

A combined HOG and deep convolution network cascade for
pedestrian detection
Yuriy Lipetski, Oliver Sidla; SLR Engineering GmbH; Graz, Austria

Abstract
For the analysis of the interaction patterns of traffic

participants, a robust visual detector and tracker for pedestrians
and vehicles has been developed. The resulting implementation is
currently being used to analyze hundreds of hours of recorded
videos. This work concentrates on the detector for pedestrians,
which combines several key concepts into a processing framework,
which can run close to real-time even without GPU acceleration: a
fast and efficient HOG detector cascade is combined with a deep
convolutional network to combine the advantages of both
algorithms. In addition to the detector, this work covers also aspects
of camera calibration, which is used to control the scale of detection
windows based on the viewing geometry.

The evaluation of our detector on the CALTECH database as
well as on real world ground truth videos and manually annotated
sample data demonstrates the effectiveness of our approach.

Introduction
Visual based object detection is a classic task in computer

vision. Foremost, the detection of humans and vehicles has a large
number of practical applications – both in video surveillance and
intelligent transportation systems. The state-of-the-art of visual
object detection has made great progress over the last years with
regard to accuracy and efficiency of implementation [16].
Nevertheless, practically all methods i) tend to have problems in
difficult scenarios (dense crowds, poor image quality etc.), and ii)
they are still too slow for many real-world applications. In
contradiction to i), and ii), many applications have extremely strict
demands in terms of acceptable false positive rate and number of
missed detections. For example, Zhang et al in [17] find that human
performance in terms of miss rate is still an order of magnitude
better than the best available computer vision methods. Thus, further
improvement of state-of-the-art of detection quality and
performance is required, and a goal worth pursuing.

The work presented here emerged from the need for an accurate
evaluation of hundreds of hours of outdoor videos, which were used
as data source for automated traffic analysis. To this end a visual
pedestrian detector and tracker has been developed, which needs to
be i) fast, so that processing time remains manageable, and ii)
accurate enough to allow for the solid analysis of tracking data for
quantitative pedestrian-vehicle interaction analysis.

Cascaded HOG detectors [1][5] and deep convolutional
networks [7] are both very powerful approaches, and each of them
has its advantages and drawbacks – the merging of these two
methods into one detector can potentially be beneficial. Our work
presents the result of merging the speed of HOG with its fairly good
detection rate, and a deep convolutional network. The resulting
combined detector is fast and robust enough so that the automatic
and accurate evaluation of the large amount of traffic video for our
intended application is possible. The novelty of our approach lies

1. in the method for training of the primary HOG detector
cascade, which is practically unique,

2. in the approach of using genetic optimization methods to select
the optimal HOG features,

3. in the combination of a HOG cascade with a deep learning
detector as post-processing filter

The performance of our detector is evaluated on a large corpus

of approximately 500,000 manually annotated samples. In addition,
we present results of the evaluation of the detector on the public
Caltech dataset [13], which has been introduced in 2012 by P.
Dollár. The size of the video corpus, which we have processed in
the course of several projects so far, is considerable.

Related Work
Beginning with Viola et al. [21] the concept of detector

cascades has proven to be extremely worthwhile. The simple Haar
like features used by Viola et al. have been superseded in the
following years. The most significant progress in terms of detection
capability has been made with the introduction of the Histograms of
Oriented Gradients (HOG) idea by Dalal and Triggs in 2005 [1].
HOG features have since then set the quality standard for rigid
object detection for the coming years, and with modifications, the
lifespan of HOG does not seem to be over yet [4].

Felzenszwalb introduced a method of training model parts and
creating a combined classifier [10] in 2010. It has gained some
popularity, but is being used less in recent years. One reason may be
that the classifier is complex to implement, and hard to optimize in
terms of runtime performance.

The development of the channel feature concept by Dollar et
al. [2] in 2009 has again dramatically improved detection
performance as well as detection efficiency. Runtime performance
improvements have been achieved by exploiting the redundancies
in local image structure using soft cascades [6], in a work done by
Bourdev et al. The basic channel feature approach has been
improved upon by Zhang et al. [17] by combining low-level filter
banks in an intermediate processing layer with boosted decision
trees. Zhang et al. report excellent results on the Caltech dataset, and
other variants of the channel feature approach still deliver top results
on the Caltech benchmark. [20]

By selecting HOG features for detection with a shallow
cascade of detectors, Lipetski et al. [22], see also [5] for a similar
concept, have shown that a robust and real-time capable object
detector can be trained using genetic optimization methods. This is
achieved by using simpler, but less discriminative HOG features in
the primary cascades stages, and by testing the more complex and
computationally demanding HOG descriptors in the final stages of
the cascade.

Although a training algorithm using genetic optimization to
create HOG cascades is not faster or requiring less CPU power than
AdaBoost (the training of a cascade can take days to complete), it
seems to be advantageous because it better exploits the vast high
dimensional space covered by the HOG features.

IS&T International Symposium on Electronic Imaging 2017
Surveillance: Applications and Algorithms 11

https://doi.org/10.2352/ISSN.2470-1173.2017.4.SRV-350
© 2017, Society for Imaging Science and Technology

Some work on the use of genetic algorithms for the training of
HOG classifiers has been reported in the past, see Zehang [9], but
typically feature selection is done with AdaBoost and one of its
many variations. This work tries to demonstrate that evolutionary
computation can be brought to advantage for the design of shallow
cascaded detectors, which have similar, if not better, qualities than
detectors trained with AdaBoost.

The field of deep learning/neural networks (NN) is currently a
very active field of research [7], [11]. Especially the sub class of
convolutional neural networks (CNN) developed into a success
story [8][12], [18]. Explicit pedestrian detection is in many cases
based on existing network architectures, which are refined using
pedestrian specific training datasets. Today deep learning detectors
achieve top results on the Caltech benchmark [19].

Methodology of Pedestrian Detection
The detector presented in this work uses a HOG detector and a

CNN detector combined into a shallow cascade. Each of the two
classifiers has its advantages and drawbacks. Over the years HOG
has recommended itself as a detector, which is fast to compute and
fairly robust to illumination changes, image quality and partial
occlusions. The core idea of our work is to merge the two detection
concepts into one framework: we localize object candidates with a
fast HOG cascade and then verify each candidate with a trained
CNN. The threshold for the HOG detector is set to a relatively low
value so that we can detect practically all objects of interest within
an image. The task of the CNN then is to weed out the false
positives. In this way, the slow CNN classification is applied only
on a very small amount of detection candidates instead of many
thousands classifications necessary for full image detection with a
sliding window approach.

Detection Pipeline
Different types of descriptors have their own unique properties

of computational complexity, locality, invariance to geometric
transformations, etc. By combining descriptors into cascades, a
balance between detection accuracy and computational resources
can be achieved.

Using a lightweight and fast HOG detector as the first stage in
a cascade significantly reduces processing time of the overall
detector, because the majority of the background samples can be
rejected early. The following stages of the detector can then have a
more complicate structure because they need to test much fewer
samples.

Even though a fine tuned HOG detector can provide good
detection capabilities, it has its limits. We estimate that the useful
number of training samples for HOG lies at about 50,000 samples.
After that the classification performance of HOG cannot be
improved further, the authors of this work even see that the
introduction of too many background samples can reduce the quality
of the trained HOG detector.

 On the contrary, deep CNNs show unlimited training potential
with the sample numbers currently in use. In almost each modern
detection benchmark, deep network based algorithms show by far
superior detection results. The drawback of CNNs still is the
relatively slow offline training and relatively slow online processing
time, especially when used on mobile or embedded systems with
limited hardware capabilities. The best quality is usually achieved
with the largest networks, which have millions of connections in
total.

 In order to be able to optimize the use CNNs, we verify the
result of the last HOG detector stage with a CNN only. In this way
a tiny fraction of samples needs to be processed, thereby saving CPU
time.

To make the detection practically useful, scale invariance is
achieved by testing sample windows of different sizes at every
image location. We use a scanning step of (0.07-0.10)*sample
width, and a scale factor of 1.07 for 4-30 scales, depending on the
application and imaging geometry. When available, geometric
calibration information on a known ground plane can improve
detection by limiting the scale range. The following Figure 1 depicts
our detection pipeline.

Figure 1. The structure of the proposed HOG/CNN detector cascade. Guided
by calibration, overlapping sample windows W are extracted for each video
frame. The 4-stage HOG cascade pre-selects pedestrians using acceptance
threshold THOG ,the final decision is made with a CNN using a decision
threshold TCNN .

HOG Detector Cascade
Dalal and Triggs [1] introduced the HOG feature descriptor

concept in 2005, which is conceptually somewhat similar to SIFT
and SURF, but is easier to compute and therefore requires less
computational power. Until the introduction of channel features by
Dollar, the HOG descriptor represented a very good baseline in
terms of feature creation, sample classification and detection
performance.

In our implementation HOG features for a sample window W
are computed and classified using the following algorithm:

1. Divide W into non-overlapping N×M square cells of size C×C

pixels (C = 6, 8 typically)
2. Compute the L2 normalized histogram Hc of edge orientations,

for each cell, the orientation bins for the histograms are 22.5
degrees wide, so that each cell histogram has 8 bins

3. Threshold and saturate Hc , a typical threshold value is 0.2
4. Combine 2×2 neighboring cell histograms Hc into a block

histogram B and normalize B using L2 norm
5. Combine all block histograms B into a feature vector FR, and

normalize it using L2 norm
6. Classify the resulting feature vector FR using a linear SVM

The concept of integral histograms to speed up the creation of

local edge orientation histograms in overlapping windows makes
HOG real-time capable. The computation of edge orientation
histograms is done using quantized edge orientation channels OH
for each possible orientation bin. The 0-180 degree raw edge
orientations from the Sobel operator are for this purpose quantized
into the typical 8 HOG orientation bins OH. The computation of an
integral histogram IO from an edge orientation map E is done as
follows:

12
IS&T International Symposium on Electronic Imaging 2017

Surveillance: Applications and Algorithms

For each orientation channel O:

IO(x, y) = IO(x–1, y) + IO(x–1, y) –
 IO(x–1, y–1) + MO(E(x, y)) (1)

MO() is a function which maps an edge orientation value E(x,y)
to a discretized edge histogram entry which can be added to the
summed edge histogram. This map can be a lookup table for
computational efficiency.

The Histogram of Gradients for a rectangular region at image
coordinates from L(xl, yl) (left upper point) to R(xr, yr) (right lower
point) can then be computed from the integral histogram as follows:

 For each orientation channel O:

HO = IO(xl, yl) + IO(xr, yr) – IO(xr, yl) – IO(xl, yr) (2)

By combining integral histograms with low level program
optimizations to make use of modern CPU instructions (SIMD
instructions like SSE for x86 architectures, and NEON for ARM
CPUs) HOG features can be computed an order of a magnitude
faster compared to conventional implementations. As can be seen
from Equation (2), a local histogram can be computed using
4×(Histogram Size) memory accesses only and the remaining
normalizing and scaling operation of the feature vectors can be
efficiently parallelized using SIMD vector instruction techniques.

Scale invariance of the HOG feature descriptor is achieved by
either scaling the original input image and running the detector
iteratively with identical cell/block size. Alternatively, the HOG
detection window and its corresponding cells/blocks can be scaled
and tested, with the advantage that the integral histogram makes this
approach especially easy to apply. Only the sample co-ordinates in
the integral histogram image HO from Equation (2) need to be
modified in order to obtain the scaled HOG features.

The resulting high dimensional normalized HOG feature vector
is classified using a linear SVM [3], which again is very well suited
for optimization using SIMD programming techniques.

When using HOG, the question remains, which cells resp.
blocks within a sample window W should be used to obtain the
maximum discriminative power with the least number of features.
To answer this question, we have devised a variant of a genetic
optimization procedure, which tries to solve this selection process
for a given number of pre-determined features per sample window.
This process is described in the next section.

Feature Optimization using Genetic Algorithms

The best state-of-the-art HOG detectors employ deep cascades
which are practically always trained using AdaBoost (see Dollar [2]
for a list of HOG pedestrian detection architectures). AdaBoost and
its variants have been very successfully used by Viola et al. in
combination with Haar like features. Our method uses a completely
different approach - we propose the use of a genetic optimization
procedure (GA) instead. Our reasoning is that the GA is better able
to sample the high dimensional space represented by HOG features,
and so can more reliably find generalized robust solutions. The
following paragraphs describe our approach in detail.

The genetic optimization algorithm, we call our version genopt,
is an iterative procedure. To make the selection process easier to
parametrize and to speed up computation, we define a set number of
stages, 4 in our application, and a fixed number of cells for each
detector stage. It would be possible to also consider both for
optimization, but the resulting computation times are prohibitive.

The GA algorithm, see also [14], tries to optimize the
properties of a set of classifiers by treating them as population with
individual genomes (the HOG features), which undergo a test of
fitness (classifier accuracy) and reproduction (mixing of HOG
features to create new ones) and mutation (random changes in the
features to explore the feature space). By mating (merging) the
fittest individuals and by removing lesser ones, the overall fitness
(accuracy) of the classifier population should increase over time.
The optimization procedure works as follows:

1. Initialization: each initially random set of HOG classifiers for

all stages make up an ‘individual’ with a specific genome.
2. For every generation the quality (fitness function F) of each

individual is evaluated on a test set.
3. The best fitting individuals are selected for mating, they

‘survive’ the selection process with regard to good
classification results on the test database. They are combined
(mated) into new siblings, they form the basis for the next
generation. The mating process takes two parents and merges
them into two new siblings by splicing and merging their
descriptor information at random points, this is called
crossover.

4. In order to allow for variation in the data set, mutation can
change an individual HOG descriptor randomly in every
generation with a certain given likelihood L. This mutation
frequency defines how fast the procedure can converge to a
good solution, and how aggressive the feature space is being
samples.

Figure 3. The GA algorithm depicted from top to bottom. HOG cells, denoted
by co-ordinates x,y and their dimension w,h (top) are tested and selected
based on their fitness function. The best individuals (classifiers) are chosen
and mated (middle) to create new classifier individuals, possibly also being
modified by random mutation (last bottom).

The genome of individuals consists of HOG cell descriptors.
The location and size of a block of 2x2 cells is part of the genome
of each individual which is optimized. The fitness function defines
the performance of the detector cascade in terms of recall and
precision. Our fitness function is defined so that false positives are
weighed in more than false negatives. Samples used for training and
test: the training and test samples should cover as many imaging

IS&T International Symposium on Electronic Imaging 2017
Surveillance: Applications and Algorithms 13

situations as possible to generalize the detector cascade as much as
possible and to avoid over fitting.

Figure 4. The optimized HOG detector cells for each cascade stage.

For the training process, which can run for several days, we
have used 47000 samples in total, of which 20000 are background
samples, and 27000 are foreground samples. The sample database
has been manually annotated and double checked.

The algorithm checks every cascade stage against stage
specific threshold TC. Only when a sample is accepted by all stages
it is valid. It must then also have a sum score > TD for final
acceptance. The value of TC allows us to control the recall rate of
the detector, the introduction of TD controls its precision. A higher
TC threshold makes the detector faster because a lesser number of
samples will pass each cascade stage albeit at the cost of a reduced
recall rate. Note that by optimizing the stage thresholds TC the
quality and speed of a cascaded detector can be further improved,
this is very similar to the soft cascade approach from Bourdev [6]).

The resulting cascaded detector is very well suited for very fast
and relatively accurate (although not state-of-the-art) localizing of
objects within the image – even the highly overlapped full scanning
of an entire HD image (sometimes up to 1,000,000 of HOG
detections and SVM classifications) can be done close to real-time.

The following table below shows the rejection rate for each of
the HOG classifier stages. We keep the detection thresholds such
that the true positive rate is as high as possible so that no pedestrians
are missed in the next following verifying/filter stage, which is
described in the next section.

Typical values for the number of samples windows W for an

image used in our traffic surveillance applications. The

rejection rates for each stage show how effective the cascade

can reduce processing times.

HOG
stage

Number
of HOG
blocks

Feature
vector
length

Candidates
left

1 1 32 17.58%
2 4 128 3.43%
3 8 256 0.35%
4 16 512 0.12%
5 fully

connected
5760 0.07%

Adding the Deep Learning Stage
Although a well-trained HOG detector can pass as a good

baseline detector, it is not to be considered as state-of-the-art
anymore. We observe in our applications resp. data sets that HOG
creates a relatively high number of false positives, which cannot be
removed by using more training samples. In fact the introduction of
too many background samples can be counterproductive and
decrease the quality of a HOG detector.

A solution to this problem is the introduction of a further
detector stage after the primary cascade. We apply a deep
convolutional detector as the final detector stage. Our convolutional
neural network (CNN) contains 3 convolutional layers with kernel
size equal to 5x5 in all layers. The full network structure is depicted
in Figure 5.

Figure 5. The structure of our CNN detector. N is the number of feature maps
for convolutional layers, and resp. the number of neurons for inner product
layer.

The specific feature of deep networks is that they can be
successfully learned from practically unlimited number of training
samples. To get full usage of the deep network approach, training
set has to be as big and as various as possible. We enhanced our
initial training set with many new samples – most of them are false
positives that were produced by the HOG cascade. Some typical
examples are shown in Figure 6.

Figure 6. Typical false positives of the HOG detector, which we added to the
training set of the CNN detector.

The resulting annotated database has grown to around 510,000
samples in total. This database was randomly split to train and test
sets having 70% and 30% of the whole data respectively. After the
training process has finished, the detector showed 99.4%
recognition performance on the test set.

Evaluation of the Detector
The proposed detector has been integrated into our tracking

system which goal was to automatically analyze interaction
behavior between different groups of road users. Various statistics
were generated afterwards using object trajectories data, such as
distances and velocities during overtakes, potentially dangerous
situations on crosswalks etc. The whole set of road users includes i)

14
IS&T International Symposium on Electronic Imaging 2017

Surveillance: Applications and Algorithms

pedestrians, ii) cyclists, iii) motorcyclists, iv) cars, v) trucks, vi)
busses and vii) trams. Many hours of recorded videos for various
outdoor scenarios were processed offline within two different
research projects. In this work, we evaluate only the pedestrian
detector. The following table gives an overview of the amount of
video, which we have processed in the course of two projects.

Amount of total processed video data.

Project
name

Total
place
s

Total
video
hours

Resolution
(px)

Pedestrian
detection
time (ms)

Observe 86 3918 800 x 600 57.8
Bicycle 10 332 1920 x

1080
150.4

To be able to handle such huge amount of data in a feasible

time, the runtime performance of the detection algorithm plays one
of the core roles. The presented detection times were obtained on
Intel Core i7-6700K CPU. The detector runs on 4 cores in parallel;
no GPU has been used so far. Using also the GPU for computing
features and the classifiers, would certainly decrease the processing
times significantly.

The following table represents detection statistics and
processing times for typical scenes for each video resolution.

Detection statistics for typical video resolutions.

Project Resolution
(px)

Sliding
windows
per
frame

HOG
candid.
per
frame

CNN
candid.
per
frame

Observe 800 x 600 212 500 13.9 1.2
Bicycle 1920 x

1080
920 000 121.4 37.0

As it can be seen, our HOG detector rejects more than 99.9%

of all sliding windows. Only the remaining tiny part has to be
verified with a computationally heavy CNN detector. The CNN
detector further rejects about 91% and 70% of HOG candidates for
Observe and Bicycle videos respectively. The relatively small
number of output candidates for the Observe video can be explained
by the nature of the chosen scenario – the focus has been taken to
the busy road junctions with a heavy car traffic and relatively small
pedestrian traffic.

To evaluate detector performance, 20 minutes of one video
sequence has been manually annotated. The detector performance
and detection examples can be seen on Figures 7 and 8.

In the example shown in Figure 8, the combined HOG + CNN
detector has filtered out both false positive detections. There is also
one missed detection – it cannot be recovered by the CNN stage
anymore.

To compare our implementation with other state-of-the art
detectors, we performed the detector evaluation on the Caltech
dataset. The Caltech dataset [13] is a large corpus of video material,
which has been captured in VGA resolution from through the front
window of a moving car. The original test set, which has been used
for our evaluation, contains 4024 video frames with about 1000
annotated pedestrians. The videos contain samples of medium and
good quality, but also many hardly visible pedestrians in low
resolution and low contrast. The benchmark therefore is divided into

several categories with varying levels of difficulty. Our evaluation
falls into the category “medium scale” meaning that only
pedestrians, which have more than 50 pixels in height, were
considered. Those pedestrians could also have a certain amount of
occlusion.

Figure 7. Detector performance on the Observe dataset. The blue dashed line
represents the HOG detector alone, the green solid line represents the
combined HOG/CNN detector. The latter is almost one order of magnitude
better in terms of FPPI for a given miss rate.

a) HOG detector b) HOG + CNN detector

Figure 8. Visualization of the detector outputs. Rectangles represent the
ground truth, and the brackets the detector outputs.

Figure 9. Detector performances on the Caltech dataset. The blue dashed line
represents the HOG detector alone, the green solid line represents the
combined HOG/CNN detector. The latter is almost one order of magnitude
better in terms of FPPI for a given miss rate.

IS&T International Symposium on Electronic Imaging 2017
Surveillance: Applications and Algorithms 15

Again, the combined HOG+CNN detector shows significantly
better performance than the pure HOG detector. One can note that
the combined detector has its limit in achieving lower miss rate –
this is because the CNN threshold is set to a fixed value of 0.0. The
presented detector has slightly worse performance then the best
pedestrian detectors shown in [13]. However, the average
processing time of our detector is just 40.8 ms per frame (measured
on an Intel Core i7-6700K CPU), meaning that the detector can
operate fully real-time – even without GPU utilization.

Calibrating the Detection Results
To support the detection process and to be able to create useful

measurements from the detection results, a geometric calibration of
the camera view is undertaken. By referring to an expected size
range for each object class (e.g. the known size range of pedestrians)
in an image, we can limit the detector size window to reasonable
values and thus save computing time and enhance the detection
accuracy. In this sense, we see the camera calibration as integral part
of our detection pipeline. Furthermore, the calibration will be
needed for the analytics after detection (e.g. the automatic
measurement of distances and velocities), and can therefore be
reused.

The calibration process is based on Tsai’s method of lens
camera calibration [15], which uses a set of corresponding point sets
from camera to ground plane and basic information about the used
sensor in order to establish the following camera parameters: the
focal length f, a radial lens distortion coefficient k, co-ordinates of
the center of the lens distortion Cx, Cy, the translation of the camera
between camera and world co-ordinates Tx, Ty, Tz, and the rotation
of the camera to transform between camera and world co-ordinates
Rx, Ry, Rz.

The computed camera calibration allows us to project every
image point to its corresponding world point on the ground plane
and vice versa – as mentioned before, this is a pre-requisite for all
following traffic analysis measurements.

Due to the monocular setup, a calibration can only take place
on one elevation above the ground plane, which is typically the
street level. For calibration using Tsai’s method it is necessary to
manually establish ground control points in metric co-ordinates in
an arbitrary co-ordinate system and relate them to the corresponding
image points. The use of available satellite image data for this
purpose has proven feasible, but can meet limitations when the
imagery is not up to date, or the quality of the satellite images is not
sufficient for finding usable ground control points.

Depending on the camera resolution and the distance of the
object to the camera, measurement accuracies of a few centimeters
are possible using the proposed calibration method. This is generally
sufficient for our type of applications. Error sources are mainly

 Errors in object detection resp. the object bounding boxes.
These errors can be reduced in post-processing by
smoothing the trajectory of object bounding boxes.

 Errors in projection of the bounding boxes to the ground
plane, these are essentially also detection inaccuracies.

 Camera shake and movement. Small amounts of vertical
displacement of the camera viewing angle can create large
distance measurement errors.

 Inaccuracies in the measurement of the ground control
points and image points used for calibration can lead to
imprecise or distorted mapping of the ground plane to
image co-ordinates.

Figure 10: Trajectories of pedestrians and cars projected onto a Google Maps
section for visualization of detection and calibration results. The co-ordinates
of detected objects have been transformed into the Google maps image using
the calculated Tsai calibration. red lines indicate cars, green lines indicate
pedestrians.

References
[1] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for

Human Detection”, in Conference on Computer  Vision and Pattern
Recognition, pp. 886-893, San Diego, 2005.  

[2] P. Dollár, Z. Tu, P. Perona and S. Belongie,“Integral Channel
Features“, BMVC, London, 2009.  

[3] N. Cristianini and J. Shawe-Taylor, “An Introduction to Support
Vector Machines and other kernel-based Learning methods”,
Cambridge University Press, 2000.

[4] H.K. Ragb and V.K. Asari, "Histogram of oriented phase (HOP): a
new descriptor based on phase congruency ", in Proc. SPIE 9869,
2016.

[5] Q. Zhu, S. Avidan, M.-C. Yeh and K.-T. Cheng, “Fast Human
Detection Using a Cascade of Histograms of  Gradients”, Conference
on Computer Vision and Pattern Recognition, New York, 2006.  

[6] L. Bourdev and J. Brandt, “Robust object detection via soft cascade“,
in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 236-243 vol. 2, 2005.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks“, in Advances
in Neural Information Processing Systems 25, pp. 1106-1114, 2012.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions“, in arXiv, 2014.  

[9] S., Zehang, G., Bebis, R., Miller, “On-Road Vehicle Detection using
Evolutionary Gabor Filter Optimization”, IEEE Transactions on
Intelligent Transportation Systems, Vol 6, Nr 2, 2005.

[10] R. Felzenszwalb, D. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part based models“,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol
32, No 9, pp 1627-1645, 2010.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document  recognition“, Proceedings of the IEEE,
November 1998.  

16
IS&T International Symposium on Electronic Imaging 2017

Surveillance: Applications and Algorithms

[12] P. O. Pinheiro, T.Y. Lin, R. Collobert, P. Dollàr, “SharpMask:
Learning to Refine Object Segments“, in European Conference on
Computer Vision, 2016.

[13] https://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/  

[14] http://lancet.mit.edu/ga/ 

[15] R.Y. Tsai, “An Efficient and Accurate Camera Calibration Technique
for 3D Machine Vision“,.in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, Miami Beach, 1986.

[16] R. Benenson and M. Omran and J. Hosang and B. Schiele, “Ten years
of pedestrian detection, what have we learned?”, in European
Conference on Computer Vision, CVRSUAD workshop, 2014.

[17] S. Zhang and R. Benenson and B. Schiele, “Filtered channel features
for pedestrian detection“, in Conference on Computer Vision and
Pattern Recognition, 2015.

[18] J. Hosang and M. Omran and R. Benenson and B. Schiele, “Taking a
deeper look at pedestrians“, in in Conference on Computer Vision
and Pattern Recognition, 2015.

[19] S. Zhang and R. Benenson and M. Omran and J. Hosang and B.
Schiele, “How Far are We from Solving Pedestrian Detection?“, in
Conference on Computer Vision and Pattern Recognition,, 2016.

[20] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art”, TPAMI, 2011.

[21] P. Viola and M. Jones,“Robust Real-time Object Detection“,
International Journal of Computer Vision, 2001.

[22] Y. Lipetski, G. Loibner, O. Sidla. “Close to real-time robust
pedestrian detection and tracking”. In Proceedings SPIE 9407, Video
Surveillance and Transportation Imaging Applications, 2015.

Author Biographies
Yuriy Lipetski attained his master degree in telematics at the National
Technical University “Kyiv Polytechnic Institute” in 2002. Since then he
works as a researcher in the computer science field. His main focus is i)
development and implementation of object detection and tracking
algorithms, and ii) development of an automatic number plate reading
system. Since 2011 Yuriy Lipetski is senior researcher in SLR Engineering.

Oliver Sidla attained his master degree in computer science at the
Technical University of Graz in 1991. Until 2007 he worked as a
researcher and project manager in Graz. His main focus was the
development of machine vision systems for industrial applications, and
from 2002 on, development of algorithms and systems for object tracking
and detection. Furthermore Oliver Sidla has experience in the development
of classification algorithms, feature descriptors, especially the HOG
detector, and their integration into real-time systems.

In 2008 Oliver Sidla founded the company SLR Engineering, which is
based in Graz, Austria. The main focus of SLR Engineering is i) the
implementation of machine vision systems for industrial inspection and ITS
systems, and ii) the design and implementation of object detection
strategies which are suited for embedded systems and smart cameras.

IS&T International Symposium on Electronic Imaging 2017
Surveillance: Applications and Algorithms 17

