Reprinted from
Journal of Imaging Science and Technology® 61(1): 010403-1-010403-13, 2017.
(© Society for Imaging Science and Technology 2017

Architectures and Codecs for Real-Time Light
Field Streaming

Péter Tamas Kovacs
Tampere University of Technology, Tampere, Finland
Holografika, Budapest, Hungary
E-mail: peter.t.kovacs@tut.fi

Alireza Zare
Tampere University of Technology, Tampere, Finland
Nokia Technologies, Tampere, Finland

Tibor Balogh
Holografika, Budapest, Hungary

Robert Bregovic and Atanas Gotchev
Tampere University of Technology, Tampere, Finland

Abstract. Light field 3D displays represent a major step forward in
visual realism, providing glasses-free spatial vision of real or virtual
scenes. Applications that capture and process live imagery have to
process data captured by potentially tens to hundreds of cameras
and control tens to hundreds of projection engines making up the
human perceivable 3D light field using a distributed processing
system. The associated massive data processing is difficult to scale
beyond a specific number and resolution of images, limited by the
capabilities of the individual computing nodes. The authors therefore
analyze the bottlenecks and data flow of the light field conversion
process and identify possibilities to introduce better scalability.
Based on this analysis they propose two different architectures for
distributed light field processing. To avoid using uncompressed video
data all along the processing chain, the authors also analyze how
the operation of the proposed architectures can be supported by
existing image/video codecs. (© 2017 Society for Imaging Science
and Technology.

INTRODUCTION

Three-dimensional (3D) displays!? represent a new class
of terminal devices, that make a major step forward in
realism toward displays that can show imagery indistin-
guishable from reality. 3D display technologies use different
approaches to make the human eyes see spatial information.
While the most straightforward approaches use glasses or
other headgear to achieve separation of left and right views,
autostereoscopic displays achieve similar effects without the
necessity of wearing special glasses. Typical autostereoscopic
display technologies include parallax barrier,® lenticular
lens,* volumetric,” light field®” and pure holographic®
displays, most of them available commercially, each with

Received July 17, 2016; accepted for publication Oct. 30, 2016; published
online Dec. 20, 2016. Associate Editor: Hideki Kakeya.

54

its unique set of associated technical challenges. Projection-
based light field 3D displays’~!! represent one of the
most practical and scalable approaches to glasses-free 3D
visualization, achieving, as of today, a 100 Mpixel total 3D
resolution and supporting continuous parallax effect.

Various applications where 3D spatial visualization has
added value have been proposed for 3D displays. Some
of these applications involve displaying artificial/computer
generated content, such as CAD design, service and mainte-
nance training, animated movies and 3D games, driving and
flight simulation. Other applications require the capturing,
transmission/storage and rendering of 3D imagery, such
as 3D TV and 3D video conferencing (3D telepresence).
From the second group, applications that require live 3D
image transmission are the technically most demanding,
as 3D visual information has much more information
content compared to its 2D counterpart. In state of the
art 3D displays, total pixel count can be 1-2 orders of
magnitude higher than in common 2D displays, making such
applications extremely data intensive.

We focus on the problems associated with applications
that require real-time streaming of live 3D video. We consider
projection-based light field 3D displays as the underlying
display technology (with tens or hundreds of projection
engines) coupled with massive multi-camera arrays for
light field capturing (with tens or hundreds of cameras).
We explore possibilities that can potentially work in real
time on today’s hardware. Please note that the majority
of the problems discussed here also apply to other 3D
capture and display setups in which the necessary data
throughput cannot be handled by a single data processing
node, and as such distributing the workload becomes
necessary. Our novel contribution presented in this article
lies in: analysis of the typical data flow taking place during

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

mailto:peter.t.kovacs@tut.fi

converting multiview content to display-specific light field
representation; analysis of bottlenecks in a direct (brute
force) light field conversion process; presentation of two
possible approaches for eliminating such bottlenecks; and a
suitability analysis of existing image and video codecs for
supporting the proposed approaches.

The article is organized as follows. First light fields and
light field displays, as well as different content generation
and rendering methods for light field displays are introduced.
Then the proposed architectures for scalable light field
decompression and light field conversion are described,
followed by a comparative analysis of the discussed architec-
tures and codecs.

LIGHT FIELDS, LIGHT FIELD DISPLAYS AND
CONTENT CREATION

The propagation of visible light rays in space can be described
by the plenoptic function, which is a 7D continuous function,
parameterized by location in 3D space (3 parameters), angles
of observation (2 parameters), wavelength and time.'? In
real-world implementations, a light field, which is a simpli-
fied 3D or 4D parameterization of the plenoptic function, is
used, which allows to represent visual information in terms of
rays with their positions in space and directionality.!*1* In a
4D light field, ray positions are identified by either using two
planes and the hit point of the light ray on both planes, or by
using a single hit point on a plane and the direction to which
the light ray propagates. This 4D light field describes a static
light field in a half-space. For a more detailed description, the
reader is referred to Ref. 15.

Having a light field properly reproduced will provide
the user with 3D effects such a binocularity and continuous
motion parallax. Today’s light field displays can typically
reproduce a horizontal-only-parallax light field, which allows
the simplification of the light field representation to 3D.

Optical System and Image Properties

Projection-based light field displays are based on a massive
array of projection modules that project light rays onto a
special holographic screen to reproduce an approximation
of the continuous light field. The light rays originating from
one source (later referred to as light field slices) hit the
screen at different positions all over the screen surface and
pass through the screen while maintaining their directions.
Light rays from other sources will also hit the screen all over
the screen surface, but from slightly different directions (see
Figure 1). The light rays that cross the screen at the same
screen position but in different directions make up a pixel
that has the direction selective light emission property, which
is a necessary condition to create glasses-free 3D displays.
By showing different but consistent information to slightly
different directions, it is possible to show different images to
the two eyes, with a specific displacement. Also, as the viewer
is moving, eyes will see the other (previously unseen) light
rays emitted—causing motion parallax effect. As the angular
resolution between light rays is typically below 1°, the motion
parallax effect is smooth; as the viewing angle can be up to

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

Light ray generators

o

{/
\// \\

yd

/
\ Holographic
\\ \ \ f/ screen

Ohserver 2

Observer 1

Figure 1. Basic principle of projectionbased light field displays:
projection modules project light rays from the back, toward the
holographic screen. Obiject points are visible where two light rays appear
fo cross each other consistently. Human eyes can see different imagery af
different locations due to the direction selective light emission property of
the screen.

180°, the image can be walked around. The 3D image can be
observed without glasses, and displayed objects can appear
floating in front of the screen, or behind the screen surface,
like with holograms.

This image formation is achieved by controlling the
light rays so that they mimic the light field that would be
present if the real object would be placed to the same physical
space, up to the angular resolution provided by the projection
modules. Such glasses-free display technology has dramatic
advantages in application fields like 3D T'V, and especially 3D
video conferencing, where true eye contact between multiple
participants at both sides can only be achieved by using
a 3D display.!® These same applications require real-time
processing (capture, transmission, and visualization) of live
images, which has special requirements on the rendering
system.

Projection-based light field displays from Holografika
have been used for the purposes of this work. The interested
reader is referred to Ref. 7 for a complete description of the
display system. Note that other projection-based light field
displays based on very similar architectures also exist;'%-!1:17
thus our findings are relevant for those displays too.

Rendering System and Data Flow
The previously described distributed optical system is served
by a parallel rendering system, implemented as a cluster of
multi-GPU computers. In the simple case, each GPU output
drives a single optical module, multiple outputs of the same
GPU correspond to adjacent optical modules, while one
computer (having multiple GPUs) corresponds to a bigger
group of adjacent modules. As in Ref. 18, we define the part
of the whole light field that is reproduced by a single optical
module a light field slice. One such slice is not visible from a
single point of observation, nor does it represent a single 2D
view of the scene. The set of light rays contained in such a
slice is determined by the optical setup of the display and is
calculated during the design process.

The cluster nodes are connected through a network (for
example, Gigabit Ethernet, Infiniband, or 40 Gbit Ethernet),

55

which carries all the data to be rendered/visualized, unless
it is precomputed and stored locally in the rendering nodes.
The data received from an external source first needs to travel
through the network, in the RAM of the rendering nodes,
uploaded to and processed by the GPUs, output on a video
interface, and finally displayed by the optical modules. The
fastest light field conversion technique currently employed
in light field rendering software is interpolation of light rays
from the nearest samples. All data that contributes to the
calculation of the color of a specific outgoing light ray thus
needs to be available in the GPU responsible for that light
ray.

Content Creation for Light Field Displays

For the sake of achieving the highest possible light field
quality on the display side, we prefer to use a dense set
of input views, so that no depth estimation and virtual
view synthesis is necessary to perform the light field
conversion; thus the rendering process involves light field
interpolation only. This approach has been successfully
used on many occasions for light field displays resulting in
crisp and artifact-free images regardless of scene complexity,
material properties, or visual effects involved. Therefore, this
seemingly brute-force approach is preferred also for live
imagery, so that any type of scene can be handled with no
view synthesis artifacts.

While this requires a high number of capture cameras,
installing such a rig of low cost cameras is feasible in fixed
settings (such as a film studio or a video conferencing room).
Installing one for capturing events, while more demanding,
is also possible and is done commercially!® as well as for
experimental projects (although most of these target free
viewpoint viewing and are not necessarily aware that the
captured input can also be used as a light field).

If the captured light field is to be transmitted over
longer distances, or stored, it is absolutely necessary to
compress it due to the large volume of data. It might even
be necessary to compress the video streams captured by
the cameras (preferably inside the cameras) to make the
data throughput manageable. While compressing tens or
even hundreds of views may seem counterintuitive due
to reasons of bandwidth requirements, recent results have
shown that compressing an 80-view XGA resolution light
field stream (while keeping good visual quality) is not much
more demanding than compressing a 4K video signal in
terms of consumed bandwidth.?® It has to be noted that the
complexity of compressing or even decompressing this many
views using the technology discussed in the article does not
allow for real-time operation today.

One of the most well-known camera arrays for capturing
light fields is the Stanford Multi-Camera Array,?! consisting
of 128 video cameras that can be arranged in various layouts,
such as a linear array of parallel cameras or a converging
array of cameras having horizontal and/or vertical parallax.
Numerous other multi-camera setups have been built since
then for both research and commercial purposes, e.g., the
100-camera system at Nagoya University,?> the 27-camera

56

system at Holografika®® (discussed later in this article),
or the 30-camera system from USC Institute for Creative
Technologies.?* These camera systems capture a sufficiently
dense (in terms of angular resolution) and wide (in terms
of baseline) light field, so that the captured data can be
visualized on a light field display without synthesizing
additional views beforehand.

One can also use a single moving camera for capturing
a static scene,?” or a static camera with a rotating object?®
to obtain a light field. As the last two approaches capture a
static light field, they are not in the scope of the discussion
presented in this article, which is about processing light
field video. Also please note that plenoptic, range, and other
single-aperture capture methods are not discussed in this
article, as those cannot capture a scene from a wide viewing
angle, unless the captured scene is extremely close (small).

When imagery is derived from a geometrical represen-
tation (that is, rendered from a 3D model), the resulting 2D
image is a projection of the 3D scene. Synthesizing 2D views
from many viewing angles is relatively straightforward in this
case, as creating an array of synthetic cameras and rendering
additional images from those is a matter of scripting in most
modeling tools such as 3ds Max, Maya, or Blender. As such,
rendering a dense set of views to serve as light field content is
only challenged by increased rendering time, and potentially
2D-only visual effects applied in the rendering pipeline
which do not work consistently across multiple views. The
practicality of this approach has been demonstrated with the
Big Buck Bunny light field sequences,”” or the San Miguel
sequence.”® Densely rendered sequences can be used for
light field displays without synthesizing additional views.
When rendering synthetic scenes, it is also relatively easy to
extract ground truth depth information, as depth maps are
commonly used during rendering. Thus, depth information
is available as a byproduct of the process.

There are attempts to capture and represent LF content
with sparser camera views while estimating the geometry
(depth) of the scene and augmenting the available views
with depth maps to be used for subsequent intermediate
view interpolation (synthesis) in order to provide the missing
rays. Many techniques have been proposed for rendering
intermediate views from a sparse set of views,?’ as well as
rendering extrapolated views from narrow angle content.*
Most of these techniques are rooted from stereo matching
for depth estimation, and depth-based view synthesis by pixel
shifting®! or warping,’? and improving the resulting views by
hole filling,?* inpainting,** and other techniques. As soon as
these techniques can provide sufficient quality and work in
real time to generate the rays needed for the display based on
live imagery, they will be used in LF displays.

Light field conversion is possible without explicit
geometry/depth information about the scene. The simplest
technique involves resampling the light field, which can be
implemented by interpolating the 4D light field function
from the nearest samples.'* More involved is the lumigraph
approach,!? where a rough geometric model is obtained,
which is then used to improve the quality of the rendered

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

Captureand
encoding

Decoder]—)[Renderer]—)[Slggz?:}]j
D () o A
Decoder]—)[Renderer Hl\azzi?lc]j
T () e i
Decoder]—)[Renderer]—)[I\C/)IFC))::;EEIIL]j
T (R o A

Decoding full images + rendering

Figure 2. The bruteforce decoder—renderer architecture. All encoded image data is received and fully decoded by each rendering node. The renderer

then uses parts of the decoded image data to render the light field.

light field by defining the depth of the object being rendered,
thus allowing for better ray space interpolation.

When it comes to live imagery, dense image-based
techniques, while requiring a massive amount of images
captured or rendered, result in the highest possible light field
quality. This dense set of input views is easily converted to
display-specific LF slices, however at the expense of getting
the large number of input pixels to be available in the display’s
rendering nodes. The sheer amount of data necessitates novel
streaming architectures and codecs that are able to handle
such imagery.

Light Field Streaming

When performing light field streaming from an array of
cameras, the simplest approach is to have all images captured
by the cameras transferred to the GPUs of all rendering
nodes to make sure all pixels that might be required
during the light field conversion process are immediately
available. This brute-force approach has previously been
implemented and described in Ref. 23, and illustrated in
Figure 2. In that system, a linear 27-camera array was
used to feed a light field display. The cameras performed
MJPEG compression of the images in hardware, which
have been transferred to all rendering nodes simultaneously.
The rendering nodes decompressed all 27 MJPEG images
in parallel, and performed light field conversion on their
respective light field slices on GPU. The performance of the
whole system reached 15 FPS with 640 x 480 images, and 10
FPS with 920 x 720 images back in 2009.

The brute-force approach outlined above has several
possible bottlenecks. First, the time necessary to decode all
the JPEG images (either on CPU or GPU) increases linearly
with the number of images (that is, number of cameras),
and the resolution of the images. Second, the network
bandwidth required to transfer all the compressed images
to the rendering nodes increases linearly with the number
and resolution of images. Third, the memory required to

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

store the uncompressed images increases linearly with the
number and resolution of captured images (both CPU and
GPU memory).

If we consider an 80-view input (we used the BBB light
field test sequences),”” each view with 1280 x 768 resolution
and 24 FPS, uncompressed, then the bandwidth required to
transmit all pixels is 45.3 Gbit/s, which is difficult to reach
with common network technologies.

Considering the same input, using 1:10 ratio JPEG
compression, still gives a total bandwidth requirement of
4.5 Gbit/s and an averaged PSNR of 44.65 dB calculated over
the luminance channel. While it is possible to transmit this
amount of data through a 10- or 40-Gigabit Ethernet channel
in real time, it is not feasible to decompress and process
it. Using the fastest available libjpeg-turbo JPEG decoder
library,35 and a 6-core i7-5930K CPU@3.5 Ghz, one can
decode 80 such views in ~43 ms. If the system performs
JPEG decoding only, this results in ~23 FPS decoding speed,
and this does not even include any further processing or
rendering. Achieving higher resolution or processing a wider
or denser set of views is clearly limited by hardware, and thus
not scalable.

If we choose H.264 instead of JPEG for compressing the
views using the x264 encoder®® and maintaining a similar
PSNR with QP = 20 (QP: Quantization Parameter, which
determines image quality versus bandwidth in the video
encoder), and use ffmpeg®’ to decode the 80 views on the
same CPU in parallel, we can reach ~16.94 FPS for decoding
all views. In this measurement we used a RAM disk to avoid
any significant I/O overhead.

Clearly, such a system having decoding time linear with
the number of views and total pixel count cannot scale
beyond a specific number of input cameras and resolution,
given a specific hardware configuration. While the hardware
can be upgraded to some extent, the processing power of
a single node cannot be increased indefinitely (nor is it
economical).

57

Views

[
AT W
b
A . ‘-’
Displayindependent LF 'ﬁ:ﬂ;\,
o
Display specific LF VA!(//,‘!;[/’

LF slices

Figure 3. A set of perspective views depicting the same scene are
considered as a display independent light field representation, as it can
be used fo visualize the light field on any suitable 3D display. The images
required by a specific display’s projection modules are referred to as light
field slices, and the set of light field slices are therefore referred 1o as a
display-specific light field.

While increasing the number of cameras and/or the
resolution of these cameras increases the quality of the
generated light field, the number of rendered light rays
remains constant. It seems counterintuitive to use an
increasing amount of input data to generate the same amount
of outgoing light rays, and, as we will see in the next sections,
this can be avoided.

Light Field Conversion and Data Access Patterns

Light field conversion transforms many input 2D views
(which can be considered as a display independent light
field representation) into light field slices, as required by
the optical modules of the targeted light field display. One
such light field slice is composed of many outgoing light
rays (for example, 1024 x 768 pixels in case of an XGA
optical module), which are in turn interpolated from pixels
from many input views. Starting from views, we can also
see that one input view typically contributes to many light
field slices. Figure 3 shows that views typically contribute to
many adjacent light field slices, and that light field slices are
typically composed of pixels originating from many adjacent
views.

An efficient implementation of the light field conversion
process is using weighted look-up tables that map multiple
pixels originating from views to an outgoing light ray,
with the weighting appropriate for the given light ray.
The pixel correspondences stored in the look-up table are
calculated based on the geometry of the captured views
(intrinsic and extrinsic parameters) and the geometry of
the optical modules (display design, calibration data). The
light field conversion process only needs to look up and
blend the necessary view pixels to generate an outgoing light
ray. As such, as long as the capture configuration, display
configuration, and mapping between them does not change,
the look-up tables remain constant, the same pixel positions
are used while generating the same set of light rays.

In the light field conversion algorithm used with
HoloVizio displays today, which uses a variant of the light
field conversion algorithm described in Ref. 14, a maximum
of two captured pixels contribute to one outgoing light
ray. That is, the maximum number of light rays used by
a rendering node cannot be more than twice the number

58

Figure 4. left: adjacent rendering nodes consume adjacent, slightly
overlapping parts of a source view. Red, green, and blue overlays [vertical
stripes) represent the areas of the image used by three rendering nodes
that drive adjacent optical modules. The areas are slightly overlapping.
Right: Rendering nodes that drive optical modules positioned further away
from each other use a disjoint set of pixels from the same source view,
here the used areas are further away from each other.

of light rays generated by the same node, regardless of the
number of total pixels captured. Take a HoloVizio 722RC
display with 72 optical modules as an example, served by 6
rendering nodes, each rendering adjacent light field slices for
12 optical modules. Consider again an 80-view input, each
view with 1280 x 768 resolution. Checking which pixels of a
specific view are used by each rendering node, we can realize
that rendering nodes that drive adjacent optical modules use
slightly overlapping parts of the view (see Figure 4). However,
rendering nodes that are driving optical modules positioned
further from each other use a disjoint set of pixels from the
input view. None of the other pixels of this view contribute
to the final image. These pixels do not have to be transmitted
to the renderer. It may even happen that a specific rendering
node does not use any pixels of a specific view. In this case,
dropping the view on the specific rendering node would not
have any effect on the final image.

These properties of the typical data access patterns of
light field conversion can be exploited to make the system
more scalable, and eventually achieve real-time operation
regardless of the number and resolution of the incoming
views. Two proposed solutions are described next.

STREAMING ARCHITECTURES AND CODECS
Two-Layer Architecture

One possibility to scale the decompression workload without
introducing any new bottlenecks is to introduce two layers
in the system: one for decoding the incoming streams
in parallel, and a second one to perform the light field
conversion (see Figure 5). The nodes in the first layer
decompress the video streams in a way that the decoding
workload is distributed equally (so that given N views and M
nodes, one node decodes N/M video streams). The number
of nodes in the first layer should be chosen so that given the
processing power of each node, we have enough nodes to
decompress all the individual video streams in real time and
transmit them to the second layer.

It is easy to see that in this case the processing power
of the individual nodes can be chosen arbitrarily—as long
as one can decode at least one video stream, the number
and processing power of the nodes can be traded off. The
second layer requests uncompressed pixels from the first
layer through a high-speed network. As we have seen before,

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

Camera Encoder

A 4

Encoder

Decoder

Decoder

2\ [Optical
) " Module
1 | [Optical
“| Module

Renderer

Renderer

y

O)
w o
3 3
o °
- -~

O

Encoder

1]

Y

Encoder

\

Decoder

Decoder

VAN

[Optical
) “| Module

| Renderer

Rend >
enderer | Module

AN

(

Encoder

l
@
3
1]
=
o1

o e o —] — o — o -

ﬂﬂ%ﬂﬂﬂ
T T T T T

Decoder

[Optical
“\ Module

Renderer

a
1

3 1 D
[Optical]:]
8

a

]] [Optical
Camera Encoder > Decoder Renderer N
> l I _/ (Module
Captureand) Layer 1: - Layer 2:
encoding Decoding High Rendering
Speed
Interconnect

Figure 5. The two-layer decoder-renderer architecture. The first layer decodes video streams in parallel, while the second layer requests portions of

uncompressed video data on demand.

the number of requested pixels can be maximum twice the
number of pixels generated by a specific node. In case of
driving 12x1280 x 800 resolution optical modules, this can
be up to 1.41 Gbits/second, assuming 24 FPS, which is in
the manageable range inside a rendering cluster. To avoid
the collection and transfer of single pixels, we can transfer
rectangular blocks which form the bounding box of the
required pixels. Due to the compact shape of the required
image regions, a bounding box does not add too much extra
pixels to transmit, but has the benefit of being continuous in
memory.

All rendering nodes require a different set of pixels;
thus, each will request the transmission of different, slightly
overlapping regions. As the regions are fixed if the camera
settings, display parameters, and the mapping between them
are fixed, the rendering nodes can subscribe to receive these
fixed image regions on each new frame. The bandwidth
required for transmitting and receiving the decompressed
image regions can be scaled with appropriately choosing the
number of processing nodes in both layers.

While the first layer can be connected to the data source
using a network necessary to transmit the compressed video,
the first and second layers are connected using a high-speed
network to be able to carry the uncompressed image regions.

If the selected network architecture can take advantage
of transferring large chunks of continuous in-memory blocks
more efficiently than doing a large number of small transfers
(for example InfiniBand RDMA),?® then the images can be
stored rotated with 90° in memory, so that full height vertical
blocks become a continuous memory block, assuming the
common line-by-line interleaved image storage format.

In order to reduce the network load between the first
and second layer, it is possible to employ a slight, fixed ratio
compression method that can be decompressed even when

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

only partially transmitted, such as the S3TC/DXTn texture
compression method that is available on virtually all GPUs.

One-Layer Architecture with Partial Decoding

The second proposed architecture does not require two
processing layers, as decoding and light field conversion
happens on the same processing nodes (see Figure 6).

In this case however, decoding needs to happen in real
time regardless of the number of views to be decoded. To
achieve that, we can take advantage of the fact that each
renderer is using only portions of the views, as shown
before. As we have seen before, the main bottleneck is
decompression of all parts of all views, even those that are
finally left unused in the specific rendering node. Therefore,
assuming that we can save time by skipping the decoding of
some views, and also skipping the decoding of image regions
that are not needed, we can decode only those image regions
which are necessary on the current rendering node. Using
this approach, the decoding workload can be reduced with
different codecs, if certain conditions are met.

This, however, poses unusual requirements on the
image/video codec used for the transmission of the views. In
the following subsections, we analyze common image/video
codecs from this perspective: JPEG, JPEG2000, H.264, and
HEVC. In the case of JPEG and JPEG2000, frames are
encoded independently. In the case of H.264 and HEVC, we
enable interframe compression.

In a horizontal-only-parallax light field display, the
image regions are typically vertical. H.264, HEVC, and
JPEG2000 support vertical slice shapes, while in the case of
JPEG, which supports only horizontal subdivision, rotating
the image before encoding is necessary.

The configuration used for all tests described below is a
6-core i7-5930K CPU@3.5 Ghz PC with a GeForce GTX 960
GPU with 2GB RAM, and all I/O performed on RAM disk.

59

Camera Encoder

Camera Encoder

Camera Encoder

Camera Encoder

Camera Encoder

7

>

Decoder+Renderer

"\ [Optical
J [| Module

N7 | e
do‘. ‘4’0‘ X

0

[Optical
Decoder+Renderer 7T Module
1 [Optical

Decoder+Renderer > Module]j
1 | .[Optical
Decoder+Renderer T Module

bV
X3

AV

v

Camera

07 07 07 01 07 U1
LT T T T T

Encoder
)

Captureand
encoding

Y [Optical
Decoder+Renderer) :{MEC;E?OE
Decoder+Renderer ‘[Optical

) | Module

Decoding + rendering

Figure 6. The onelayer decoder-renderer architecture. Decoders and renderers are running on the same nodes. Decoders decode those parts of the
video that the renderer on the same node will need for rendering. No data exchange except frame synchronization takes place between the nodes.

Figure 7. A frame subdivided into horizontal H.264 slices. In an Hrame,
these slices can be decoded independently.

The experiments were performed on the Big Buck Bunny
light field sequences,?” more specifically the Flowers scene.
Other content (i.e., Balloons sequence® in Figures 9 and 10)
is used only for illustration purposes.

H.264

H.264%° can partition a full frame into regions called slices,
which are groups of macroblocks (please note these are
different from light field slices). An encoder is commonly
configured to use a single slice per frame, but can also use
a specific number of slices (see Figure 7). This configuration
may also specify the way macroblocks are partitioned into
slices. Slices are self-contained in the sense they can be parsed
from the bitstream without having the other slices. Slicing
originally serves the purposes of providing error resilience
and also to facilitate parallel processing. Slicing introduces
some increase in bitrate, but this is minor compared to the
overall bitrate, as seen in Figure 8.

To see how H.264’s slicing feature can support partial
decoding of video streams, we need to consider how it
is implemented in the encoder and decoder. In H.264
we can differentiate Intraframes (I-frames) which are

60

—— QP=20
—— QP=22
QP=24
— QP=26
QP=28
—— QP=30
——QP=32|
— QP=35
—— QP=38

Bitrate(bit/s)

0 5 10 15 20 25 30 35 40 45 50
Number of slices

Figure 8. Bitrate increase caused by slicing a video frame info an
increasing number of slices, shown for different QPs.

encoded independently from other frames in the video
sequence, and hence employ prediction only inside the
frame. Predicted frames (P-frames) and Bidirectionally
predicted frames (B-frames) use image information of
previously encoded/decoded frames in the encoder/decoder,
exploiting similar blocks of pixels in subsequent frames
moving across the image in time, typically representing a
moving object.

When using multiple slices, encoders disable intraframe
prediction across slice boundaries when encoding I-frames.
Therefore, it is possible to decode only parts of an I-frame
by decoding the respective slices and skipping the other
slices (see Fig. 9). On the other hand, when performing
interframe prediction in P-frames and B-frames, all encoders
we have checked disregard slice boundaries, and perform
motion prediction across slice boundaries. This means that
the decoding process will also assume that the frame to
be used for motion compensation is fully available in the

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

Figure 9. When using Hrame only encoding in H.264, dropping a
slice has no effect on the remaining parts of the image. This image has
been subdivided into three slices, and the middle slice dropped prior to
decoding.

4.

Figure 10. When using P- and Bframes motion vectors pointing out from
the undecoded region (middle slice) propagate bogus colors into the slices
which we infend to decode.

decoder. If, due to partial decoding of the previous frames,
this condition is not met, the image regions that correspond
to skipped slices will contain bogus color in the Decoded
Picture Buffer.

Subsequently the motion compensation process will
copy bogus colors from the buffer to the image being
decoded, whenever a motion vector goes across the boundary
of a missing slice (see Fig. 10). When such an erroneous
decoded frame is used as a basis of motion compensation,
the error further propagates from the undecoded regions as
the decoder proceeds further in the stream. Only on the next
I-frame the partially decoded image will be correct again,
as the decoder does not use any other frames for decoding
I-frames.

Therefore, skipping the decoding of slices is possible
only if the encoder is instructed not to perform motion
prediction across slice boundaries (see Figure 11). As this is
not available as an option in any encoder we have evaluated,
this functionality has been implemented by modifying the

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

Figure 11. Difference of motion vectors in normal encoding and with
selfcontained slices. Nofice that in the normal case (fop) motion vectors
cross slice/tile boundaries. In the self-contained case (bottom) no motion
vectors cross the slice/tile boundaries.

reference encoder JM 18.6.4! Our implementation is similar
to that of Ref. 42, although serving a different purpose.

With restricting the motion vectors, we can achieve truly
self-contained slices in the sense that decoding only selected
slices becomes possible even for P- and B-frames, while still
maintaining a standard conforming bitstream, though with
a minor loss in coding efficiency due to partially restricting
motion vectors. Implementation details have been described
in our previous article.*

Once the encoded bitstream with self-contained slices
is available at the decoder, there are several options to
achieve partial decoding and thus saving decoding time. It is
possible to modify the bitstream by dropping NAL units that
correspond to the slices we do not wish to decode, like they
were dropped by the network. While this results in a corrupt
bitstream, some decoders (e.g., ffmpeg) can decode the
remaining parts of the image, resulting in sublinear speedup,
as shown in Figure 12. In this case, error resilience options
have been disabled in the decoder to the extent possible;
however, we suspect that the missing slices in the bitstream
still result in some decoding time overhead. Another option
is to modify the decoder to explicitly skip the decoding of
specific slices, which requires decoder modification (as this
functionality was also unavailable in all decoders we have
tested).

HEVC

There are many new coding features introduced in HEVC*
compared to H.264, and even a short summary of these
novelties is out of scope in this article. Therefore, we only
focus on differences relevant for our use case, and we refer the
interested reader to Ref. 45 for a summary of other changes
and novel features.

o}

ST

Decoding perfformance (FPS)

1 08 08 07 06 05 04 03 02 01 0
Image area to be decoded

Figure 12. Speedup of ffmpeg H.264 decoder when performing parfial
decoding on videos sliced in 48 slices. The vertical axis shows frames
per second values for decoding 80 views.

Tiles in HEVC are a new concept,’® serving paral-
lelization and packetization purposes. Tiles partition a video
frame into a multiple rectangular partitions. Compared to
slices, tiles provide more flexibility to partitioning and appear
to incur less compression penalty since tiles do not contain
any header. Furthermore, tiles are independent in terms of
entropy coding, as the coder is reinitialized at the beginning
of each tile.

In addition, intraframe prediction is limited within tile
boundaries. In the HEVC interframe prediction scheme,
however, the tile boundaries are disregarded. Similar to the
H.264 case, motion search has to be restricted to remain
inside tile boundaries to ensure partial decoding in P-
and B-frames. Tiling is thus suitable for enabling partial
decoding, and this has been implemented in the HTM
14.0 reference software,*” alongside a tool for bitstream
manipulation that removes selected tiles from the bitstream
before decoding.*®

As the coded tiles may be interleaved with other coded
data in the bitstream and as parameter sets and headers
(e.g., slice segment header) are for the entire bitstream,
a dedicated decoding process is defined for decoding
particular tiles, while omitting the decoding of other tiles.
For that, a tile-based extractor is designed to construct an
HEVC full-picture-compliant bitstream corresponding to the
desired tiles such that a standard decoder can cope with it.

JPEG

Images stored in JPEG* files are typically subdivided into
8 x 8 blocks (Minimum Coding Unit, MCU). The sequence
of these MCUs is basically coded in two parts: the DC
component, which is stored as a difference from the previous
block, as well as the AC components, which are stored as a
sequence of values in a specific ordering, block by block. As
all the values and coefficients are Huffman coded, one needs
to read all Huffman codes to be able to interpret the ones
that are actually needed. Some steps, however can be skipped

62

FPS

r T T T T 0
1 0.8 0.6 0.4 0.2 0
Image area tobe decoded

Figure 13. Speedup of the customized libjpeg-turbo when skipping all
steps after Huffman decoding for the unnecessary image parts.

100
A

/ 80

50

/ 50

40

/ 30
—

FPS

20
10

a & 08 0.6 0.4 0.2 0
Image area to be decoded

Figure 14. Speedup of the customized libjpegurbo when skipping
through the bitsiream using restart markers, also eliminating unnecessary
Huffman decoding.

for the MCUs that are not needed, for example, inverse
DCT, dequantization, color conversion, etc. Unfortunately,
Huffman decoding takes the major part of JPEG decoding
time, according to our profiling of libjpeg-turbo. When
forcing the decoder to skip all the steps after Huffman
decoding for the unnecessary image portions, one can only
gain a rather insignificant speedup, as shown in Figure 13.

There is however an optional feature in JPEG to facilitate
separately entropy coded segments, called Restart inter-
vals/Restart markers, which allow resetting the bitstream
after every N MCUs, letting the decoder skip N MCUs at a
time without decoding anything, by just looking for specific
bytes. If the JPEG encoder can be instructed to use a frequent
restart interval, this feature can facilitate fast skipping of
unnecessary MCUs.

We have implemented this approach too, by modifying
the libjpeg-turbo decoder to skip the unused MCU rows by
skipping through restart markers, as well as skipping all other
processing steps for those MCUs. The speedup in this case is
significant, as shown on Figure 14. For example, by decoding
only the quarter of an image, a 2.4 x speedup can be gained.
While this is still not linear, it is a nice addition to scalability.

The ordering of MCUs in the JPEG stream is fixed;
therefore, restart markers can be only used to create
horizontal strips that can be skipped. If, like in our use
case, vertical strips are necessary, then the images need to

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

/ 8
/ 6
_/

FPS

(%]

1.00 0.80 0.60 0.40 0.20 0.00
Image area to be decoded

Figure 15. Speedup of Comprimato JPEG2000 CUDA-based codec
when performing partial decoding of a single view. The vertical axis shows
frames per second values for decoding 80 views.

be rotated 90° before encoding. Also, as mentioned earlier,
the encoder needs to be set up to include restart markers
at regular intervals, which might not be possible in every
JPEG encoder (for example, JPEG capable cameras often
have a compression quality settings, but no option for restart
markers).

JPEG 2000

JPEG2000°° images can also be partially decoded. This
functionality has been recently introduced in the proprietary
Comprimato JPEG2000 codec,”! the CUDA-based version
of which has been used for testing. Decoding 80 views takes
263 ms when decoding entire 1280 x 768 images, 8 bpp, 4:2:0
subsampling and default compression and decompression
parameters, which accounts for 3.8 FPS operation taking only
decoding into account.

On the other hand, when decoding only selected areas of
each image, decoding time decreases significantly, although
not strictly proportional with the image area, especially when
decoding tiny image areas, as shown on Figure 15. Assuming
that the application needs only the quarter of each image,
a speedup of 54% can be observed, making decoding speed
of 80 views 5.85 FPS. According to Comprimato, the fastest
available GPUs at the time of writing can decode ~2.37
times faster, which corresponds to almost 14 FPS. Thus, very
soon (after gaining a factor of two speedup over current
GPUs) we can expect this solution to work in real time for
the benchmark use case.

The main advantage of using JPEG2000 for this purpose
is that no special considerations are necessary during
encoding, and the partial decompression feature is already
built in the decoder as an option.

COMPARATIVE ANALYSIS

Architectures

The presented two-layer architecture is massively scalable, as
the number of decoders, and the number of renderers can
be chosen according to the performance of the individual
nodes, while the bandwidth required by each rendering node
is upper bounded by the number of pixels driven by each
rendering node. Using this architecture, an arbitrary number

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

/ —4— JPEG
so &
P 8- JPEG2000
40

. 264
/ T 30 H.264
20 == HEVC

1 0.8 0.6 04 0.2 0
Image area tobe decoded

Figure 16. Comparison of overall speed and speedup of different
decoders when decoding partial views. In case of JPEG, restart markers
are used. In case of H.264, our custom self-contained slices are used. In
case of JPEG2000 no special features are used.

of views with arbitrary resolution can be supported. On the
other hand, the high-speed network necessary between the
two layers can make this setup quite costly in a practical case,
as the required bandwidth is more than what can be provided
by a Gigabit Ethernet network. Any codec can be used that
can be decoded by the decoding layer in real time.

The one-layer architecture requires less number of pro-
cessing nodes (as the separate decoding layer is eliminated)
and does not need a high-speed network to connect the two
nodes. On the other hand, to achieve real-time performance
special considerations have to be taken in the video codec
used for feeding the incoming views. The suitability of
different codecs for this architecture is analyzed next.

Codecs

Out initial aim was to find a solution for real-time
decompression of the (partial) views necessary for light field
conversion.

Therefore, our discussion mainly focused on the run-
time performance of decoding, and its improvement when
partial decoding is allowed. Here we directly compare the
different solutions from this perspective. Also important is
the bandwidth required by each codec to achieve same or
similar image quality; therefore, a brief analysis of bandwidth
requirements is presented.

As described before in detail, none of the evaluated
codecs is capable of decoding image portions in a time
proportional with the area to be decoded. While JPEG and
JPEG 2000 show reasonable speedup, this speedup is not
linear; therefore, full scalability cannot be guaranteed for
any number of views or any resolution, as scalability is
only partial. In the case of JPEG, this scalability can only
be exploited if the encoder supports it, and is configured
appropriately.

It is apparent from Figure 16 that JPEG is the clear
winner when it comes to decoding performance, as even
today, >24 FPS decoding can be achieved with using a
publicly available codec with a modification to support
partial decoding for the targeted use case.

63

: —+—JPEG
i | —©— JPEG with 48 restart markers
' H.264 with no slices

H.264 with B slices

H.264 with 6 self-contained slices | |
—B—HEVC with no tiles
—&—HEVC with B tiles
—»—HEVC with 6 self-contained tiles
| —e— JPEG2000

PSNR(dB)

1 i i
3 4 5 5}
Bitrate(bit/s) x 10

Figure 17. Comparison of overall quality versus bitrate of the different
codecs using the configurations discussed in the article. Please note
reported bitrates are for a single view. JPEG and JPEG with 48 restart
markers overlap. The three HEVC curves also overlap.

It comes as no surprise that the decoding performance
advantage of JPEG comes at a cost in bandwidth (see
Figure 17). The bandwidth required by JPEG to achieve
the same quality can easily be 10x higher than, for
example, H.264. JPEG2000 is in between the two in terms
of bandwidth consumption. Please note this comparison
of bandwidth requirements is by no means meant as a
comprehensive comparison of codec efficiency, but just a
rough guideline to see the order of magnitude difference
between the codecs under consideration. For a more general
comparison of different codecs, the reader is referred to
works such as Refs. 52-54.

In all cases except JPEG2000, partial decoding capability
requires some kind of subdivision of the images into
independent regions, which increases the necessary bitrate.
In case of JPEG, the difference is negligible (<0.2%). In
case of H.264 and HEVC, the difference is bigger due to the
restriction of motion vectors.

When restricting motion vectors in H.264 and HEVC,
the more independent areas are defined, the smaller these
areas will become, being even more restrictive in the selection
of motion vectors. Smaller independent regions however
result in less pixels decoded unnecessarily, and thus a possible
higher decoding speedup.

That s, the granularity of the subdivision determines the
tradeoff between bitrate increase and the compactness of the
bounding rectangle that needs to be decoded to gain access
to an arbitrary image region.

Alternatives

To avoid using special codec features and encoder/decoder
side modifications, one may also choose a very simple
alternative solution: subdivide the source videos into vertical
stripes of specific size, and encode them separately, in
parallel. This approach has been used in Ref. 55, and the
authors show good results with this approach for the use case

o4

of panoramic video. This however requires even more bitrate
than the solutions outlined above, as well as a large number
of video streams to be handled synchronously.

Advanced codecs targeting multiview and 3D video,
such as MV-HEVC and 3D-HEVC®® could be used as well,
provided real-time decoders would exist, but unfortunately
this is not the case at the time of writing.

Scalado RAJPEG* is said to enable instant random
access/partial decoding to images. However, RAJPEG was
not made available for testing.

CONCLUSION

We have shown two different approaches to introduce scala-
bility in real-time image-based light field-based applications.
While the two-layer approach can work with any codec
(taking into account the necessary networking load), the
one-layer architecture with partial decoding can only be
achieved by modifying the way well known codecs typically
work (except for the case of JPEG2000). While customization
of codecs is possible to suit this requirement, the possibilities
of forcing off-the-shelf hardware (for example, a camera
capable of providing compressed output) to use this custom
codec are rather limited.

The special use of video codecs as outlined above indi-
cates that current video compression technology is lacking
an important feature. Therefore, we have made steps®®>’
to ensure that next generation video technologies have
low-overhead random access among their requirements, and
this has been accepted in the MPEG FTV requirements
document.’ This work was done in the hope that next
generation video codecs will support this use case natively.

ACKNOWLEDGMENTS
The authors are grateful to Attila Barsi of Holografika for his
support in profiling the light field conversion process.

The research leading to these results has received
funding from the PROLIGHT-IAPP Marie Curie Action
of the People program of the European Unions Seventh
Framework Programme, REA grant agreement 32449.

REFERENCES

1 D.Ezra, G.]J. Woodgate, B. A. Omar, N.S.Holliman, J. Harrold, and
L. S. Shapiro, “New autostereoscopic display system,” Proc. SPIE 2409,
31-40 (1995).

2 J. L. Fergason, S. D. Robinson, C. W. McLaughlin, B. Brown, A. Abileah,
T. E. Baker, and P.J. Green, “An innovative beamsplitter-based stereo-
scopic/3D display design,” Proc. SPIE 5664, 488-494 (2005).

3 D. Sandin, T. Margolis, J. Ge, J. Girado, T. Peterka, and T. DeFanti, “The
Varrier autostereoscopic virtual reality display,” ACM Trans. Graph. 24,
894-903 (2005).

4 C.van Berkel, D. W, Parker, and A. R. Franklin, “Multiview 3D-LCD”
Proc. SPIE 2653, 32-39 (1996).

5 G.E. Favalora, J. Napoli, D.M.Hall, R.K.Dorval, M. Giovinco,
M. J. Richmond, and W.S.Chun, “100 Million-voxel volumetric
display;” Proc. SPIE 4712, 300-312 (2002).

6 G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays,
compressive light field synthesis using multilayer displays with direc-
tional backlighting,” ACM Trans. Graph. 31, 80 (2012).

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

https://doi.org/10.1145/1073204.1073279
https://doi.org/10.1145/2185520.2185576

7T, Balogh, “The HoloVizio system,” Proc. SPIE 6055 (2006).

8 M. Lucente, “Interactive three-dimensional holographic displays: seeing
the future in depth,” ACM SIGGRAPH Comput. Graph. 31, 63-67 (1997).

9 “Method & apparatus for displaying 3D images. by T. Balogh,” US Patent
6,201,565, EP0900501 (1997).

10 N. Inoue, M. Kawakita, and K. Yamamoto, “200-Inch glasses-free 3D
display and electronic holography being developed at NICT,” Lasers and
Electro-Optics Pacific Rim (CLEO-PR) (IEEE, Kyoto, 2013), pp. 1-2.

g, Nagano, A. Jones, J. Liu, J. Busch, X. Yu, M. Bolas, and P. Debevec, “An
autostereoscopic projector array optimized for 3D facial display,” Proc.
SIGGRAPH (ACM, New York, NY, 2013), 2013, Article No. 3.

12 E. Adelson and J. Bergen, “The plenoptic function and the elements of
early vision,” in Computational Models of Visual Processing, edited by M.
Landy and J. A. Movshon (MIT Press, Cambridge, MA, 1991).

13 5.J. Gortler, R. Grzeszczuk, R. Szeliski, and M. E. Cohen, “The lumigraph,”
Proc. SIGGRAPH *96 (ACM, New York, USA, 1996), pp. 43-54.

14 M. Levoy and P. Hanrahan, “Light field rendering,” Proc. SSGGRAPH *96
(ACM, New York, USA, 1996), pp. 31-42.

15 R Bregovi¢, P. T. Kovécs, and A. Gotchev, “Optimization of light field
display-camera configuration based on display properties in spectral
domain,” Opt. Express 24, 3067-3088 (2016).

16 D, Nguyen and J. Canny, “MultiView: spatially faithful group video
conferencing,” Proc. SIGCHI Conf. on Human Factors in Computing
Systems, Oregon (ACM, New York, USA, 2005), pp. 799-808.

17].-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “Optimal
projector configuration design for 300-mpixel light-field 3D display,”
Opt. Express 21, 26820-26835 (2013).

18 p T. Kovacs, Zs. Nagy, A. Barsi, V. K. Adhikarla, and R. Bregovic,
“Overview of the applicability of H.264/MVC for real-time light-field
applications,” Proc. 3DTV Conf. 2014 (IEEE, Budapest, 2014).

19 TileSlice Films [Online]. Available https://vimeo.com/timeslice/videos.

20 A, Dricot, J. Jung, M. Cagnazzo, B. Pesquet, F. Dufaux, P. T. Kovacs, and V.
Kiran, “Subjective evaluation of Super Multi-View compressed contents
on high-end 3D displays,” Signal Processing: Image Communication
(Elsevier, 2015), Vol. 39, Part B, pp. 369-385.

21 B.Wilburn, N.Joshi, V.Vaish, E.-V.Talvala, E.Antunez, A.Barth,
A. Adams, M. Horowitz, and M. Levoy, “High performance imaging
using large camera arrays,” ACM Trans. Graph. 24, 765-776 (2005).

22T. Fujii, K. Mori, K. Takeda, K. Mase, M. Tanimoto, and
Y. Suenaga, “Multipoint Measuring System for Video and
Sound—100-camera and microphone system,” Intl. Conf on
Multimedia and Expo (IEEE, Toronto, Ontario, 2006), pp. 437-440,
DOIL: http://dx.doi.org/10.1109/ICME.2006.262566.

23 T. Balogh and P. T. Kovécs, “Real-time 3D light field transmission;” Proc.
SPIE 7724 (2010).

24 A. Jones, J. Unger, K. Nagano, J. Busch, X. Yu, H.-Y. Peng, O. Alexander,
and P. Debevec, “Creating a life-sized automultiscopic Morgan Spurlock
for CNNs ‘Inside Man’;” Proc. SIGGRAPH 14, no. 2 (ACM, New York,
USA, 2014).

25 C.Kim, H.Zimmer, Y.Pritch, A.Sorkine-Hornung, and M. Gross,
“Scene reconstruction from high spatio-angular resolution light fields,”
ACM Trans. Graph 32, 73 (2013).

26 A Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering
for an interactive 360° light field display,” ACM Trans. Graph. 26, 40
(2007).

27 P.T. Kovécs, A.Fekete, K.Lackner, V.K.Adhikarla, A.Zare, and
T. Balogh, “Big Buck Bunny light-field test sequences,” ISO/IEC
JTC1/SC29/WG11/M36500, Warsaw, 2015.

28 P Goorts, M. Javadi, S. Rogmans, and G. Lafruit, “San Miguel test
images with depth ground truth,” ISO/IEC JTC1/SC29/WG11/M33163,
Valencia, 2014.

P F Zilly, C. Riechert, M. Miiller, P. Eisert, T. Sikora, and P. Kauff, “Real-
time generation of multi-view video plus depth content using mixed
narrow and wide baseline,” J. Vis. Commun. Image Represent. 25,
632-648 (2014).

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

30 A. Ouazan, P. T. Kovacs, T. Balogh, and A. Barsi, “Rendering multi-view
plus depth data on light-field displays,” Proc. 3DTV Conf. 2011 (IEEE,
Antalya, 2011).

31 C. Fehn, “Depth-image-based rendering (DIBR), compression, and
transmission for a new approach on 3D-TV,” Proc. SPIE 5291 (2004).

32 N. Stefanoski, O. Wang, M. Lang, P. Greisen, S. Heinzle, and A. Smolic,
“Automatic view synthesis by image-domain-warping IEEE Trans.
Image Process. 22, 3329-3341 (2013).

33 M. Solh and G. AlRegib, “Hierarchical hole-filling for depth-based view
synthesis in FTV and 3D video,” IEEE J. Sel. Top. Signal Processing 6,
495-504 (2012).

34 C. Guillemot and O. L. Meur, “Image inpainting: overview and recent
advances,” IEEE Signal Process. Mag. 31, 127-144 (2014).

35 libjpeg-turbo [Online]. Available http://libjpeg-turbo.virtualgl.org/.

36 x264[Online]. Available http:/ /www.videolan.org/developers/x264.html.

37 FFmpeg [Online]. Available https://www.ffmpeg.org/.

38 Introduction to InfiniBand ™ for End Users—Mellanox [Online]. Avail-
able http://www.mellanox.com/pdf/whitepapers/Intro_to_IB_for_End_
Users.pdf.

39 M. Tanimoto, N. Fukushima, T. Fujii, H. Furihata, M. Wildeboer, and
M. P. Tehrani, “Moving multiview camera test sequences for MPEG-
FTV,” ISO/IEC JTC1/SC29/WG11/ M16922, Xian, China, 2009.

40 Information technology—Coding of audio-visual objects—Part 10:
Advanced Video Coding, ISO/IEC 14496-10, 2003.

41 H.264/AVC Software Coordination [Online]. Available http://iphome.h
hi.de/suehring/tml/.

42 P Quax, F. Di Fiore, P, Issaris, W. Lamotte, and F. Van Reeth, “Practical and
Scalable Transmission of Segmented Video Sequences to Multiple Players
using H.264,” Motion in Games 2009 (MIG09), Lecture Notes in Computer
Science LNCS Series, LNCS 5884 (Springer, Zeist, the Netherlands, 2009),
pp. 256-267.

43 A. Zare, P. T. Kovécs, and A. Gotchev, “Self-Contained Slices in H.264 for
Partial Video Decoding Targeting 3D Light-Field Displays,” Proc. 3DTV
Conf. (IEEE, Lisbon, 2015).

4 Information technology—High efficiency coding and media delivery
in heterogeneous environments—Part 2: High efficiency video coding,
ISO/IEC 23008-2, 2013.

45 G.7. Sullivan, J. Ohm, H. Woo-Jin, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) Standard,” IEEE Trans. Circuits
Syst. Video Technol. 22, 1649-1668 (2012).

46 K M. Misra, C. A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou,
“An overview of tiles,” IEEE J. Sel. Top. Signal Process. 7, 969-977 (2013).

47 HEVC Test Model [Online]. Available https://hevc.hhi.fraunhofer.de/H
M-doc/.

48 A, Zare, P. T. Kovécs, A. Aminlou, M. M. Hannuksela, and A. Gotchev,
“Decoding complexity reduction in projection-based light-field 3D
displays using self-contained HEVC tiles,” Proc. 3DT'V Conf. 2016 (IEEE,
Hamburg, 2016).

49 Digital compression and coding of continuous-tone still images, ISO/IEC
10918-1, 1994.

50 JPEG2000 image coding system, ISO/IEC 15444, 2000.

51 Comprimato JPEG2000 encoder and decoder [Online]. Available http://
www.comprimato.com/.

52, Grgic, M. Mrak, and M. Grgic, “Comparison of JPEG Image
Coders,” Proc. 3rd Int’l. Symposium on Video Processing and Multimedia
Communications (IEEE, 2001), pp. 79-85.

53 A. Al, B. P. Rao, S. S. Kudva, S. Babu, D. Sumam, and A. V. Rao, “Quality
and complexity comparison of H.264 intra mode with JPEG2000 and
JPEG,” Image Processing, 2004, Int’l. Conf. on ICIP *04. 2004 (IEEE, 2004),
Vol. 1, pp. 525-528.

54 M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, “HEVC: The
New Gold Standard for Video Compression: How Does HEVC Compare
with H.264/AVC?” IEEE Consumer Electronics Magazine (IEEE, 2012),
Vol. 1, pp. 36-46.

65

https://doi.org/10.1145/271283.271312
https://doi.org/10.1364/OE.24.003067
https://doi.org/10.1364/OE.21.026820
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://vimeo.com/timeslice/videos
https://doi.org/10.1145/1073204.1073259
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
http://dx.doi.org/10.1109/ICME.2006.262566
https://doi.org/10.1145/1276377.1276427
https://doi.org/10.1016/j.jvcir.2013.07.002
https://doi.org/10.1109/TIP.2013.2264817
https://doi.org/10.1109/TIP.2013.2264817
https://doi.org/10.1109/TIP.2013.2264817
https://doi.org/10.1109/JSTSP.2012.2204723
https://doi.org/10.1109/MSP.2013.2273004
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://libjpeg-turbo.virtualgl.org/
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
https://www.ffmpeg.org/
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://www.mellanox.com/pdf/whitepapers/Intro_ to_ IB_ for_ End_ Users.pdf
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
https://doi.org/10.1109/TCSVT.2012.2221191
https://doi.org/10.1109/TCSVT.2012.2221191
https://doi.org/10.1109/TCSVT.2012.2221191
https://doi.org/10.1109/JSTSP.2013.2271451
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
https://hevc.hhi.fraunhofer.de/HM-doc/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/
http://www.comprimato.com/

35 P Quax, P. Issaris, W. Vanmontfort, and W. Lamotte, “Evaluation of
distribution of panoramic video sequences in the eXplorative television
project, Proc. 22nd Int’l. Workshop on Network and Operating System
Support for Digital Audio and Video (ACM, New York, USA, 2012),
pp. 45-50.

%6 G.Tech, Y.Chen, K.Miiller, J.-R.Ohm, A.Vetro, and Y.-K.Wang,
“Overview of the Multiview and 3D Extensions of High Efficiency
Video Coding” IEEE Trans. Circuits Syst. Video Technol. 26, 35-49
(2015).

57 RAJPEG Technology - Scalado [Online]. Available http://www.scalado.c
om/display/en/RAJPEG+Technology.

66

58 P T. Kovécs, T. Balogh, J. Konieczny, and G. Cordara, “Requirements
of Light-field 3D Video Coding,” ISO/IEC JTC1/SC29/WG11/M31954,
(San Jose, 2014).

9 P T. Kovécs, Z. Nagy, A. Barsi, V. K. Adhikarla, and R. Bregovic, “Pro-
posal for additional features and future research to support light-field
video compression,” ISO/IEC JTC1/SC29/WG11/M37434, (Geneva,
Switzerland, 2015).

60's. Shimizu, G.Bang, T.Senoh, M. P.Tehrani, A.Vetro, K.Wegner,
G. Lafruit, and M. Tanimoto, “Use Cases and Requirements on Free-
viewpoint Television (FTV) v.2,” ISO/IEC JTC1/SC29/WG11/N15732,
(Geneva, 2015).

IS&T Infernational Symposium on Electronic Imaging 2017
Stereoscopic Displays and Applications XXVIII

https://doi.org/10.1109/TCSVT.2015.2477935
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology
http://www.scalado.com/display/en/RAJPEG+Technology

