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Abstract
Stereo Matching algorithms reconstruct a depth map from

a pair of stereoscopic images. Stereo Matching algorithms are
computationally intensive. Implementing efficient stereo match-
ing algorithms on embedded systems is very challenging. This
paper compares implementation efficiency and output quality of
the state of the art dense stereo matching algorithms on the same
multicore embedded system. The three different classes of stereo
matching algorithms are local methods, semi-global methods and
global methods. This paper compares three algorithms of the lit-
erature with a good trade-off between complexity and accuracy
: Bilateral Filtering Aggregation (BFA, Local Method), One Di-
mension Belief Propagation (BP-1D, Semi Global Methods) and
Semi Global Matching (SGM, Semi Global Methods). For the
same input data the BFA, BP-1D and SGM were fully optimized
and parallelized on the C6678 platform and run at respectively
10.7 ms, 4.1 ms and 47.1 ms.

Introduction
Embedded vision is the merging of two technologies; em-

bedded systems and computer vision. An embedded system is
any microprocessor-based system that is not a general-purpose
computer [1]. The goal of our work is to implement computer
vision algorithms in modern embedded systems to provide them
with real time stereo perception. Active devices such as Kinect
[2] are able to produce real time disparity maps. This kind of de-
vice works by emitting an infra-red grid on the observed scene;
the disparity map is deduced from this sensed-back grid. Those
devices are limited to indoor use with a 5 meter range and they are
sensitive to infra-red interferences. This paper focuses on Binoc-
ular Stereo-Vision algorithms to bypass these limitations. Stereo
Matching aims to create 3D measurements from two 2D images,
generating a disparity map which is inversely proportional to the
distance of any object to the acquisition system. Disparity maps
are used in scenarios where distance must be computed in all do-
mains of computer vision. This is a strategically important knowl-
edge field to test computation acceleration with.

Most existing real time implementations of stereo match-
ing algorithms are carried out on desktop Graphical Processor
Unit (GPU), leading to poor energy efficiency. On top of that
GPU used for the implementations are different so that it is very
difficult to truly compare the complexity of the algorithms. Em-
bedded systems take up little space and consume little power, so
they are ideal for widespread integration into everyday objects.
Energy-efficient embedded platforms are now available. For in-
stance the C6678 platform used in this article has a standard 10W

power consumption. However, the architecture of embedded sys-
tems is significantly different to the architecture of desktop sys-
tems. The challenge is now to find and adapt algorithms and im-
plementations that can fully exploit the powerful computational
capabilities of such an architecture. The comparison of stereo
matching algorithms exposed in this paper is made on the same
embedded platform and it can be extrapolated to any other multi
core embedded architecture with shared and distributed memory.

In this paper, three different stereo matching algorithms are
considered. These three algorithms are at the state of the art in the
field of stereo matching algorithms. Our work consists in adapt-
ing those algorithms to efficiently fit onto the C6678 platform.
The implementations of Bilateral Filtering Aggregation (BFA)
and One Dimension Belief Propagation (BP-1D) were previously
studied in [3] and [4] respectively. The implementation of Semi
Global Matching (SGM) is a new result in the field. The origi-
nal SGM algorithm [5] uses a cost construction method based on
”mutual information”, the algorithm proposed in this paper uses
cost construction based on Census which is more adapted to the
targeted architecture. A contribution of the paper is also to fairly
compare the implementation efficiency of the three algorithms in
terms of quality and computing complexity using the same Digital
Signal Processor (DSP) platform (C6678).

This paper is organized as follows : the principle of Binocu-
lar Stereo Matching algorithm and an overview of the C6678 are
first introduced. The three algorithms and their optimization on
the C6678 are then exposed. Results of the three algorithms are
presented with respect to execution time and accuracy and finally
perspectives and future works conclude the paper.

Stereo Matching principle
A Stereo Matching algorithm computes depth information

from two cameras. The goal is to match a pixel in the left image
with one in the right image. The disparity is the shifting of the two
pixels in the left and the right images, the bigger the disparity, the
closer the object from the two cameras. Depth information is thus
retrieved from disparity.

There are two main classes of Stereo Matching algorithms,
the dense ones and the parse ones. Sparse Stereo Matching algo-
rithms consider only a set of interest points whereas dense stereo
matching algorithms match all pixels. In this paper we consider
dense Stereo Matching algorithms.

Dense Stereo Matching algorithms are mainly divided into
three classes, local methods, global methods and semi-global
methods [6]. Disparity computed with a local method depends
only on colorimetric values of pixels within a finite window.
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Global Stereo Matching algorithms maximize smoothness of the
disparity map all over the image. Semi global methods maximize
smoothness of the disparity map over a subset of image pixel that
is not within a finite window. Global methods like Graph Cut
come with good results in terms of accuracy but with a huge com-
putational requirement incompatible with embedded systems and
thus are not covered in this paper.

All dense Stereo Matching algorithms can be divided into
three main parts :

• Cost construction measures the similarity of two pixels con-
sidering colorimetric values of those pixels and a finite
neighbourhood.

• Cost aggregation takes into considerations other costs from
the neighbourhood and other disparity values.

• Disparity selection decides what is the disparity value for a
given pixel.

Three of the most promising Stereo Matching algorithms are
studied in this paper:

• BFA is a fully local method.
• BP-1D is a semi-global method that considers each epipolar

line separately (a single direction is considered).
• SGM is also a semi-global method that considers several

directions in the right and left images.

The C66x multi-core DSP platform
The C6678 platform is composed of 8 C66x DSP cores and

it is designed for image processing. The main features and con-
straints of this widespread multi-core platform have to be recalled
to explain why the algorithms have to be modified to be efficiently
executed on any embedded system.

Memory architecture
Memory is a critical point in embedded systems. Large

memories being slower than smaller ones, modern systems inte-
grate several memory layers in order to increase memory capac-
ity without increasing access time. The memory hierarchy of the
C6678 platform is composed of four memory layers :

• 512 MBytes of shared external DDR3 memory. This mem-
ory is slow, and the bus bandwidth is limited to 10 GBytes/s

• 4 MBytes of internal shared memory (MSMSRAM). It is a
SRAM memory and it is faster (128 GBytes/s)

• 512 KBytes of L2 cache per core that can be configured as
cache or local memory.

• 32 KBytes of (Program and Data) L1 cache per core.

SIMD
Single Instructions Multiple Data (SIMD) are instructions

that are executed on multiple data. A SIMD instruction consid-
ers one or two registers (32 or 64 bits respectively) as a set of
smaller words. For instance, an instruction that operates a 32-bit
register as a group of 4 8-bit words is called a 4-way 8-bit SIMD
instruction. This kind of instruction allows to manipulate several
pixels (8-bits data) simultaneously.

Figure 1: C66x DSP core architecture

Implementation strategies for stereo matching
All Stereo Matching algorithms have the same structure but

different strategies can be applied to parallelized them. All Stereo
Matching algorithms processing can be parallelized by diving im-
ages horizontally (slicing) without increasing the memory foot-
print. Nevertheless some algorithms can lead in synchronization
penalties between slices.

Most of local Stereo Matching algorithms have their cost
computed independently for each disparity level. Those algo-
rithms can be parallelized along their disparity level. This par-
allelization is very effective but it comes with a higher memory
footprint.

Specific DSP instructions can be used to increase implemen-
tation efficiency of algorithms : the bit count instruction for cen-
sus, or the min instruction for saturation.

Finally, a pixel parallelization is possible to compute several
pixels simultaneously thanks to SIMD instructions. Implementa-
tion and performances of this solution depend on the algorithm
being used.

Next sections will describe the three considered stereo-
matching algorithms which have been implemented and com-
pared.

BFA stereo-matching algorithm
The first one of the considered stereo matching algorithms

is close to the one proposed by Mei et al in [7] and [3]. The
original algorithm is evaluated as one of the best performing local
methods on the Middleburry[6] bench-marking data-base and has
been modified for an efficient execution on multi-core embedded
systems.

In the paper, this algorithm is denoted BFA for Bilateral Fil-
tering Aggregation as its aggregation step is similar to bilateral
filtering. This paper is based on an implementation of this algo-
rithm on the C6678 platform provided by [8].

Cost construction
The cost construction step takes left and right images and

computes a matching cost for all possible disparity levels. Its out-
put is a cost map for each disparity level (same size as input im-
age).
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Figure 2: Example of a 8 bits census signature

The cost construction used in this algorithm is based on Cen-
sus. Census produces an 8-bit signature for each pixel of an input
image. As shown in figure 2, this signature is obtained by com-
paring each pixel to its 8 neighbours. Census signature is referred
as cenl , cenr for respectively left and right grey level images.

For disparity d, pixel p of coordinates (x,y) is taken in the
left image and compared to pixel pd of coordinates (x+ d,y) in
the right image. The result of the comparison is an error that is
called matching cost. Equation (1) describes the matching cost
that is computed on each pixel and for all possible disparities.

Cost(p,d) =
1
8

7

∑
k=0

{
0 if cenr(p)[k] = cenl(pd)[k]
1 if cenr(p)[k] 6= cenl(pd)[k]

(1)

Where Cost(p,d) is the cost associated to census, cenl(p)[k]
and cenr(p)[k] are the kth bits of the 8-bit census signature for
pixel p in the left and right images respectively, pd is the pixel of
coordinates p−d, with d the disparity level.

The sum in Equation (1) is a sum of bit-to-bit ”exclusive or”
(XOR) boolean operation.

The output of the cost construction step is one cost map per
disparity level. Those cost maps are the input of the cost aggrega-
tion step.

Cost aggregation
The cost construction step has a low computing cost, but it

provides noisy matching cost maps. This noise is mainly pro-
duced by Cost(p,d) which is random when compared regions are
not correlated. To remove this noise, the cost aggregation step
performs smoothing on areas with similar colour in the original
image. The cost aggregation step is performed independently on
each cost map. This is a key point regarding implementation.

The structure of the cost aggregation algorithm is similar to
a bilateral filter. Cost aggregation is performed iteratively with
varying parameters. It is defined by equation (2).

Ed,i+1(p) =
W (p, p+)Ed,i(p+)+Ed,i(p)+W (p, p−)Ed,i(p−)

W (p, p+)+1+W (p, p−)
(2)

Ed,i(p) is the cost map to be refined, E0(p) is the output of
cost construction Cost(p,d) in Equation (1).

Pixels p+ and p− have a position relative to pixel p :

• p+ = p+∆i
• p− = p−∆i

Equation (2) is computed alternatively for horizontal and
vertical aggregations :

• When i is odd, the aggregation is vertical. The offset ∆i is
vertical.

• When i is even, aggregation is horizontal, the offset ∆i is
horizontal.

At each iteration the parameter ∆i grows. Thus further pixels
p+ and p− are used for smoothing p. ∆i evolves according to
equation (3), the influence range is limited by the modulo (here
∆i ∈ [0,32]) [3].

∆i = f loor(i/2)2 mod33 (3)

Weights W in equation (2) are defined by equation (4) :

W (p1, p2) = eCd .∆i−
√

∑col∈(r,g,b)(Ir col(p1)−Ir col(p2))
2

L2 (4)

Where Cd is a weight applied to distance [7] and L2 is the
weight applied to similarity [7]. Ir{r,g,b} and Il{r,g,b} are the
RGB (Red, Green, Blue) signals of right and left images.

Disparity selection
The disparity selection step minimizes the matching cost. To

do so, the Winner Takes All (WTA) strategy [6] is applied. The
WTA strategy is a simple arithmetic comparison expressed by :

Disp(p) = argmin
d∈[0,Ndisp]

Ed,Nit(p) (5)

Equation 5 expresses the fact that the smallest cost gives the
best disparity choice, that is why the argmin operator is used.

The output of disparity selection is a dense disparity map
providing an integer disparity value for each pixel in the right
image.

Implementation
The census cost is implemented using specific DSP instruc-

tions XOR and bitcount (count the number of bits equal to 1 in
a word) that comes in SIMD version. This allows to compute a
pixel cost from two census signatures in 0.25 machine cycles.

The weights W (p1, p2) are precomputed, they only depend
on the input image. The bottleneck of BFA is the memory band-
width. The fact that W (p+, p) = W (p, p−) allows to reduce the
size of those precomputed buffers by a factor 2. They then fit into
the MSMSRAM, reducing the memory bottleneck.

BP1D stereo-matching algorithm
The BP-1D algorithm is a semi global Stereo Matching al-

gorithm. Cost construction is based on a Sum of Absolute Dif-
ference (SAD), it has no disparity selection. Indeed, its disparity
selection is based on a belief propagation to resolve an Homo-
geneous Markov Chain (HMC) and thus it takes into account the
neighbourhood. Each line is considered independently. This al-
lows the reduction of memory complexity of the algorithm and
enhances parallelism.

Cost construction
The cost Csad(p,d) is defined as the SAD! (SAD!) of two

pixels p and p−d of respective coordinates (x,y) and (x−d,y) :

Csad(p,d) = ∑
col∈(r,g,b)

‖Ircol(p)− Ilcol(p−d)‖ (6)
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Disparity selection
BP-1D disparity selection is based on the optimization of

a HMC [9, 10] executed line by line. BP-1D has also another
specificity : it works on the Cyclopean view. A Cyclopean view
is the view that would be obtained by an hypothetical camera that
is exactly between left and right cameras. Figure 3 explains the
principle of the Cyclopean view. This view is very convenient :
the position and the disparity can be obtained very easily from this
view and all possible neighbours (in space or disparity) are near
each other. Moreover, occultations are easily deduced from this
view.

The BP-1D algorithm manages occulted areas : each dispar-
ity for each pixel has three possible states with their correspond-
ing cost, ML, MR and B for respectively a pixel only on the left
image, a pixel only on the right image and a pixel on both images.

Each node ux(d,s) of the Graph of Profile Variants (GPV) is
related to one pixel in the left image Ilrgb(x1) and one pixel in the
right image Irrgb(x2) such that x = (x1 + x2)/2 and d = x1− x2.
Each pixel x for each possible disparity level d ∈ [0,D−1] has 3
different possible hidden states s ∈ {ML,MR,B}.

The line in Figure 3 is an example of a Profile Variant. A
Profile Variant is a line that associates a disparity d for each value
of x. A GPV is a set of all possible Profile Variant lines. Due
to ordering and visibility constraints (occulations), the admissible
transitions in the nodes ux(d,s) of the Graph of Profile Variants
are limited.

1 line in Image Left 1 line in Image right

Disparities
d = x1 - x2

1 line in the cyclopean view

x2x1

x = (x1 + x2) / 2

MR
B
ML

0 0

0

Figure 3: Example of energy minimisation in a cyclopean view

BP-1D aims at finding the best Profile Variant in the GPV,
i.e the Profile Variant minimizing an energy function E∗. For a
well-posed energy minimization problem BP-1D gives the unique
optimizer u*. As the Stereo Matching is an ill-posed problem,
BP-1D gives one of the several possible solutions.

The energy is the sum of several costs enabling to take into
account the neighbourhood of the node in the HMC : F is the
forward message, φ the backward message and Csad(p,d) a cost
associated to each node.

E∗ =
n

∑
x=1

min
d,s

E(ux(d,s)) (7)

E(ux(d,s)) = Fx(d,s)+φx(d,s)+Csad(x,y,d) (8)

Taking into account the possible transitions, the forward
message Fx(d,s) is computed in a forward pass using the follow-
ing equations :

Fx(d,ML)=Fx(d,B)=min


Fx−0.5(d−1,ML))+ϕ0

Fx−1(d,B))+Csad(x−1,y,d)
Fx−1(d,MR))+ϕ0

(9)

Fx(d,MR) = min
{

Fx−0.5(d +1,B))+Csad(x−0.5,y,d +1)
Fx−0.5(d +1,MR))+ϕ0

(10)

The backward message φx(d,s) is computed in a backward pass
using the following equations :

φx(d,ML) = min
{

φx+0.5(d +1,ML))+ϕ0;
φx+0.5(d +1,B))+Csad(x+0.5,y,d +1)

(11)

φx(d,B) = φx(d,MR) = min


φx+1(d,ML))+ϕ0

φx+1(d,B))+Csad(x+1,y,d)
φx+0.5(d−1,MR))+ϕ0

(12)

For our experiments, the ϕ0 cost has been fixed to 40. ϕ0 is linked
to the dynamic of input signal. This constant defines the smooth-
ing constraint it gives a penalty for each change in disparity levels.

The disparity selected for each node ux(d,s) is the one min-
imizing the energy E(ux(d,s))

D(x) = argmin
d∈[0,N−1[

E(ux(d,s)) (13)

Implementation
The BP-1D algorithm can be parallelized easily without in-

creasing memory consumption because it considers each line in-
dependently. This is the key point of this algorithm regarding its
implementation. BP-1D has been parallelized without any partic-
ular framework, because it does not need any special synchroni-
sation (each line is treated independently).

The disparity selection part uses additions and minimums.
The C66x core provides efficient SIMD instructions to implement
those costs.

SGM stereo-matching algorithm
The SGM algorithm [5] is one of the best non-global meth-

ods [6]. It gives a good trade-off between output quality and exe-
cution speed.

Cost construction
The original SGM cost construction is based on mutual in-

formation [5]. A second version of this algorithms uses a Census
based cost construction [11]. The census based version is pre-
ferred in this paper for performance reasons : mutual information
needs an initial disparity map as input and it is iterative. More-
over, the census implementation, as explained in the BFA section,
fits very efficiently on the C6678 architecture.

The census cost used in this implementation is described in
Equation (1).

Disparity selection
SGM disparity selection is based on an Hidden Markov

Model (HMM) like BP-1D. But instead of aggregating horizon-
tally only, the aggregation is performed in several directions. The
BP-1D algorithm produces horizontal striding artefacts in its out-
put (as shown in figure 4f). By considering several direction paths
instead of one, SGM avoids this artefact.
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Table 1: Dynamic of the SGM cost matrix
Image Teddy Cone Sawtooth Art

Costs sup. 255 0.2% 0% 0.3% 2.7%

Equation (14) gives the aggregation cost for one direction
r. P1 and P2 set the desired of disparity map smoothness, they
are penalties for small and large discontinuities and are set in this
paper at respectively 20 and 40. Lr(p,d) is the cost aggregated
along direction r for disparity d at pixel p. C(p,d) is the cost at
pixel p and disparity d. p− r is the previous pixel before p along
direction r.

Lr(p,d) =C(p,d)+min
(

Lr(p− r,d),

Lr(p− r,d−1)+P1,Lr(p− r,d +1)+P1,

min
i
(Lr(p− r, i))+P2

)
−min

k
(Lr(p− r,k)) (14)

To obtained the disparity map, the energy on all direction r
is minimized :

Disp(p) = argmin
d∈[0,Ndisp]

∑
r

Lr(p,d) (15)

Implementation
By subtracting mink(Lr(p− r,k)) from the cost propagation

along one path, Equation (14) has a bounded dynamic [5]. The
original paper [5] proposed an implementation that uses 16 bits
words. An 8-bit words implementation coupled with saturated
arithmetic is proposed in this paper. Because costs are minimized,
only the smallest values are selected. The 8-bit saturated arith-
metic only impacts largest values and thus has a negligible impact
on quality. Moreover as shown in table 1, as most of the values fit
on 8 bits, the output quality is not degraded by this modification.

The implementation proposed in this paper stores all costs in
8-bit words and uses saturated arithmetic to avoid overflows. By
doing this the memory constraint is divided by two and memory
transfers are boosted. The use of SIMD instructions is also much
more efficient. Indeed the C6678 SIMD allows to handle up to 8
8-bit words in one instruction.

In Equation (14), each series of costs along one direction
is independent. For instance, when the direction is horizontal,
each line of costs is treated independently. Thus, in the proposed
implementation, each core of the C6678 works on one series of
costs along one direction, and then only need a subset of the cost
matrix that fits in its local L2 memory.

Results
This section presents results in quality and execution time of

the previously introduced stereo matching algorithms.
Table 2 expresses the quality of the three different algorithms

and their respective execution speed on the 8 cores of the C66x
platform. The quality is expressed in percentage of bad pixels
rated by the Middlebury evaluation algorithm [6]. The percentage
of bad pixels is an average on 6 Middlebury images (cones, map,
sawtooth, teddy, tsukuba and venus). Execution time is given for
the sawtooth image and not an average on all images because the
execution time is predictible reagrding the size of its input. That

Table 2: Algorithms speed and output quality (the lowest the bet-
ter)

Algorithm Speed (FPS) Quality (% of bad pixels)
BFA 93.5 4.02 %

BP-1D 245 3.81 %
SGM 21.2 8.60%

Table 3: Algorithms profiling
Algorithm Construction Aggregation Selection

BFA 24 % 72 % 5 %
BP-1D 3 % 97 %
SGM 13 % 70 % 17 %

means, knowing the execution time for a size of image and a num-
ber of disaprity, all execution time can be found (the complexity
is X×Y ×NDISP).

Table 3 expresses the relative execution time of each main
part of each algorithm. These results are obtained with one core
of the C66x platform clocked at 1GHz.

The parallelization efficiency of each algorithm on the C66x
platform is given by table 4. All execution time are for the C66x
platform.

The BP-1D algorithm gives the best quality and execution
time results (see table 2). This can be explained by the fact that
it can be easily parallelized (table 4). Each line is processed sep-
arately in BP-1D. That is why there is a speed up factor (table
4) that is equal to the number of cores. Each line is stored in the
local memory cache, and it results in a better cache use. The main
drawback of BP-1D is the fact that it cannot be tuned to match
particular time or quality requirements. But BP-1D fits very well
on a multi-core architecture.

Compared to the original implementation, output quality is
good. BFA execution time on a desktop GPU (Nvidia Quadro FX
3700) is 192 ms [3] for a 450 x 375 pixel image with 59 disparity
levels. The extrapolated result for sawtooth is 64 ms. The DSP
version is 6 times faster than its GPU version.

SGM is executed at 4.5 Hz [11] onto a desktop GPU (NVidia
GeForce GTX 275) for a 640 x 480 pixel image and 128 dispar-
ity levels. The extrapolated result for sawtooth is 17 ms. The
GPU version is faster 3 times than the DSP version, but the DSP
consumes 25 times less power than the GPU.

BFA and SGM algorithms are parallelized thanks to Open
Multi-Processing (OpenMP), whereas BP-1D is parallelized di-
rectly on the DSP, without any framework. This is why paral-
lelized results are better for BP-1D. BFA and SGM algorithms
are less data independent than BP-1D and thus require a frame-
work to handle parallelization (OpenMP).

Table 3 shows the specificity of each algorithm. For BP-1D,
the most computing intensive part is cost aggregation which can-
not be separated from disparity selection. It is the most comput-
ing intensive part. For SGM and BFA, there is a trade-off between
cost construction and cost aggregation. This gives more possibil-
ities for further improvement on those algorithms.

Table 4: Multicore Execution Time (ms)
Algorithm 1 core 2 cores 4 cores 8 cores

BFA 52 (x1) 29 (x1.8) 16 (x3.2) 11 (x4.9)
BP-1D 41 (x1) 20 (x2) 10 (x4) 5 (x8)
SGM 330 (x1) 174 (x1.9) 92 (x3.6) 47 (x7)
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(a) Sawtooth - BFA (b) Teddy - BFA (c) Tsukuba - BFA

(d) Sawtooth - BP-1D (e) Teddy - BP-1D (f) Tsukuba - BP-1D

(g) Sawtooth - SGM (h) Teddy - SGM (i) Tsukuba - SGM
Figure 4: Output disparity maps

Figure 4 provides output disparity maps for each algorithm
considered in this paper. Each image has been post-processed
with the following post treatment :

• A 3 by 3 median filter for BFA and SGM.
• A median filter for BP-1D which is larger in the vertical

direction (3 by 11) to reduce the strides on disparity maps.

BFA gives good visual results but poorly manages occulted
areas. The BP-1D gives better results according to Middlebury
criteria because of its ability to handle occulted areas but its vi-
sual quality is decreased by its striding effect. Output disparity
maps of BP-1D have strides because each line is processed inde-
pendently, and there is no coherency between lines.

Conclusion
Stereo Matching algorithms are very resources intensive.

The goal of this paper is to compare the efficiency of different
Stereo Matching algorithms on a DSP platform. The C6678 plat-
form is one of the most powerful DSP platforms on the market.
That is why this platform has been chosen for this comparison.

Three different kinds of algorithms have been implemented
on this platform. BFA, a local algorithm, and two semi-global
algorithms : BP-1D and SGM.

All three different algorithms parallelize well on the C6678
platform. BP-1D uses more efficiently the 8 cores with a speed-
up of 8 because each line is processed independently. BFA and
SGM require inter-core synchronization that reduces efficiency of
multi-core implementation with respectively a speed-up of 4.93
and 7.02.

Finally, for the same input image the BFA, BP-1D and SGM
with an optimized implementation on the C6678 platform run at
respectively 10.7 ms, 4.1 ms and 47.1 ms. The BP-1D algorithm
provides the best results in quality and execution speed. But BFA
and SGM can be tuned more easily by modifying their parameters
such as number of iterations or number of paths.

Several improvement can be made on those algorithms. All
algorithms have parameters that have to be tuned. In this paper,
these parameters are set according to the literature. Those param-
eters may be optimized to have better quality results without any
performance lost.
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