images. The central view of the 2-layer
display is computationally reconstructed based on the first two
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layer=7 layer=88-layer display (PSNR=32.0)

layer=5 layer=66-layer display (PSNR=32.1)

layer=3 layer=44-layer display (PSNR=31.4)

layer=1 layer=22-layer display (PSNR=28.7)

Reconstructed View Accumulation Images

Figure 12. Incremental addition of layers and its effect on the recon-

structed light field. The difference between Fig. 11 and Fig. 12 lies in the

range of viewing angles, where Fig. 11 sets the range parameter to [H×V ] =

[−5.0◦,5.0◦]× [−2.5◦,2.5◦], while Fig. 12 sets it to [−9.0◦,9.0◦]× [−4.5◦,4.5◦].

In terms of the PSNR scores, the 6-layer display marks the peak perfor-

mance as in Fig. 11. However, the peak is lower than that of Fig. 11, which is

accounted for by the amount of larger blur present in accumulation images.

accumulation images, while the one of the 4-layer display is com-
puted based on the first four images. Note that the first two accu-
mulation images are shared by the 2-layer and 4-layer displays.

In the left column of Fig. 11, we observe the gradual quality
improvement in the reconstructed view from the 2-layer to 6-layer
display. In terms of PSNR, the largest score is marked by the 6-
layer display. The score decreases slightly from the 6-layer to
8-layer display. This is probably due to the numerical errors in-
troduced while solving the least squares problems. Looking at the
accumulation images and associated blur maps in the right col-
umn of Fig. 11, we notice that accumulation images of layers 6
to 8 are all blurry. The blur maps of these layers are almost the
same. This seems to imply that even if we acquire accumulation
images of layers 7 and 8 in addition to 6, we will not obtain any
extra information. These observations coincide with the algorithm
of the “depth selective” reconstruction, although the “computa-
tional” method is actually used to reconstruct the light fields.

Fig. 12 shows similar results to those of Fig. 11. Almost
all experimental conditions are the same except for the range
of viewing angles, where Fig. 11 sets the range parameter to
[H ×V ] = [−5.0◦,5.0◦]× [−2.5◦,2.5◦], while Fig. 12 sets it to
[−9.0◦,9.0◦]× [−4.5◦,4.5◦]. We notice that the observations
made for Fig. 11 also apply to Fig. 12. We also find that the PSNR
scores in Fig. 12 are all lower than those in Fig. 11. This could be
explained from the fact that any accumulation image in Fig. 12 is
more blurry than the corresponding image in Fig. 11.

Concluding Remarks
In this paper, we presented a novel framework to analyze

the depth of field (DOF) of multilayer displays. Three factors
affecting the quality of the reconstructed light fields were identi-
fied from the computational viewpoint, and re-interpreted in the
context of multilayer displays. Among the three factors, the AT b
factor, which modeled the accumulation of light on layers, was
found to be the the key in analyzing the DOF. With the assistance
of the depth selective reconstruction method, which approximated
the ordinary computational method usually adopted for multilayer
displays, the DOF-like effects of a sample scene were analyzed.
Although analytic formulae of DOF have not been established yet,
the combination of the “light accumulation on layers” and “depth
selective reconstruction” brings us an intuitive understanding on
how the DOF of multilayer displays is determined.

Several issues raised in the paper are addressed only par-
tially, and need to be investigated further. In particular, modeling
and evaluation of the c factor is indispensable for making the DOF
analysis more accurate. In addition, simple and analytic formu-
lae of DOF will also be required in practical applications. Build-
ing reconfigurable displays dynamically adjustable to specific 3D
scenes would be an interesting topic, where the DOF analysis will
be utilized most effectively.
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