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Abstract 
For the analysis of the interaction patterns of traffic 

participants, a robust visual detector and tracker for pedestrians 
and vehicles has been developed. The resulting implementation is 
currently being used to analyze hundreds of hours of recorded 
videos. This work concentrates on the detector for pedestrians, 
which combines several key concepts into a processing framework, 
which can run close to real-time even without GPU acceleration:  a 
fast and efficient HOG detector cascade is combined with a deep 
convolutional network to combine the advantages of both 
algorithms. In addition to the detector, this work covers also aspects 
of camera calibration, which is used to control the scale of detection 
windows based on the viewing geometry. 

The evaluation of our detector on the CALTECH database as 
well as on real world ground truth videos and manually annotated 
sample data demonstrates the effectiveness of our approach. 

Introduction 
Visual based object detection is a classic task in computer 

vision. Foremost, the detection of humans and vehicles has a large 
number of practical applications – both in video surveillance and 
intelligent transportation systems. The state-of-the-art of visual 
object detection has made great progress over the last years with 
regard to accuracy and efficiency of implementation [16]. 
Nevertheless, practically all methods i) tend to have problems in 
difficult scenarios (dense crowds, poor image quality etc.), and ii) 
they are still too slow for many real-world applications. In 
contradiction to i), and ii), many applications have extremely strict 
demands in terms of acceptable false positive rate and number of 
missed detections. For example, Zhang et al in [17] find that human 
performance in terms of miss rate is still an order of magnitude 
better than the best available computer vision methods. Thus, further 
improvement of state-of-the-art of detection quality and 
performance is required, and a goal worth pursuing.  

The work presented here emerged from the need for an accurate 
evaluation of hundreds of hours of outdoor videos, which were used 
as data source for automated traffic analysis. To this end a visual 
pedestrian detector and tracker has been developed, which needs to 
be i) fast, so that processing time remains manageable, and ii) 
accurate enough to allow for the solid analysis of tracking data for 
quantitative pedestrian-vehicle interaction analysis.  

Cascaded HOG detectors [1][5] and deep convolutional 
networks [7] are both very powerful approaches, and each of them 
has its advantages and drawbacks – the merging of these two 
methods into one detector can potentially be beneficial. Our work 
presents the result of merging the speed of HOG with its fairly good 
detection rate, and a deep convolutional network. The resulting 
combined detector is fast and robust enough so that the automatic 
and accurate evaluation of the large amount of traffic video for our 
intended application is possible. The novelty of our approach lies 

 
 

1. in the method for training of the primary HOG detector 
cascade, which is practically unique, 

2. in the approach of using genetic optimization methods to select 
the optimal HOG features,  

3. in the combination of a HOG cascade with a deep learning 
detector as post-processing filter  

 
The performance of our detector is evaluated on a large corpus 

of approximately 500,000 manually annotated samples. In addition, 
we present results of the evaluation of the detector on the public 
Caltech dataset [13], which has been introduced in 2012 by P. 
Dollár. The size of the video corpus, which we have processed in 
the course of several projects so far, is considerable.  

Related Work 
Beginning with Viola et al. [21] the concept of detector 

cascades has proven to be extremely worthwhile. The simple Haar 
like features used by Viola et al. have been superseded in the 
following years. The most significant progress in terms of detection 
capability has been made with the introduction of the Histograms of 
Oriented Gradients (HOG) idea by Dalal and Triggs in 2005 [1]. 
HOG features have since then set the quality standard for rigid 
object detection for the coming years, and with modifications, the 
lifespan of HOG does not seem to be over yet [4]. 

Felzenszwalb introduced a method of training model parts and 
creating a combined classifier [10] in 2010. It has gained some 
popularity, but is being used less in recent years. One reason may be 
that the classifier is complex to implement, and hard to optimize in 
terms of runtime performance. 

The development of the channel feature concept by Dollar et 
al. [2] in 2009 has again dramatically improved detection 
performance as well as detection efficiency. Runtime performance 
improvements have been achieved by exploiting the redundancies 
in local image structure using soft cascades [6], in a work done by 
Bourdev et al. The basic channel feature approach has been 
improved upon by Zhang et al. [17] by combining low-level filter 
banks in an intermediate processing layer with boosted decision 
trees. Zhang et al. report excellent results on the Caltech dataset, and 
other variants of the channel feature approach still deliver top results 
on the Caltech benchmark. [20] 

By selecting HOG features for detection with a shallow 
cascade of detectors, Lipetski et al. [22], see also [5] for a similar 
concept, have shown that a robust and real-time capable object 
detector can be trained using genetic optimization methods. This is 
achieved by using simpler, but less discriminative HOG features in 
the primary cascades stages, and by testing the more complex and 
computationally demanding HOG descriptors in the final stages of 
the cascade.  

Although a training algorithm using genetic optimization to 
create HOG cascades is not faster or requiring less CPU power than 
AdaBoost (the training of a cascade can take days to complete), it 
seems to be advantageous because it better exploits the vast high 
dimensional space covered by the HOG features.  
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Some work on the use of genetic algorithms for the training of 
HOG classifiers has been reported in the past, see Zehang [9], but 
typically feature selection is done with AdaBoost and one of its 
many variations. This work tries to demonstrate that evolutionary 
computation can be brought to advantage for the design of shallow 
cascaded detectors, which have similar, if not better, qualities than 
detectors trained with AdaBoost. 

The field of deep learning/neural networks (NN) is currently a 
very active field of research [7], [11]. Especially the sub class of 
convolutional neural networks (CNN) developed into a success 
story [8][12], [18]. Explicit pedestrian detection is in many cases 
based on existing network architectures, which are refined using 
pedestrian specific training datasets. Today deep learning detectors 
achieve top results on the Caltech benchmark [19]. 

Methodology of Pedestrian Detection  
The detector presented in this work uses a HOG detector and a 

CNN detector combined into a shallow cascade. Each of the two 
classifiers has its advantages and drawbacks. Over the years HOG 
has recommended itself as a detector, which is fast to compute and 
fairly robust to illumination changes, image quality and partial 
occlusions. The core idea of our work is to merge the two detection 
concepts into one framework: we localize object candidates with a 
fast HOG cascade and then verify each candidate with a trained 
CNN. The threshold for the HOG detector is set to a relatively low 
value so that we can detect practically all objects of interest within 
an image. The task of the CNN then is to weed out the false 
positives. In this way, the slow CNN classification is applied only 
on a very small amount of detection candidates instead of many 
thousands classifications necessary for full image detection with a 
sliding window approach. 

Detection Pipeline 
Different types of descriptors have their own unique properties 

of computational complexity, locality, invariance to geometric 
transformations, etc. By combining descriptors into cascades, a 
balance between detection accuracy and computational resources 
can be achieved.   

Using a lightweight and fast HOG detector as the first stage in 
a cascade significantly reduces processing time of the overall 
detector, because the majority of the background samples can be 
rejected early. The following stages of the detector can then have a 
more complicate structure because they need to test much fewer 
samples.   

Even though a fine tuned HOG detector can provide good 
detection capabilities, it has its limits. We estimate that the useful 
number of training samples for HOG lies at about 50,000 samples.  
After that the classification performance of HOG cannot be 
improved further, the authors of this work even see that the 
introduction of too many background samples can reduce the quality 
of the trained HOG detector. 

 On the contrary, deep CNNs show unlimited training potential 
with the sample numbers currently in use. In almost each modern 
detection benchmark, deep network based algorithms show by far 
superior detection results. The drawback of CNNs still is the 
relatively slow offline training and relatively slow online processing 
time, especially when used on mobile or embedded systems with 
limited hardware capabilities. The best quality is usually achieved 
with the largest networks, which have millions of connections in 
total. 

 In order to be able to optimize the use CNNs, we verify the 
result of the last HOG detector stage with a CNN only. In this way 
a tiny fraction of samples needs to be processed, thereby saving CPU 
time.  

To make the detection practically useful, scale invariance is 
achieved by testing sample windows of different sizes at every 
image location. We use a scanning step of (0.07-0.10)*sample 
width, and a scale factor of 1.07 for 4-30 scales, depending on the 
application and imaging geometry. When available, geometric 
calibration information on a known ground plane can improve 
detection by limiting the scale range. The following Figure 1 depicts 
our detection pipeline.  

 

Figure 1. The structure of the proposed HOG/CNN detector cascade. Guided 
by calibration, overlapping sample windows W are extracted for each video 
frame.  The 4-stage HOG cascade pre-selects pedestrians using acceptance 
threshold THOG ,the final decision is made with a CNN using a decision 
threshold TCNN . 

HOG Detector Cascade  
Dalal and Triggs [1] introduced the HOG feature descriptor 

concept in 2005, which is conceptually somewhat similar to SIFT 
and SURF, but is easier to compute and therefore requires less 
computational power. Until the introduction of channel features by 
Dollar, the HOG descriptor represented a very good baseline in 
terms of feature creation, sample classification and detection 
performance.   

In our implementation HOG features for a sample window W 
are computed and classified using the following algorithm:  

 
1. Divide W into non-overlapping N×M square cells of size C×C 

pixels (C = 6, 8 typically)  
2. Compute the L2 normalized histogram Hc of edge orientations, 

for each cell, the orientation bins for the histograms are 22.5 
degrees wide, so that each cell histogram has 8 bins  

3. Threshold and saturate Hc , a typical threshold value is 0.2  
4. Combine 2×2 neighboring cell histograms Hc into a block 

histogram B and normalize B using L2 norm  
5. Combine all block histograms B into a feature vector FR, and 

normalize it using L2 norm  
6. Classify the resulting feature vector FR using a linear SVM   

 
The concept of integral histograms to speed up the creation of 

local edge orientation histograms in overlapping windows makes 
HOG real-time capable. The computation of edge orientation 
histograms is done using quantized edge orientation channels OH 
for each possible orientation bin. The 0-180 degree raw edge 
orientations from the Sobel operator are for this purpose quantized 
into the typical 8 HOG orientation bins OH. The computation of an 
integral histogram IO from an edge orientation map E is done as 
follows:  
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For each orientation channel O: 

IO(x, y) = IO(x–1, y)     + IO(x–1, y) –  
                         IO(x–1, y–1) + MO(E(x, y))                         (1)  

MO() is a function which maps an edge orientation value E(x,y) 
to a discretized edge histogram entry which can be added to the 
summed edge histogram. This map can be a lookup table for 
computational efficiency.   

The Histogram of Gradients for a rectangular region at image 
coordinates from L(xl, yl) (left upper point) to  R(xr, yr) (right lower 
point) can then be computed from the integral histogram as follows:  

  For each orientation channel O:  

HO = IO(xl, yl)  + IO(xr, yr) – IO(xr, yl) – IO(xl, yr)  (2)  

By combining integral histograms with low level program 
optimizations to make use of modern CPU instructions (SIMD 
instructions like SSE for x86 architectures, and NEON for ARM 
CPUs) HOG features can be computed an order of a magnitude 
faster compared to conventional implementations.  As can be seen 
from Equation (2), a local histogram can be computed using 
4×(Histogram Size) memory accesses only and the remaining 
normalizing and scaling operation of the feature vectors can be 
efficiently parallelized using SIMD vector instruction techniques. 

Scale invariance of the HOG feature descriptor is achieved by 
either scaling the original input image and running the detector 
iteratively with identical cell/block size. Alternatively, the HOG 
detection window and its corresponding cells/blocks can be scaled 
and tested, with the advantage that the integral histogram makes this 
approach especially easy to apply. Only the sample co-ordinates in 
the integral histogram image HO from Equation (2) need to be 
modified in order to obtain the scaled HOG features. 

The resulting high dimensional normalized HOG feature vector 
is classified using a linear SVM [3], which again is very well suited 
for optimization using SIMD programming techniques.   

When using HOG, the question remains, which cells resp. 
blocks within a sample window W should be used to obtain the 
maximum discriminative power with the least number of features. 
To answer this question, we have devised a variant of a genetic 
optimization procedure, which tries to solve this selection process 
for a given number of pre-determined features per sample window. 
This process is described in the next section. 

 
Feature Optimization using Genetic Algorithms 

The best state-of-the-art HOG detectors employ deep cascades 
which are practically always trained using AdaBoost (see Dollar [2] 
for a list of HOG pedestrian detection architectures). AdaBoost and 
its variants have been very successfully used by Viola et al. in 
combination with Haar like features. Our method uses a completely 
different approach - we propose the use of a genetic optimization 
procedure (GA) instead. Our reasoning is that the GA is better able 
to sample the high dimensional space represented by HOG features, 
and so can more reliably find generalized robust solutions. The 
following paragraphs describe our approach in detail.   

The genetic optimization algorithm, we call our version genopt, 
is an iterative procedure. To make the selection process easier to 
parametrize and to speed up computation, we define a set number of 
stages, 4 in our application, and a fixed number of cells for each 
detector stage. It would be possible to also consider both for 
optimization, but the resulting computation times are prohibitive.  

The GA algorithm, see also [14], tries to optimize the 
properties of a set of classifiers by treating them as population with 
individual genomes (the HOG features), which undergo a test of 
fitness (classifier accuracy) and reproduction (mixing of HOG 
features to create new ones) and mutation (random changes in the 
features to explore the feature space). By mating (merging) the 
fittest individuals and by removing lesser ones, the overall fitness 
(accuracy) of the classifier population should increase over time. 
The optimization procedure works as follows:  

 
1. Initialization: each initially random set of HOG classifiers for 

all stages make up an ‘individual’ with a specific genome. 
2. For every generation the quality (fitness function F) of each 

individual is evaluated on a test set.  
3. The best fitting individuals are selected for mating, they 

‘survive’ the selection process with regard to good 
classification results on the test database. They are combined 
(mated) into new siblings, they form the basis for the next 
generation. The mating process takes two parents and merges 
them into two new siblings by splicing and merging their 
descriptor information at random points, this is called 
crossover.  

4. In order to allow for variation in the data set, mutation can 
change an individual HOG descriptor randomly in every 
generation with a certain given likelihood L. This mutation 
frequency defines how fast the procedure can converge to a 
good solution, and how aggressive the feature space is being 
samples. 
 

 
 

Figure 3. The GA algorithm depicted from top to bottom. HOG cells, denoted 
by co-ordinates x,y and their dimension w,h (top) are tested and selected 
based on their fitness function. The best individuals (classifiers) are chosen 
and mated (middle) to create new classifier individuals, possibly also being 
modified by random mutation (last bottom). 

The genome of individuals consists of HOG cell descriptors. 
The location and size of a block of 2x2 cells is part of the genome 
of each individual which is optimized. The fitness function defines 
the performance of the detector cascade in terms of recall and 
precision. Our fitness function is defined so that false positives are 
weighed in more than false negatives. Samples used for training and 
test: the training and test samples should cover as many imaging 
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situations as possible to generalize the detector cascade as much as 
possible and to avoid over fitting. 

 

 
Figure 4. The optimized HOG detector cells for each cascade stage. 

For the training process, which can run for several days, we 
have used 47000 samples in total, of which 20000 are background 
samples, and 27000 are foreground samples. The sample database 
has been manually annotated and double checked.  

The algorithm checks every cascade stage against stage 
specific threshold TC. Only when a sample is accepted by all stages 
it is valid. It must then also have a sum score > TD for final 
acceptance. The value of TC allows us to control the recall rate of 
the detector, the introduction of TD controls its precision. A higher 
TC threshold makes the detector faster because a lesser number of 
samples will pass each cascade stage albeit at the cost of a reduced 
recall rate. Note that by optimizing the stage thresholds TC the 
quality and speed of a cascaded detector can be further improved, 
this is very similar to the soft cascade approach from Bourdev [6]). 

The resulting cascaded detector is very well suited for very fast 
and relatively accurate (although not state-of-the-art) localizing of 
objects within the image – even the highly overlapped full scanning 
of an entire HD image (sometimes up to 1,000,000 of HOG 
detections and SVM classifications) can be done close to real-time. 

The following table below shows the rejection rate for each of 
the HOG classifier stages. We keep the detection thresholds such 
that the true positive rate is as high as possible so that no pedestrians 
are missed in the next following verifying/filter stage, which is 
described in the next section. 

Typical values for the number of samples windows W for an 

image used in our traffic surveillance applications. The 

rejection rates for each stage show how effective the cascade 

can reduce processing times.  

HOG 
stage 

Number 
of HOG 
blocks 

Feature 
vector 
length 

Candidates 
left 

1 1 32 17.58% 
2 4 128 3.43% 
3 8 256 0.35% 
4 16 512 0.12% 
5 fully 

connected 
5760 0.07% 

 

Adding the Deep Learning Stage 
Although a well-trained HOG detector can pass as a good 

baseline detector, it is not to be considered as state-of-the-art 
anymore. We observe in our applications resp. data sets that HOG 
creates a relatively high number of false positives, which cannot be 
removed by using more training samples. In fact the introduction of 
too many background samples can be counterproductive and 
decrease the quality of a HOG detector.  

A solution to this problem is the introduction of a further 
detector stage after the primary cascade. We apply a deep 
convolutional detector as the final detector stage. Our convolutional 
neural network (CNN) contains 3 convolutional layers with kernel 
size equal to 5x5 in all layers. The full network structure is depicted 
in Figure 5. 

 

 
Figure 5. The structure of our CNN detector. N is the number of feature maps 
for convolutional layers, and resp. the number of neurons for inner product 
layer.  

The specific feature of deep networks is that they can be 
successfully learned from practically unlimited number of training 
samples. To get full usage of the deep network approach, training 
set has to be as big and as various as possible. We enhanced our 
initial training set with many new samples – most of them are false 
positives that were produced by the HOG cascade. Some typical 
examples are shown in Figure 6. 

 

    
 

Figure 6. Typical false positives of the HOG detector, which we added to the 
training set of the CNN detector. 

The resulting annotated database has grown to around 510,000 
samples in total. This database was randomly split to train and test 
sets having 70% and 30% of the whole data respectively. After the 
training process has finished, the detector showed 99.4% 
recognition performance on the test set. 

Evaluation of the Detector 
The proposed detector has been integrated into our tracking 

system which goal was to automatically analyze interaction 
behavior between different groups of road users. Various statistics 
were generated afterwards using object trajectories data, such as 
distances and velocities during overtakes, potentially dangerous 
situations on crosswalks etc. The whole set of road users includes i) 
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pedestrians, ii) cyclists, iii) motorcyclists, iv) cars, v) trucks, vi) 
busses and vii) trams. Many hours of recorded videos for various 
outdoor scenarios were processed offline within two different 
research projects. In this work, we evaluate only the pedestrian 
detector. The following table gives an overview of the amount of 
video, which we have processed in the course of two projects. 

Amount of total processed video data. 

Project 
name 

Total 
place
s 

Total 
video 
hours 

Resolution 
(px) 

Pedestrian 
detection 
time (ms) 

Observe 86 3918 800 x 600 57.8 
Bicycle 10 332 1920 x 

1080 
150.4 

 
To be able to handle such huge amount of data in a feasible 

time, the runtime performance of the detection algorithm plays one 
of the core roles. The presented detection times were obtained on 
Intel Core i7-6700K CPU. The detector runs on 4 cores in parallel; 
no GPU has been used so far. Using also the GPU for computing 
features and the classifiers, would certainly decrease the processing 
times significantly. 

The following table represents detection statistics and 
processing times for typical scenes for each video resolution. 

Detection statistics for typical video resolutions. 

Project  Resolution 
(px) 

Sliding 
windows 
per 
frame 

HOG 
candid. 
per 
frame 

CNN 
candid. 
per 
frame 

Observe 800 x 600 212 500 13.9 1.2 
Bicycle 1920 x 

1080 
920 000 121.4 37.0 

 
 
As it can be seen, our HOG detector rejects more than 99.9% 

of all sliding windows. Only the remaining tiny part has to be 
verified with a computationally heavy CNN detector. The CNN 
detector further rejects about 91% and 70% of HOG candidates for 
Observe and Bicycle videos respectively. The relatively small 
number of output candidates for the Observe video can be explained 
by the nature of the chosen scenario – the focus has been taken to 
the busy road junctions with a heavy car traffic and relatively small 
pedestrian traffic. 

To evaluate detector performance, 20 minutes of one video 
sequence has been manually annotated. The detector performance 
and detection examples can be seen on Figures 7 and 8. 

In the example shown in Figure 8, the combined HOG + CNN 
detector has filtered out both false positive detections. There is also 
one missed detection – it cannot be recovered by the CNN stage 
anymore. 

To compare our implementation with other state-of-the art 
detectors, we performed the detector evaluation on the Caltech 
dataset. The Caltech dataset [13] is a large corpus of video material, 
which has been captured in VGA resolution from through the front 
window of a moving car. The original test set, which has been used 
for our evaluation, contains 4024 video frames with about 1000 
annotated pedestrians. The videos contain samples of medium and 
good quality, but also many hardly visible pedestrians in low 
resolution and low contrast. The benchmark therefore is divided into 

several categories with varying levels of difficulty. Our evaluation 
falls into the category “medium scale” meaning that only 
pedestrians, which have more than 50 pixels in height, were 
considered. Those pedestrians could also have a certain amount of 
occlusion. 

 

 
Figure 7. Detector performance on the Observe dataset. The blue dashed line 
represents the HOG detector alone, the green solid line represents the 
combined HOG/CNN detector. The latter is almost one order of magnitude 
better in terms of FPPI for a given miss rate. 

 

a) HOG detector b) HOG + CNN detector 

 
Figure 8. Visualization of the detector outputs. Rectangles represent the 
ground truth, and the brackets the detector outputs. 

 
Figure 9. Detector performances on the Caltech dataset. The blue dashed line 
represents the HOG detector alone, the green solid line represents the 
combined HOG/CNN detector. The latter is almost one order of magnitude 
better in terms of FPPI for a given miss rate. 
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Again, the combined HOG+CNN detector shows significantly 
better performance than the pure HOG detector. One can note that 
the combined detector has its limit in achieving lower miss rate – 
this is because the CNN threshold is set to a fixed value of 0.0. The 
presented detector has slightly worse performance then the best 
pedestrian detectors shown in [13]. However, the average 
processing time of our detector is just 40.8 ms per frame (measured 
on an Intel Core i7-6700K CPU), meaning that the detector can 
operate fully real-time – even without GPU utilization. 

Calibrating the Detection Results  
To support the detection process and to be able to create useful 

measurements from the detection results, a geometric calibration of 
the camera view is undertaken. By referring to an expected size 
range for each object class (e.g. the known size range of pedestrians) 
in an image, we can limit the detector size window to reasonable 
values and thus save computing time and enhance the detection 
accuracy. In this sense, we see the camera calibration as integral part 
of our detection pipeline. Furthermore, the calibration will be 
needed for the analytics after detection (e.g. the automatic 
measurement of distances and velocities), and can therefore be 
reused. 

The calibration process is based on Tsai’s method of lens 
camera calibration [15], which uses a set of corresponding point sets 
from camera to ground plane and basic information about the used 
sensor in order to establish the following camera parameters: the 
focal length f, a radial lens distortion coefficient k, co-ordinates of 
the center of the lens distortion Cx, Cy, the translation of the camera 
between camera and world co-ordinates Tx, Ty, Tz, and the rotation 
of the camera to transform between camera and world co-ordinates 
Rx, Ry, Rz.  

The computed camera calibration allows us to project every 
image point to its corresponding world point on the ground plane 
and vice versa – as mentioned before, this is a pre-requisite for all 
following traffic analysis measurements. 

Due to the monocular setup, a calibration can only take place 
on one elevation above the ground plane, which is typically the 
street level. For calibration using Tsai’s method it is necessary to 
manually establish ground control points in metric co-ordinates in 
an arbitrary co-ordinate system and relate them to the corresponding 
image points. The use of available satellite image data for this 
purpose has proven feasible, but can meet limitations when the 
imagery is not up to date, or the quality of the satellite images is not 
sufficient for finding usable ground control points.  

Depending on the camera resolution and the distance of the 
object to the camera, measurement accuracies of a few centimeters 
are possible using the proposed calibration method. This is generally 
sufficient for our type of applications. Error sources are mainly 

 Errors in object detection resp. the object bounding boxes. 
These errors can be reduced in post-processing  by 
smoothing the trajectory of object bounding boxes. 

 Errors in projection of the bounding boxes to the ground 
plane, these are essentially also detection inaccuracies. 

 Camera shake and movement. Small amounts of vertical 
displacement of the camera viewing angle can create large 
distance measurement errors.  

 Inaccuracies in the measurement of the ground control 
points and image points used for calibration can lead to 
imprecise or distorted mapping of the ground plane to 
image co-ordinates. 

 

 

Figure 10: Trajectories of pedestrians and cars projected onto a Google Maps 
section for visualization of detection and calibration results. The co-ordinates 
of detected objects have been transformed into the Google maps image using 
the calculated Tsai calibration. red lines indicate cars, green lines indicate 
pedestrians. 
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