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Abstract 

Stereo matching methods estimate a disparity value of the 

object as depth information. In general, most stereo matching 

methods are tested under ideal radiometric conditions. However, 

those ideal conditions cannot exist in real life. Adaptive 

normalized cross correlation (ANCC) is a method that is robust to 

radiometric variation. It estimates significantly accurate disparity 

values in the illumination variant condition. However, it has a high 

complexity problem in the cost computation because of the block 

matching-based method and the bilateral filtering process. In this 

paper, we propose a pixel-based ANCC using hue and gradient 

information to improve the computation complexity problem. The 

results show that the cost computation time is reduced even though 

error rates corresponding to the exposure and illumination 

changes have larger variations than those of the ANCC result. 

Keywords: Stereo matching, disparity map, global mean value, 

hue transform 

 1. Introduction 
In recent years, as interest in three-dimensional (3D) images 

has increased, various 3D contents have been created for 

applications such as stereoscopic display, super multi-view display, 

virtual reality (VR), and augmented reality (AR). Most 3D content 

utilize captured scenes and objects with their depth values for 

generating realistic content. There are several ways to acquire the 

depth value from the object or the captured scene. The depth 

camera uses two different types for the depth estimation: the time-

of-flight (ToF) and the structured light. The depth camera 

measures the depth value of the object quickly and easily; however, 

measurement of depth value is affected by sunlight. The 

measurement distance of the depth camera is also limited because 

of the hardware problem. Therefore, passive sensor-based methods 

are also used. 

One famous passive method is stereo matching. Two-

dimensional (2D) stereo images are used for the stereo matching. 

Each image has a different viewpoint. For the depth estimation 

using stereo matching methods, correspondences between two 

images are searched first. Next, a disparity value between two 

corresponding points is calculated. The disparity value represents 

depth information of those corresponding points. In this way, 

disparity maps that represent depth information of captured stereo 

images are created. 

In the stereo matching method, searching correspondences has 

an influence on the accuracy of the disparity map. Therefore, it is 

important to find exact correspondences. Moreover, the stereo 

matching method is usually performed assuming that the image 

rectification is used; therefore, correspondences are searched in the 

same scan line [1]. To calculate the similarity between two pixels, 

various similarity measures are used. There are generally two 

approaches for the similarity measure: a pixel-based and a patch-

based measure. The pixel-based measure calculates the matching 

cost faster than the patch-based measure. However, the pixel-based 

measure usually has a matching ambiguity problem. For this 

reason, the patch-based measure is generally used for the similarity 

measure. 

One of the approaches to improve the accuracy of the 

disparity search is a cross-scale cost aggregation [2]. It aggregates 

matching costs using disparity volumes and the filter kernel [3]. 

This cost aggregation method considers matching cost comparison 

not only to neighboring pixels but also to pixels of other scales. 

Using this cost aggregation method, relatively accurate disparity 

values can be searched even if the similarity measure is performed 

on a pixel basis. Another approach for the enhancement of the 

disparity search is a global stereo matching method. This method 

uses an energy function to measure the similarity between the 

current pixel and the correspondence pixel. The energy function is 

composed of the data term and the smoothness term. Since the 

global method considers the neighboring pixel’s disparity values 

for the determining the current pixel’s disparity value, it generates 

significant accurate disparity maps. 

In general, it is assumed that many stereo matching methods 

are performed under ideal lighting conditions. However, it is 

difficult to obtain ideal lighting conditions for the actual stereo 

matching process. To perform illumination invariant stereo 

matching, several stereo matching methods are proposed such as 

an adaptive normalized cross correlation (ANCC) and a fast cost 

computation method using binary information [4-6]. In this paper, 

we propose a pixel-based ANCC, which is a fast and robust 

method, to mitigate the issues arising from radiometric variation. 

2. Adaptive Normalized Cross Correlation 

2.1 Color Image Formation Model 
The adaptive normalized cross correlation (ANCC) calculates 

the matching cost independently from the lighting change factors 

[4]. For the cost computation that is independent from the lighting 

factors, the ANCC uses a color image formation model [7].  

 

(

𝑅𝐿(𝑝)

𝐺𝐿(𝑝)

𝐵𝐿(𝑝)
) → (

𝑅�̃�(𝑝)

𝐺�̃�(𝑝)

𝐵�̃�(𝑝)

) = (

𝜌𝐿(𝑝)𝑎𝐿𝑅𝐿
𝛾𝐿(𝑝)

𝜌𝐿(𝑝)𝑏𝐿𝐺𝐿
𝛾𝐿 (𝑝)

𝜌𝐿(𝑝)𝑐𝐿𝐵𝐿
𝛾𝐿 (𝑝)

) (1) 

 

The color formation model shows how color values are stored 

on the device. It is defined in Eq. 1. Where 𝑅𝐿, 𝐺𝐿, and 𝐵𝐿 are raw 
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colors of the current pixel 𝑝 in the left viewpoint image. In Eq. 1, 

raw colors are stored as non-linear forms such as 𝑅�̃�, 𝐺�̃�, and 𝐵�̃�. 

Those non-linear color values include three kinds of lighting 

factors: a brightness factor, a scale factor, and a gamma exponent. 

𝜌𝐿 and 𝛾𝐿 represent the brightness factor and the gamma exponent, 

respectively. Those two factors are applied to the three-color 

channels as the same value. Conversely, the scale factor is 

represented by different values such as 𝑎𝐿, 𝑏𝐿, and 𝑐𝐿, depending 

on the color channel type. 

2.2 Elimination of Lighting Factors 
The ANCC method removes lighting factors to perform the 

illumination invariant stereo matching. Non-linear color values in 

Eq. 1 are transformed to logarithmic values to eliminate the 

brightness factor 𝜌𝐿 as shown in Eq. 2. 

 

𝑅𝐿
′ (𝑝) = log𝜌𝐿(𝑝) + log𝑎𝐿 + 𝛾𝐿log𝑅𝐿(𝑝) (2) 

 

In Eq. 2, 𝑅𝐿
′  implies the logarithmic value of 𝑅�̃� . The 

remaining 𝐺�̃�  and 𝐵�̃�  are converted to logarithmic values 𝐺𝐿
′  and 

𝐵𝐿
′  in a similar manner. Subsequently, the average of logarithmic 

values of the three color channels is calculated as follows 

 

𝐼𝐿
′ (𝑝) =

𝑅𝐿
′ (𝑝) + 𝐺𝐿

′ (𝑝) + 𝐵𝐿
′ (𝑝)

3
 (3) 

 

where 𝐼𝐿
′  indicates the average value of three logarithmic color 

values. In order to remove the brightness factor, 𝐼𝐿
′  is subtracted 

from 𝑅𝐿
′ . Eq. 4 illustrates the removal of the brightness factor. 

 

𝑅𝐿
′′(𝑝) = 𝑅𝐿

′ (𝑝) −
𝑅𝐿

′ (𝑝) + 𝐺𝐿
′ (𝑝) + 𝐵𝐿

′ (𝑝)

3
 (4) 

 

In Eq. 4, 𝑅𝐿
′′ is the value with the brightness factor removed 

from  𝑅 channel. Eq. 4 is redefined as follows 

 

𝑅𝐿
′′(𝑝) = log

𝑎𝐿

√𝑎𝐿𝑏𝐿𝑐𝐿
3

+ 𝛾𝐿log
𝑅𝐿(𝑝)

√𝑅𝐿(𝑝)𝐺𝐿(𝑝)𝐵𝐿(𝑝)3
 (5) 

 

where log
𝑎𝐿

√𝑎𝐿𝑏𝐿𝑐𝐿
3  represents the scale factor. Both log

𝑎𝐿

√𝑎𝐿𝑏𝐿𝑐𝐿
3  and 

log
𝑅𝐿(𝑝)

√𝑅𝐿(𝑝)𝐺𝐿(𝑝)𝐵𝐿(𝑝)3  are redefined as 𝛼𝐿  and 𝐾𝐿 , respectively. The 

new formula of Eq. 5 is shown as Eq. 6. 

 

𝑅𝐿
′′(𝑝) = 𝛼𝐿 + 𝛾𝐿𝐾𝐿(𝑝) (6) 

 

To eliminate the scale factor 𝛼𝐿, a bilateral filter is used [8]. 

This filter is based on a patch. Eq. 7 shows the process of 

eliminating the scale factor using the bilateral filter. 

 

𝑅𝐿
′′′(𝑡) = 𝑅𝐿

′′(𝑡) −
∑ 𝑤(𝑡)𝑅𝐿

′′(𝑡)𝑡∈𝑊(𝑝)

𝑍(𝑝)
 (7) 

 

where 𝑅𝐿
′′′(𝑡)  represents the color value from which the scale 

factor is removed, 𝑡 is an element of the set of pixels 𝑊(𝑝) in the 

patch whose center pixel is 𝑝, 𝑤  is a weighting function of the 

bilateral filter, and 𝑍 is a sum of weighting values in the patch. 

The bilateral filter is applied to all 𝑅𝐿
′′  values in the patch. 

Subsequently, each filtered value is subtracted from 𝑅𝐿
′′. As a result, 

the scale factor is eliminated. Eq. 7 is rearranged to obtain Eq. 8. 

 

𝑅𝐿
′′′(𝑡) = 𝛾𝐿 (𝐾𝐿(𝑡) −

∑ 𝑤(𝑡)𝐾𝐿(𝑡)𝑡∈𝑊(𝑝)

𝑍(𝑝)
) (8) 

 

The gamma exponent can be ignored in the process of 

similarity measure using an equation of the normalized cross 

correlation (NCC). The ANCC of R channel is defined in Eq. 9. 

 

𝐴𝑁𝐶𝐶𝑅(𝑓𝑝)

=
∑ 𝑤𝐿(𝑡𝑖)𝑤𝑅(𝑡𝑖)[𝑅𝐿

′′′(𝑡𝑖)] × [𝑅𝑅
′′′(𝑡𝑖)]𝑀

𝑖=1

√∑ |𝑤𝐿(𝑡𝑖)𝑅𝐿
′′′(𝑡𝑖)|2𝑀

𝑖=1 × √∑ |𝑤𝑅(𝑡𝑖)𝑅𝑅
′′′(𝑡𝑖)|2𝑀

𝑖=1

 
(9) 

 

where 𝐴𝑁𝐶𝐶𝑅 is the ANCC value of R channel when the disparity 

value is 𝑓𝑝, 𝑓𝑝 indicates the disparity candidate of pixel p, both 𝑤𝐿 

and 𝑤𝑅 are bilateral weighting functions for patches in the left and 

the right images, respectively, and M represents the patch size. The 

𝑀 × 𝑀 sized patch centered at p is used for the ANCC. The NCC 

equation is applied to each pixel 𝑡𝑖  in the patch. 𝐴𝑁𝐶𝐶𝐺  and 

𝐴𝑁𝐶𝐶𝐵 can be obtained in the same way as previously described. 

As a result, the cost function of the ANCC is defined in Eq. 

10, where 𝐷(𝑓𝑝) is the matching cost using the ANCC. 

 

𝐷(𝑓𝑝)

= 1 −
𝐴𝑁𝐶𝐶𝑅(𝑓𝑝) + 𝐴𝑁𝐶𝐶𝐺(𝑓𝑝) + 𝐴𝑁𝐶𝐶𝐵(𝑓𝑝)

3
 (10) 

 

The similarity measure using the ANCC method enhances the 

disparity search under the radiometric variation. Fig. 1 shows 

stereo matching results under the radiometric variation. Fig. 1(a) is 

an original left viewpoint image, Fig. 1(b) is a matching result 

using the intensity and the gradient values for the cost computation 

[3], and Fig. 1(c) is the result using the ANCC. 

In Fig. 1(b), there are significant errors because of the 

radiometric change. On the other hand, Fig. 1(c) shows a better 

quality disparity map than Fig. 1(b). 

The ANCC is robust to radiometric changes. However, it 

requires significant cost computation time to execute because the 

bilateral filter requires high computational complexity. In addition, 
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the ANCC also performs patch-based matching. Therefore, the 

larger the patch size, the higher the complexity of the computation. 

For this reason, the ANCC is not suitable for real-time stereo 

matching under different radiometric conditions. 

 

 
(a) Original Image      (b) Intensity + Gradient          (c) ANCC 

Figure 1. Stereo Matching Results Under Radiometric Change 

3. Pixel-Based ANCC Cost Computation 

3.1 Scale Factor Removal with Global Mean Value 
The conventional ANCC uses the bilateral filter to remove the 

scale factor 𝛼𝐿 in Eq. 6. The bilateral filter is applied to every pixel 

in the image for the scale factor removal. This filtering process has 

the advantage of eliminating the scale factor while preserving the 

edge region. However, it takes a lot of time. To reduce the time for 

scale factor removal, a global mean value is used [5, 6]. 

The global mean value indicates the average color value of all 

pixels in the image. This value is not computed repeatedly, like the 

bilateral filtering process, but requires only one computation for 

each channel. An equation of the global mean is defined as follows 

 

𝑀𝑅(𝑝) =
∑ 𝑅𝐿

′′(𝑡)𝑡∈𝑊𝑀𝑁

𝑀𝑁
 (11) 

 

where 𝑀𝑅(𝑝) means the global mean value of 𝑅𝐿
′′ at centered pixel 

𝑝, 𝑡 is a pixel in the image 𝑊𝑀𝑁, 𝑀 and 𝑁 are a width and a height 

of 𝑊𝑀𝑁, respectively.  

𝑀𝐺 and 𝑀𝐵 for 𝐺𝐿
′′ and 𝐵𝐿

′′ are calculated in the same manner. 

Eq. 11 is applied to Eq. 7 instead of the bilateral filtering process. 

Therefore, Eq. 7 is redefined in Eq. 12. 

 

𝑅𝐿
′′′(𝑝) = 𝑅𝐿

′′(𝑝) − 𝑀𝑅(𝑝) (12) 

 

In Eq. 12, 𝑅𝐿
′′(𝑝) is equal to 𝛼𝐿 + 𝛾𝐿𝐾𝐿(𝑝). Thus, the scale 

factor 𝛼𝐿 is eliminated by 𝑀𝑅(𝑝) as depicted in Eq. 13. 

 

𝑅𝐿
′′′(𝑝) = 𝛾𝐿 (𝐾𝐿(𝑝) −

∑ 𝐾𝐿(𝑡)𝑡∈𝑊𝑀𝑁

𝑀𝑁
) (13) 

 

3.2 Gamma Exponent Removal with Hue Transform 
The global mean value eliminates the scale factor quickly and 

easily. However, the gamma exponent still remains in Eq. 13. To 

remove the gamma exponent, the conventional ANCC uses the 

equation of the NCC. The NCC equation offsets the gamma 

exponents of the numerator and the denominator in Eq. 9. The 

objective of the proposed method is the pixel-based cost 

computation for the illumination invariant stereo matching. Using 

patch-based matching, the proposed method removes the gamma 

exponent using an equation of hue transform [9]. 

Hue is one of the three elements of the HSI model [9]. This 

model shows how color objects viewed by humans are analyzed. 

The HSI model includes hue, saturation, and intensity. The RGB 

color model can be transformed to the HSI model by using several 

equations. Eq. 14, Eq. 15, and Eq. 16 are the hue transform, the 

saturation transform, and the intensity transform, respectively. 

 

𝜃 = cos−1 {

1
2

[(𝑅 − 𝐺)(𝑅 − 𝐵)]

[(𝑅 − 𝐺)2 + (𝑅 − 𝐵)(𝐺 − 𝐵)]1/2
} (14) 

 

𝑆 = 1 −
3

(𝑅 + 𝐺 + 𝐵)
[min(𝑅, 𝐺, 𝐵)] (15) 

 

𝐼 =
1

3
(𝑅 + 𝐺 + 𝐵) (16) 

 

The hue transform in Eq. 14 is independent of the scale value. 

If the gamma value in Eq. 13 is a scale value, that value can be 

eliminated by replacing 𝑅𝐿
′′′, 𝐺𝐿

′′′, and 𝐵𝐿
′′′ instead of 𝑅, 𝐺, and 𝐵, 

respectively, in Eq. 14. Assuming that 𝐾𝐿(𝑝) −
∑ 𝐾𝐿(𝑡)𝑡∈𝑊𝑀𝑁

𝑀𝑁
 is 

equal to 𝑇𝑅, 𝑅𝐿
′′′(𝑝) is the same with 𝛾𝐿𝑇𝑅. Similarly, 𝐺𝐿

′′′(𝑝) and 

𝐵𝐿
′′′(𝑝) can be defined as 𝛾𝐿𝑇𝐺  and 𝛾𝐿𝑇𝐵, respectively. Therefore, 

𝑅𝐿
′′′ , 𝐺𝐿

′′′ , and 𝐵𝐿
′′′  values are defined as one hue value whose 

gamma value is removed by the hue transformation. The hue value 

from which the gamma value is removed is defined as follows. 

 

𝜃 = cos−1 {

1
2

[(𝑇𝑅 − 𝑇𝐺)(𝑇𝑅 − 𝑇𝐵)]

[(𝑇𝑅 − 𝑇𝐺)2 + (𝑇𝑅 − 𝑇𝐵)(𝑇𝐺 − 𝑇𝐵)]1/2
} (17) 

 

 
(a) Left Viewpoint               (b) Right Viewpoint 

Figure 2. Gradient Images 
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The final cost function 𝐶(𝑓𝑝) includes the gradient and the 

hue values. It is defined in Eq. 18. 

 

𝐶(𝑓𝑝)  = 𝛼 ∙ ∇𝑥𝐼(𝑓𝑝) + (1 − 𝛼) ∙ 𝜃(𝑓𝑝) (18) 

 

In Eq. 18, 𝜃(𝑓𝑝) is the hue value of the pixel which is distant 

from the current pixel p by the disparity value 𝑓𝑝 . ∇𝑥𝐼  is the 

matching cost between gradient images. It is calculated by the 

pixel-based measure. To calculate this matching cost, two color 

images should be changed to gradient images as depicted in Fig. 2.  

In Fig. 2, the first row represents the original color images 

and the second row shows the gradient images. The weighting 

value 𝛼  adjusts the balance between 𝜃(𝑓𝑝)  and ∇𝑥𝐼(𝑓𝑝) . It is a 

constant value specified by the user. To aggregate the matching 

cost, the cross-scale cost aggregation method was used [2]. 

4. Experiment Results 

4.1 Weighting Value Decision 
Four stereo images were used for the experiment: Aloe, Art, 

Moebius, and Dolls. Each image is tested under twelve different 

radiometric conditions. Six of the twelve kinds of radiometric 

changes are controlled by exposure and the remaining six are 

controlled by illumination. To determine the weighting value in Eq. 

18, we compared the error rates according to the weighting values 

from 0 to 1. The graph of the error rate change according to the 

weighting value is depicted in Fig. 4. 

 

 
Figure 3. Error Rate Change 

 

In Fig. 3, the x-axis represents the weighting value 𝛼 and the 

y-axis means the error rate. the error rate is represented as the 

percentage. The diamond points represent the error rates under 

exposure changes. The square points mean the error rates under 

illumination changes. Depending on the results of Fig. 3, the 

weighing value 𝛼 was set to 0.7 for the experiment. 

4.2 Error Rate and Cost Computation Time 
For the objective performance evaluation, we used the bad 

pixel rate as the error rate comparison standard. We measured error 

rates in non-occluded regions. Table 1 shows error rates under 

exposure changes. 

In Table 1, the first column shows test images and their 

conditions. There are two numbers next to the image name for each 

test image. The left side number indicates the exposure level of the 

left viewpoint image and the right side number indicates that of the 

right viewpoint image. The exposure level ranges from 0 to 2. The 

intensity + gradient method uses intensity and gradient values for 

the similarity measure [3]. The MANCC method is our another 

method that was published in other conference [5, 6]. This method 

uses the census transform instead of the hue transform to remove 

the gamma exponent. The average error rate obtained in the non-

occluded region is the smallest for our method when compared to 

other conventional methods. 

 
Table 1: Error Rates under Exposure Changes 

 
Intensity + 
gradient [3] 

ANCC [4] 
MANCC 

[5, 6] 
Our 

method 

Aloe(0_0) 12.74 21.03 20.43 13.44 

Aloe(0_1) 34.55 22.15 35.12 28.53 

Aloe(0_2) 42.4 21.72 33.37 33.77 

Aloe(1_1) 10.43 14.03 14.63 12.24 

Aloe(1_2) 19.77 13.82 14.83 15.65 

Aloe(2_2) 9.85 11.73 12.47 11.93 

Art(0_0) 15.05 33.8 32.74 18.46 

Art(0_1) 42.78 34.92 43.25 36.20 

Art(0_2) 54.05 38.95 43.06 46.17 

Art(1_1) 12.82 21.41 19.62 15.88 

Art(1_2) 28.43 23.91 24.86 26.21 

Art(2_2) 14.84 20.79 19.41 18.3 

Moebius(0_0) 14.8 25.37 24.68 15.35 

Moebius(0_1) 33.42 24.85 23.55 22.17 

Moebius(0_2) 39.13 29.15 24.81 27.70 

Moebius(1_1) 11.69 17.26 16.86 13.02 

Moebius(1_2) 20.54 22.12 18.31 18.08 

Moebius(2_2) 13.98 16.72 16.75 15.79 

Dolls(0_0) 11.71 25.13 24.69 13.19 

Dolls(0_1) 39.47 31 43.33 35.93 

Dolls(0_2) 46.83 32.83 45.86 44.31 

Dolls(1_1) 8.85 16.93 16.49 11.16 

Dolls(1_2) 30.16 20.09 18.55 24.94 

Dolls(2_2) 9.4 12.73 12.09 12.26 

Avg. 24.07 23.02 24.99 22.11 

 

Table 2 represents error rates under illumination changes. 

Unlike the exposure level, the illumination level ranges from 1 to 3. 

In Table 2, all error rates were measured in non-occluded regions. 

The average error rate of the MANCC has the smallest value 

among implemented algorithms, including our method. However, 

our method performed better than the intensity + gradient method. 

Error rates are graphically illustrated in Figs. 4 and 5 to make 

it easier to analyze error rate variations caused by radiometric 

changes. Fig. 4 shows the error graph for exposure changes and 

Fig. 5 represents the error graph for illumination changes. Both 

figures represent the average error rates of all test images for each 

radiometric condition. 

In Fig. 4, the conventional ANCC shows the most stable 

performance under radiometric changes. In Fig. 5, both the 

conventional ANCC and the MANCC have more stable error rate 

variation than that of the proposed method. However, our method a 

better performance than that of the intensity + gradient method. 
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Table 2: Error Rates under Illumination Changes 

 
Intensity + 
gradient [3] 

ANCC [4] 
MANCC 

[5, 6] 
Our 

method 

Aloe(1_1) 10.43 14.03 14.63 12.24 

Aloe(1_2) 17.69 17.35 28.7 16.49 

Aloe(1_3) 33.34 18.98 26.82 24.50 

Aloe(2_2) 10.05 13.73 14.84 11.39 

Aloe(2_3) 24.83 18.84 20.94 20.09 

Aloe(3_3) 10.1 14.9 15.52 11.10 

Art(1_1) 12.82 21.41 19.62 15.88 

Art(1_2) 21.7 23.27 20.53 20.67 

Art(1_3) 43.4 35.92 32.66 41.16 

Art(2_2) 12.75 20.74 19.22 16.07 

Art(2_3) 37.85 30.05 27.97 37.07 

Art(3_3) 13.12 20.79 18.74 16.25 

Moebius(1_1) 11.69 17.26 16.86 13.02 

Moebius(1_2) 17.28 18.06 16.26 16.23 

Moebius(1_3) 32.83 22.24 20.1 28.03 

Moebius(2_2) 12.64 18.23 16.92 14.17 

Moebius(2_3) 25.8 20.28 18.54 23.09 

Moebius(3_3) 12.61 17.3 15.71 13.29 

Dolls(1_1) 8.85 16.93 16.49 11.16 

Dolls(1_2) 20.66 18.81 16.67 18.78 

Dolls(1_3) 53 28.99 28.17 46.45 

Dolls(2_2) 8.7 16.13 15.09 11.03 

Dolls(2_3) 37.65 22.66 21.11 33.31 

Dolls(3_3) 9.21 15.39 14.13 11.50 

Avg. 20.79 20.1 19.84 20.12 

 

 
Figure 4. Error Rate Graph for Exposure Changes 

 

 
Figure 5. Error Rate Graph for Illumination Changes 

 
Table 3: Cost Computation Time Comparison 

Algorithm Time (sec.) 

Intensity + gradient [3] 0.4 

ANCC [4] 116.93 

MANCC [5, 6] 39.07 

Proposed method 0.4 

 

Table 3 represents the time required to compute the cost. As a 

result, we can confirm that the proposed method is faster than the 

conventional ANCC and the MANCC. The resulting images are 

shown in Fig. 6. In Fig. 6, the results of Aloe, Art, Moebius, and 

Dolls are displayed in order from top to bottom. Those are the 

matching results between illumination level 1 and level 3. 

5. Conclusion 
The stereo matching method under varying radiometric 

factors causes disparity errors in the resulting disparity map. The 

ANCC is one of the measures for the illumination invariant stereo 

matching. It performs well under various exposure and 

illumination conditions. However, it incurs significant cost 

computation time because of the bilateral filtering process and the 

patch-based measure. To reduce the cost computation time, we 

proposed the pixel-based ANCC. The proposed method uses the 

global mean value instead of the bilateral filter to remove the scale 

factor. Additionally, it also uses the hue transform to remove the 

gamma value. The performance of the proposed method was 

slightly worse than that of the conventional ANCC method, but the 

cost computation time was faster than that of the ANCC. 
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(a) Left Viewpoint Image (b) Intensity+Gradient [3]        (c) ANCC [4]              (d) MANCC [5, 6]            (e) Our Method             (f) Ground Truth 
Figure 6. Resulting Images 
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