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Abstract
RGBD cameras capturing color and depth information are highly

promising for various industrial, consumer and creative applications.
Among others, these applications are segmentation, gesture control or
deep compositing. Depth maps captured with Time-of-Flight sensors,
as a potential alternative to vision-based approaches, still suffer from
low depth resolution. Various algorithms are available for RGB-guided
depth upscaling but they also introduce filtering artifacts like depth
bleeding or texture copying. We propose a novel superpixel-based
upscaling algorithm, which employs an iterative superpixel cluster-
ing strategy to achieve improved boundary reproduction at depth
discontinuities without aforementioned artifacts. Concluding, a rich
ground-truth-based evaluation validates that our upscaling method
is superior compared to competing state-of-the-art algorithms with
respect to depth jump reproduction. Reference material is collected
from a real RGBD camera as well as the Middlebury 2005 and 2014
data sets. The effectiveness of our method is also confirmed by usage
in a depth-jump-critical computational imaging use case.

Introduction
Capturing RGB images and depth information has accessed

numerous applications. Plenty of them like depth-image-based
rendering [1], object tracking [2], image segmentation [3] or deep
compositing [4] are improved or facilitated when a depth channel
becomes available. In particular, upcoming computational imaging
applications will highly benefit from the accompanied depth channel.
Depth is typically acquired using passive triangulation techniques or
active Time-of-Flight (TOF) imaging. While passive methods deliver
higher-resolution depth maps with only minor noise, they lack in
mechanical and computational simplicity as well as in depth density.

Contrary, Time-of-Flight sensors are cheap and easy to use in
practical environments and deliver only low-resolution depths maps
containing a noticeable amount of noise. Due to the practical benefits
and the availability of a dense depth map, they are considered as
promising. Hence, this paper concentrates on depth maps from TOF
sensors. In order to overcome the remaining problem of the low resolu-
tion, RGB-guided depth map upscaling is typically applied. Therein, it
is commonly assumed that depth discontinuities coincide with changes
in the objects’ color appearance. For example, the well-known joint
bilateral filter (JBF) deploys color intensity distances to estimate depth
jumps at their more precise locations in a matching color image [5].

One important aspect, which has not yet been handled appropri-
ately in guided upscaling algorithms like the joint bilateral filter (JBF),
noise-aware depth upscaling (NAFDU) filter and guided filter (GF)
[5, 6, 7], is flying pixels. Flying pixels are explained by sampling
artifacts of the low TOF sensor resolution. That is, due to the very low
spatial sampling rate of TOF sensors, physical depth discontinuities
generate disturbing mixed depth measurements from foreground and
background at object boundaries, yielding a contradictory distance
measurement of somewhere in between. Figure 1 underlines the ur-

gency of this problem considering a JBF-filtered depth map projected
as a point cloud in 3D space and the corresponding result of our ap-
proach. Applying guided upscaling to those raw depth maps will
increase the amount of flying pixels at object boundaries since initial
flying pixels are treated as valid inputs. Thus, in TOF imaging terminol-
ogy, all pixels that are natively captured or processed to situate between
two objects, while actually corresponding to either of the two surfaces
are called flying pixels. At this point, we want to reveal the underlying
problem. All guided upscaling methods have their origin in conven-
tional color image filtering where the known rules of visual perception
hold. Considering depth maps, visual assessment is not sensible
although being often applied. For example, in depth maps, a pixel cor-
responding to an opaque object must have one unique depth value. Re-
garding the formation mechanism of flying pixels, this rule is violated.
Guided upscaling filters, designed to be edge-aware, aim to reduce the
number of those filtered pixels at boundaries. In visual imaging, this
process leads to perceptually sharp edges. In depth sensing, this pro-
cess also leads to perceptually sharp edges in the depth maps but these
filters are not designed to assign distinct depth values to objects. Hence,
a perceptually sharp edge in a depth map, when visualized and assessed
like a grayscale image, still contains a tremendous amount of violating
flying pixels. This destroys computational imaging applications like
keying based on depth masks or lens synthesis among many others.

Thus, our contribution is a novel upscaling algorithm focusing on
correct depth edge assignment and thus improved upscaling respecting
the flying pixels. We utilize the high segmentation performance
of superpixel (SP) algorithms to indicate depth edges which are
assumed to coincide with the SP boundaries. This includes a novel
seed growing strategy to overcome the underlying uncertainty relation
between the uniqueness of the depth estimates within each SP cluster
and granularity of recognized objects. All found depth discontinuities
are finally fed into a modified joint bilateral filter which thereby
allows for the generation of uniquely assigned pixels at depth edges.

Prior Art
Numerous color-guided depth upscaling approaches have been

designed in the past.
The joint bilateral filter (JBF) comprises a modified version of the

bilateral filter proposed by Kopf et al. [5, 8]. Herein, an output pixel is
the weighted sum of its neighbors preserving edges by additionally con-
sidering RGB pixel intensity differences. Compared to the proposed
algorithm, JBF is real-time compatible. The one-stage guided filter
(GF1s) is designed to overcome JBF-specific artifacts like the gradient
reversal effect [9, 10]. Except for edge reversal, the global behavior
of the GF1s is similar to the one of JBF. The two-stage guided filter
(GF2s) is an extension of the general guided filter with special focus on
depth map enhancement [10]. Therein, Hui et al. proposed a two-stage
strategy, which means enhancing depth using the RGB guide in the first
stage and using the filtered depth output as guide in the second stage.
This procedure retains all benefits of guided image filtering while re-
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(a) JBF upscaling (b) our approach before JBF smoothing stage (c) our full approach

Figure 1: Comparison of resulting 3D point clouds, when using JBF upscaling and our approach with different configurations: the number of
flying pixels is drastically reduced. The corresponding depth maps are given in Figure 9.

ducing, but not finally eliminating, texture copying and depth bleeding
artifacts. The noise-aware depth upscaling filter (NAFDU) is based
on the JBF [6]. Therein, Chan et al. provide an adaptive weighting
between JBF and a conventional bilateral filter (BF) to reduce texture
copying [8]. Yang et al. propose a cost volume approach inspired from
stereo vision approaches yielding promising results especially in the
case of reconstructing simple geometric primitives [11]. Our algorithm
is also capable of providing the latter, however, we provide examples
which are not easy to solve using a single color key like in their work.

Yang et al. incorporate bilateral filters in a median and bilateral
filter fusion framework yielding the solution to an adaptive cost
aggregation problem [12]. Therein, the bilateral filter preserves edges
while the median makes the method more robust to noise.

Huhle et al. propose a non-local filter for upscaling and
suppressing flying pixels [13]. Although the approach looks
promising, they clearly lack experimental results and the approach is
computationally highly demanding as 2x upscaling takes 14 minutes
on a CPU. In comparison, our approach lasts between 4 and 5 minutes
for 12x upscaling on a single CPU.

Constant time weighted median filtering proposed by Ma
et al. [14] is based on weighted median filtering [15, 16]. This
method is optimized for speed while preserving accuracy. All of the
aforementioned filters will generate a noticeable amount of flying
pixels during upscaling [17].

The following filters are based on iterative or optimization
methods. They are computationally demanding, especially when
using those methods for 16-bit depth maps. Based on our evaluation
with full-HD 16-bit data, which is a very typical configuration in
professional applications, the computation times strongly increase up
to the range of hours. Unfortunately, this holds for all of the following
algorithms because of the utilization of Markov-Random-Fields or
TV solvers, which are optimizing discrete labels.

Yang et al. propose an iterative cost volume filtering for depth
super resolution [11]. Therein, a 3D cost volume is updated based
on the current depth map and consecutively filtered by the JBF. The
total generalized variation (TGV) is based on standard total variation
techniques. However, Ferstl et al. replaced the L1 norm, used as
the standard in total variation approaches, by the L2 norm because
the L1 norm enforces over-flattening of objects [18]. Additionally,
they add an anisotropic diffusion tensor for enhanced control of the
optimization direction. High-quality depth map upsampling based
on non-local means filtering (NLM) is proposed by Park et al. [19].
Therein, the NLM term is extended by a typical smoothness and data
term known from Markov-Random-Field (MRF) approaches. Pure
MRFs are deployed by Diebel et al. [20] using specific weighting
factors to a combined smoothness and data term. They, for instance

state that they solve 2·105 nodes, which equals only 448x448 pixels,
of 8-bit depth in 2 seconds. Our approach targets 1920x1080 of under-
lying 16-bit data, which increases the computation time tremendously.
Joint geodesic upsampling, which is based on the all-pair-shortest-path
problem, is introduced by Liu et al. [21]. Therein, they propose a
novel approximation algorithm to mainly decrease the complexity. An
adaptive auto-regressive model is employed by Yang et al. [22]. Their
auto-regressive predictor operates pixel-wise and is designed in depen-
dence on the local correlation of the raw depth map and the non-local
similarity of the accompanied RGB image. Weighted mode filtering
presented by Min et al. is based on a joint RGB and depth histogram
[23]. While processing the histogram, each bin is weighted by the
similarity between reference and neighboring pixels of the RGB image.

The following methods employ superpixel techniques, which
is highly related to our approach. Soh et al. presented a method called
superpixel-based depth image super-resolution (SDIS) which is the
first incorporating the concept of superpixels in depth map upscaling
[24]. They propose a superpixel segmentation on both, the RGB
and naively upscaled depth map. Since the superpixel segmentation
is performed in the color image and depth map, the difference in
resolution leads to a consecutive sorting algorithm. All pixels within a
certain distance W from the crucial depth map superpixel boundary are
resorted in accordance to the superpixel membership of nearest neigh-
bors in the RGB segmentation outside the blurry corridor W . After
resorting, least-square planes are fitted in the depth of each superpixel
yielding a piece-wise linear depth map. Eventually, this depth map
is smoothed using a maximum a posteriori Markov-Random-Field
(MAP-MRF) approach, which leads to a high computational burden
and again introduces numerous flying pixels. Our own experiments
show that they also suffer from a large scaling factor between RGB
images and depth maps because the algorithm relies in parts on the
superpixel segmentation from the upscaled depth image. Blurred depth
edges will lead to an erroneous segmentation and a strong slanted
edge phenomenon within the least-squares plane fitting. Thus, to our
observation, SDIS works best if depth edges are already quite defined.

Matsuo and Aoki propose to merge the initial superpixel
segmentation based on similarities in the principal component analysis
of the latter patches [25]. Although their results are promising they
clearly lack a method to process depth jumps. Their approach simply
neglects steep slanted patches leading to invalid areas around objects
as shown in the according paper. This underlines the effectiveness
of our approach which is able to handle depth jumps appropriately.

Kim et al. propose an extended JBF filter which is guided by
a so-called color segment set which corresponds to a superpixel
segmentation of the RGB image [26]. Therein, they apply a
user-defined threshold which limits the depth refinement to a certain
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(a) (b) (c) (d)
Figure 2: High-resolution RGB images with high (a) and low (b) su-
perpixel oversegmentation (superpixels are indicated by purple lines).
According depth maps with the superpixel segmentation swapped
from RGB (c,d). Small superpixels tend to contain only flying pixels
at object boundaries while providing an improved boundary recall

depth range. Next to the hole filling task, we dismiss this approach
due to the limitation of manually pre-selecting local boundaries by
adjusting the depth range. In the remainder of the depth map, JBF
is used which incorporates an additional depth range term.

Upscaling Algorithm
Our algorithm, called iterative superpixel-guided depth upscaling

(ISUDU), is based on two observations. First, in the case of TOF
cameras, confidence of a single pixel is said to be low because of high
noise and measurement errors [27]. Thus, it is reasonable to increase
a pixel’s confidence by involving neighbors. We utilize superpixel
clustering to find appropriate neighbors. Second, in conventional
image segmentation as well as our previous paper [17], superpixel
algorithms have proven to provide outstanding boundary recall, which
is required in order to reach the design goal of distinct depth map edges
[28, 29]. Still, there remains the uncertainty relation when applying
those clusters to a depth map. An increasing number of superpixel
clusters results in an increased boundary recall with the ability to
resolve smaller objects while the number of depth pixels within each
superpixel becomes smaller. Hence the confidence decreases. Figure
2 shows two superpixel segmentations at an object boundary using
2000 and 16000 superpixels per image. This translates to 1000 and
130 pixels per superpixel. The underlying depth map was upscaled
and registered to the final resolution using bicubic interpolation.
Figure 3a shows the comparison of smoothed depth histograms of
the highlighted superpixels in Figure 2. The logarithmically scaled
ordinate reveals that for the case of the larger superpixel (blue line),
an obvious maximum can be found, whereas in the case of the smaller
superpixel (red line) a clear maximum cannot be identified. The latter
observation describes the case of a superpixel that mainly consists
of flying pixels. Figure 3b and Figure 3c show the difference in
boundary recall between a high and low number of superpixels. The
blue arrows highlight boundary recall issues of larger superpixels.

Flying Pixel-Aware Depth Upscaling
An essential prerequisite for our approach is aligned RGB

images and depth maps. Thus, our monocular RGBD camera
approach is beneficial as the registration task can be solved robustly
in 2D space [30, 31]. Favoring our camera is not a limitation of the
algorithm but it is beneficial for the final results as we do not have
to consider occlusion problems at the image areas of interest for
upscaling, which are object boundaries.

Our algorithm starts with a high number of initial RGB
superpixels, enforcing a high boundary recall.

To overcome the uncertainty relation when trying to transfer
these clusters into the depth map, the core of our algorithm groups the
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Figure 2: (top row) High-resolution RGB images with large
and small SP segmentation (purple lines). (bottom row)
Depth maps with SP segmentations transferred from RGB.
Small SPs tend to contain only flying pixels at object bound-
aries while providing an improved boundary recall
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Figure 3: Larger superpixels at object boundaries provide a
centroid of valid depth pixels compared to small superpixels
which are dominated by flying pixels

relation when trying to transfer these clusters into the depth
map, the core of our algorithm groups the small SPs, re-
sulting in larger SP clusters. This grouping is done de-
ploying our SP growing method called manifold clustering.
Therein, we employ the correlation between the color his-
tograms of one SP and its neighbors. We assume that im-
age regions of similar true depth share similar SP color his-
togram information. Using SP color histogram similarities,
we are not restricted to pixel-wise color differences as used
by the majority of RGB-guided filters but the evaluation of
richer texture patch information. This procedure leads to
larger SPs with the same boundary recall and fine object

Figure 4: (left) RGB image with overlaid large SP seg-
mentation; (right) small SP segmentation. Arrows indicate
problems when using large SPs considering boundary recall
and small object representation

segmentation as the initial segmentation while providing a
higher number of pixels within each SP.

In more detail, we use state-of-the-art SLIC SP
segmentation[?]. SLIC yields SP clusters which maintain
a strong compactness. Hence, it is unlikely that SPs have ir-
regular shapes like slim but long shapes which is unwanted
since non-compact long shapes could wriggle along object
boundaries including again only flying pixels. Consecutive
manifold clustering treats each SP sequentially. Therein,
each SP’s neighbors are determined and the correlations of
the histograms are computed. The neighbor candidate with
the highest cross correlation, which also must be higher than
a minimum cmin, is then examined in more detail. We want
to maintain a strong compactness of potentially merged SP.
Hence, we additionally constrain the resulting shape of a
merged SP by limiting the number of pixels in the merged
SP and by limiting the new radius. If a candidate fails, this
SP index is blacklisted and hence ignored during upcoming
iterations, when again searching for remaining neighbors.
However, the failed SP stays available for different SPs.
This clustering process is repeated iteratively while reduc-
ing the lower limit for the cross correlation subsequently.
The reduction is applied if any further neighbor candidates
can be found due to all cross correlation coefficients lower
than the current minimum. The step width of the correla-
tion minimum reduction is 10% and the blacklist is cleared
after each reduction. The iterations are terminated, if the
reduction reaches a global minimum threshold.

Utilizing this process, we also yield larger clusters on
smooth surfaces which can produce artificial depth discon-
tinuities during the final depth processing. Thus, we added
a processing step called SP reconstruction, which compares
the merged SPs after manifold clustering and the initial SP
map. Therein, we deploy properties of the depth map. The
blue histogram in Figure ?? can be decomposed in two
parts. First, there is a clear maximum which indicates the
depth distribution of a smooth surface. Second, there is a
shallow slope which represents the flying pixels. Thus, we
assume that SPs that only contain a distinct maximum are

4

(a)

(b) (c)
Figure 3: (a) Larger superpixels at object boundaries provide a
centroid of valid depth pixels (blue line) compared to small superpixels
which are dominated by flying pixels (orange line); (b) RGB image
with overlaid large superpixel segmentation; (c) small superpixel
segmentation. Arrows indicate problems when using large superpixels
considering boundary recall and small object representation;

small superpixels, resulting in larger superpixel clusters. This grouping
is done deploying our superpixel growing method called iterative
superpixel clustering (ISC). Therein, we employ the correlation
between the color histograms of one superpixel and its neighbors.
We assume that image regions of similar true depth share similar
superpixel color histogram information. Using superpixel color
histogram similarities, we are not restricted to pixel-wise color
differences as used by the majority of RGB-guided filters but the
evaluation of richer texture patch information. This procedure leads
to larger superpixels with the same boundary recall and fine object
segmentation as the initial segmentation while providing a higher
number of pixels within each superpixel, especially at depth jumps.

In more detail, we use state-of-the-art SLIC superpixel
segmentation [28]. SLIC yields superpixel clusters which provide
strong compactness [17]. Hence, it is unlikely that superpixels have
irregular shapes like slim but long shapes which is unwanted since
non-compact long shapes could wriggle along object boundaries
including again only flying pixels. Hence, using unconstrained
superpixel methods is not compatible when using this ISC as there
is a likely solution to merge multiple slim superpixels around a larger
portion of an object outline. This effect contradicts with the idea to
statistically minimize the influence of flying pixels.

ISC treats each superpixel sequentially. Therein, each
superpixel’s neighbors are determined and the histogram distance is
computed using the correlations of the histograms. The histograms
are built for each color channel using 1024 bins for 16-bit color data.
The neighbor candidate with the highest cross correlation, which must
be higher than a minimum cmin, is then examined in more detail. The
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correlation coefficient between superpixel i and j of color channel
c∈{R,G,B} is calculated by

ρ(i, j,c)=
1

N−1∑
n

(
hi

n,c−µhi
c

σhi
c

)(
h j

n,c−µh j
c

σh j
c

)
, (1)

where µhi
c

and µh j
c

are the means and σhi
c

and σh j
c

are the

standard deviations of the respective histograms hi
c and h j

c. The sum
is iterated over the bins n∈ [0,N−1]. The final histogram distance
metric is then computed as

d(hi,h j)=ρ(i, j,R)·ρ(i, j,G)·ρ(i, j,B). (2)

Moreover, we want to achieve strong compactness of potentially
merged superpixel. Hence, we additionally constrain the resulting
shape of a merged superpixel by limiting the number of pixels in the
merged superpixel and by limiting the new radius. If a candidate fails,
this superpixel neighbor is blacklisted for the current superpixel and
hence ignored during upcoming iterations, when again searching for
remaining neighbors. However, the failed superpixel stays available for
different superpixels. ISC of the whole image is repeated iteratively
while reducing the lower limit cmin for the cross correlation if any
further neighbor candidates can be found due to all cross correlation
coefficients lower than the current minimum. The step width of the
correlation minimum reduction is 10% and the blacklist is cleared
for all superpixels after each reduction of cmin. The reason for using
the reduction principle is again enhanced robustness of the clustering
process. If the correlation minimum cmin was to small in the beginning,
there is merging of superpixels with a low correlation although a local
superpixel with higher index might be a better candidate with higher
cross correlation distance. This is due to the sequential processing of
the superpixels in the order of their increasing index. Thus, starting
with a high correlation minimum ensures that there is only merging
of superpixels with a high correlation value first. If all high correlation
merges are found, we reduce the minimum to allow for further merges
down to a certain limit cend. Using the reduction approach, the result-
ing global estimate of clustered superpixels are closer to optimality.

The signal flow of the ISC algorithm is also given in Figure 4. A
limitation of ISC and the consecutive assignment of depth is obtaining
larger clusters on smooth surfaces which can produce artificial depth
jumps. Thus, we added a processing step called superpixel reconstruc-
tion, which compares the merged superpixels after ISC and the initial
superpixel map. Therein, we again deploy properties of the depth
map. The blue histogram in Figure 3a can be decomposed in two parts.
First, there is a clear maximum which indicates a small extension in
depth. Second, there is a shallow slope which represents the flying
pixels. Thus, superpixels that only contain a distinct maximum are
characterized by a small standard deviation. Hence, if a merged super-
pixel cluster contains an initial small superpixel whose depth standard
deviation exceeds a threshold, the large superpixel is retained because
it is likely that numerous flying pixels are contained. Otherwise, the
initial small superpixel segmentation is used in the final superpixel map
instead of the merged cluster. Thereby, we reduce artifacts in smooth
areas like walls or tables. Figure 5 shows all three stages from the initial
superpixel segmentation towards the final superpixel segmentation.

The final superpixel map is now transferred to the initially
registered depth map ZBC, where the depth-to-RGB image registration
uses bicubic interpolation. For each superpixel area, the maximum

likelihood (ML) depth is evaluated using histograms and assigned to
the whole superpixel area in an intermediate depth map ZML, which
is analogous to the step described in our previous work [17]. Similar
to the findings of Soh et al., we still see small depth jumps between
each superpixel region in the ZML depth map [24]. Contrary to Soh et
al., we neither assign least-square (LS) fit planes within a superpixel
nor use MAP-MRF estimators for the final depth. In contrast we
assign constant depth values within a superpixel which avoids strongly
slanted planes due to fitting LS planes at blurred depth boundaries.

Superpixel-Aware Joint Bilateral Filter
The computation of the final depth map starts using a modified

JBF on ZBC. The introduced modification consists of an adaptive
awareness for larger depth jumps in ZML. Consequently, JBF provides
beneficial smoothing in areas of ZML with small jumps while clear
object boundaries with their depth jumps are transferred from ZML.
Thereby, we benefit from the high segmentation performance of
our previous flying pixel compensation approach (FPC) [17]. The
modified JBF filter kernel F is now written as

Fq=

{
JBFq, if I

⋃
II

0, otherwise,
(3)

with
case I: σ

(
ZBC

SP(i)

)
<σmax, and case II:

∣∣ZML
q −ZBC

p
∣∣<sptolerance.

In Equation 3, coordinates q∈Ω describe the coordinates with
respect to the kernel window Ω centered at pixel p. We designed
the cases I and II, when conventional JBF is applied. Otherwise,
we discontinuously force the kernel entry to 0, which leads to edges
with only few flying pixels. The function σ

(
ZBC

SP(i)

)
evaluates the

standard deviation of ZBC within area of superpixel i to design the
filter noise-aware.

∣∣ZML
q −ZBC

p
∣∣ prevents the emergence of depth steps

at superpixel border areas within an actually smooth surface.
Utilizing this modified JBF filter kernel F results in smoothed

surfaces and an improved refinement of edges while retaining the
beneficial properties of the JBF elsewhere. In this configuration,
the edge enforcement by the Gaussian distance cost function for
intensities of the standard JBF settings can be relaxed because the
superpixel part mostly takes care of it. This is highly beneficial since
texture copying in smooth areas can thus be avoided.

Finally, to compute the output depth Z′, the depth input is
locally adapted at regions which are most-likely to contain depth
discontinuities by switching the depth input value Zq in

Z′p=
1
k ∑

q∈Ω

Zq ·Fq (4)

feeding ZBC, if the distance between ZML and ZBC at pixel q is smaller
than the noise level expressed as standard deviation σ

(
ZBC

SP(i)

)
in

SP(i) and feeding ZML otherwise by

Zq=

{
ZBC

q , if
∣∣ZSP,q−Zq

∣∣<σ

(
ZBC

SP(i)

)
ZML

q , otherwise.
(5)

Thereby, we arrive at a strong depth jump segmentation. Moreover,
these modifications of the standard JBF ensure that first, ZBC pixels
situated in adjacent superpixel regions which differ too much from the
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Figure 4: Signal flow diagram of the proposed iterative superpixel clustering process

(a) (b) (c)
Figure 5: (a) Initial RGB segmentation with small superpixels; (b) Result after ISC; (c) Reconstruction of small superpixels on smooth depth regions
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ZML estimate are dismissed by Equation 3. This reduces the number
of flying pixels because of avoiding weak filter weights. Second,
Equation 5 ensures that ZML depth values are used instead of ZBC

depth values at object boundaries since these are distinct compared to
the blurry ones in the ZBC depth map. Thereby we avoid incorporating
flying pixels in the weighted sum yielding the resulting depth map.

Evaluation
In this work, we provide an evaluation on real RGBD data

as well as on the widely used Middlebury data set [32, 33]. Real
TOF depth data is necessary because we observe principle-based
differences in depth data characteristics compared to Middlebury. In
detail, we encounter noise types like range ambiguity or Poisson noise
as well as measurement errors [27, 34, 32, 35, 36].

Ground Truth and Metrics
For the evaluation of the pure depth upscaling performance, we

adopt our novel metric called noise-aware depth edge classification
(NADEC) [17].

Therein, a single RGB frame from an RGBD camera can be
used as input for quick manual rotoscoping. Optional partitioning of
the rotoscoped objects provides a series of ground truth patches, which
can be obtained from one single image. Furthermore, one opaque pixel
must correspond to one depth value. Semi-transparent RGB pixels
cannot match sensible depth values. Hence, for ground truth selection,
all image parts with in-focus depth jumps are suitable. Figure 8 depicts
such rotoscoped binary masks. Therein, object boundaries derived
from the RGB image are correct up to minimal blur which arouses
from remaining low pass properties of physical lenses, even when they
are fully focused, and low pass properties of filter glasses in front of
the image sensor. Hence, semi-transparency is also induced by mixture
of foreground and background colors, similar to the occurrence of
native flying pixels. We account for this minimal blur at boundaries,
which does not correspond to semi-transparencies, by drawing the
mask boundary in the visual center of the blurred RGB region.
However, these pixels also mark the accuracy limit of the metric.

Next, we define a criterion that reveals the depth segmentation
performance of depth boundaries. Therefore, we use the bicubicly
upscaled raw depth map and the mask from rotoscoping the depth
patch to segment into foreground and background. The mean value
and the standard deviation are calculated for each of the two regions
separately. As a numerical measure, our metric utilizes typical
classification metrics. In this case, it is the number of false positives
fp and the number of false negatives fn.

Considering depth maps, false negative pixels are depth values
of the background located in areas of the foreground whereas false
positive pixels consist of depth values of the foreground object
bleeding into the background area. Subsequent classification is done
next. Depth values outside a range of µ±c·σ of the respective area
are declared as false.

NADEC is mathematically given by

NADEC=
fn+ fp

N
. (6)

where N normalizes to the total number of pixels in the image. Hence,
we obtain 0, as best possible value, if and only if all depth pixels
share perfect segmentation and thus best upscaling with respect to
the ground truth mask. Figure 6 visualizes the idea behind NADEC.
NADEC assumes a typical depth jump with flying pixels in between.

Z 

µ1 

µ2 

1 

2 

Flying Pixel Zone 

Foreground 

Background 

cσ

cσ

Figure 6: Illustration of our proposed NADEC metric for upscaling
performance evaluation. The figure shows a typical native edge jump,
especially when registered to the high-resolution RGB image grid,
with flying pixels between foreground and background as indicated
by the green and red zones. NADEC determines the estimated means
for foreground and background as well as its standard deviations.
Thereby a corridor for valid pixels can be built.

For each region, the foreground and background, the means µ1, µ2
and the standard deviations σ1, σ2 are estimated to yield a corridor
for valid depth values while respecting noise. Contrary, NADEC
identifies a zone where flying pixels are most likely and thus false
positives and false negatives in these regions can be counted. These
add up to the flying pixels found in the opposing green area.

Synthetic Ground Truth Data
Next to the evaluation using real camera data, we compare our

algorithm employing several images of the well-known Middlebury
data sets. Therefore, we downscale the ground truth depth map by
a factor of 12, which corresponds to typical scaling requirements
when using a state-of-the-art PMD TOF sensor with 160x90 pixels
and full-HD RGB with 1920x1080 pixels. Then, we apply an AWGN
noise model with a standard deviation of 0.032 for Middlebury 2005
and 0.0094 for Middlebury 2014 to simulate TOF noise. These values
are based on real noise measurements [36][27]. The value of 0.032
corresponds to 24 cm whereas the value of 0.0094 corresponds to
7 cm, which are typical noise observations.

For numerical evaluation, we use NADEC and RMSE as metrics.
RMSE is possible because a ground truth depth map is available in
the synthetic case. However, we still prefer NADEC over RMSE as
it provides more information about the upscaling performance for the
discussed reasons.

Results
Utilizing the proposed metrics, we evaluated our approach

against numerous state-of-the-art algorithms. For nearest-neighbor
(NN), bilinear (BL), bicubic (BC) interpolation as well as GF1s
and GF2s the standard MATLAB implementations are used. JBF
[6], NAFDU [6], weighted mode filtering (WMF) [23] and spatial
depth image superresolution (SDIS) [24] have been re-implemented
in Matlab using mex extensions. In the case of SDIS, the iterative
conditional modes (ICM) algorithm is used for solving the MAP-MRF
[37]. The parameters of each algorithm had been optimized towards
minimum NADEC error in the case of the body segment, before
evaluating the sub-patches. For TGV, we use the MATLAB code
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and parameters provided by Ferstl et al. [18]. Table 2 summarizes the
results using the real RGBD data sample. Our method outperforms
all competing algorithms with respect to depth jump reconstruction.

Computational demands are also evaluated by classification
of the computation time of all methods in 3 categories. These are
denoted with the tags (A), (B) and (C), referring to processing times
less than 5 minutes (A), less than an hour (B) and more than one
hour (C) per depth map, when processing 1920x1080 pixels of 16-bit
data in non-GPU C/C++ on a Core i7 2.2GHz processor. Additionally,
computation time strongly depends on the captured scene in terms of
texture and depth structure. Figure 9 depicts all depth maps generated
by the evaluated algorithms in their optimized state.

For the 2014 Middlebury data samples, we provide RMSE and
NADEC in Tables 3 and 4 to compare the average effectiveness on
the whole image (RMSE) and the pure depth jump segmentation
on a subset of selected regions (NADEC), which are marked by red
rectangles in Figure 11. The results are also depicted in Figure 11.
Our algorithm does not lead to strong outliers as shown by the RMSE
evaluation, where our approach performs equivalent to state-of-the-art
NAFDU. However, our algorithm noticeably outperforms NAFDU
regarding the depth jump reconstruction shown by the NADEC
error. In particular, the NAFDU algorithm has been run through
a time-consuming parameter optimization whereas the parameters
of our algorithm have been found by quick heuristics. The list of
parameters used for ISUDU is given in Table 1.

Computational Depth-of-Field Synthesis
Next to numerical evaluation, we demonstrate our algorithm

within a computational imaging application. We chose our recently
published algorithm [38], which allows for cine or DSLR-style
depth-of-field synthesis of large lens apertures .

The synthesis method requires very precise depth boundaries for
the in-focus objects to convincingly separate defocused and focused
areas. In particular, the human eye is very sensitive to minor issues
at focused boundaries. A noticeable amount of flying pixels, which
is produced by other methods, will lead to soft edges of the in-focus
objects in the rendered RGB image. Figure 7c depicts the depth map
processed by our ISUDU. Figure 7d demonstrates that the rendered
result, when using our upscaling approach, provides accurately
segmented RGB object boundaries derived from the upscaled depth
map without noticeable edge blur. Soft edges at semi-transparent or
very tenuous objects, especially the hair of the doll, are due to wrong
TOF depth measurements, which is a limitation of low-resolution
native TOF sensing rather than a limitation of the depth-of-field
renderer or ISUDU algorithm.

Conclusion
In this work, we proposed a novel depth map superresolution

algorithm based on an RGB superpixel oversegmentation strategy. We
apply our iterative clustering procedure to yield an outstanding edge
segmentation at depth discontinuities. Our method is texture adaptive,
which results in differently sized superpixel clusters that are deployed
in an improved joint bilateral kernel. This leads to upscaled depth
maps with superior edge segmentation compared to state-of-the-art
algorithms. This property is especially beneficial when looking for
a solution to master a typical depth map artifact called flying pixels.

The twofold evaluation conducted in this paper numerically
proves the effectiveness of our algorithm on both, real RGBD and
a selection of the Middlebury data sets. Therein, special focus lied

(a)

(b)

(c)

(d)
Figure 7: Cine-style depth-of-field and Bokeh synthesis when using
our upscaling method for the required depth map: (a) All-in-focus im-
age; (b) Raw depth map; (c) Upscaled depth (ISUDU); (d) Cine-style
depth-of-field synthesis using our algorithm [38] based on (c)

on the evaluation of the depth jump segmentation.
Utilizing depth maps processed by our method in a recent high-

quality DSLR lens synthesis algorithm, we yield visually compelling
results for the first time due to its superior boundary separation.
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Table 1: List of parameters used for ISUDU
Parameter Value
number of bin for histograms 1024
number of superpixels 7000
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maximum radius 300
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JBF σmax 0.01
JBF sptolerance 0.05
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JBF σS 10
JBF σR 0.05

(a) (b) (c)
Figure 8: RGB image of the acting scene (a) [17] with bicubicly upscaled depth map (b) and segmentation mask (c) for the human actor. Test
patches: (1, dashed line) body, (2) head, (3) hand, (4) waist, (5) elbow

Table 2: State-of-the-art algorithms in comparison to our approach using the acting scene as introduced in Figure 8. Benchmark was generated
employing the proposed metric NADEC (c=1) [%] (best values of each column are marked in bold face; second best value in italic face)
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Table 3: RMSE of Middlebury 2014 images: scaling 12, σ =0.032 (best values per column in bold face)
Method Adirondack Jadeplant Motorcycle Piano Pipes Playroom Playtable Recycle Shelves Vintage Average
nearest 0.00988 0.0132 0.0241 0.00779 0.0681 0.0135 0.0114 0.00848 0.00920 0.00718 0.0173
bilinear 0.00826 0.0115 0.0218 0.00633 0.0622 0.0117 0.00969 0.00712 0.00782 0.00599 0.0152
bicubic 0.00820 0.0114 0.0215 0.00656 0.0623 0.0117 0.00971 0.00740 0.00798 0.00629 0.0153
NAFDU [6] 0.00699 0.0107 0.0219 0.00531 0.0665 0.0107 0.00801 0.00573 0.00671 0.00573 0.0148
ISUDU (ours) 0.00603 0.0123 0.0238 0.00506 0.0646 0.0118 0.00919 0.00532 0.00648 0.00510 0.0149

22
IS&T International Symposium on Electronic Imaging 2017

3D Image Processing, Measurement (3DIPM), and Applications 2017



(a) nearest (b) bilinear (c) bicubic

(d) JBU [5] (e) GF 1 stage [9] (f) GF 1 stage [10]

(g) NAFDU [6] (h) SDIS [24] (i) TGV [18]

(j) WMF [23] (k) FPC (ERS) (l) FPC (SEEDS)

(m) FPC (SLIC) (n) FPC (CRS) (o) ISUDU (ours)
Figure 9: Resulting depth maps of state-of-the-art filters, our flying pixel removal approach FPC with all 4 different superpixel algorithms and
the result of our proposed ISUDU

Table 4: NADEC error (c=1) in permille of Middlebury 2014 images: scaling 12, σ =0.032
Method Adir1 Adir2 Adir3 Adir4 Playr1 Playr2 Playt1 Playt2 Playt3 Avg.
nearest 8.50 4.53 14.03 3.01 2.98 2.83 1.31 2.50 2.41 4.68
bilinear 5.91 3.77 10.76 2.74 1.81 2.19 1.07 2.06 1.95 3.58
bicubic 7.17 4.18 12.25 3.01 2.20 2.50 1.12 2.31 2.13 4.10
NAFDU [6] (RMSE) 1.97 3.70 7.95 0.55 0.85 2.07 0.67 0.54 1.00 2.14
ISUDU (ours) 1.16 3.87 5.42 0.45 0.40 2.11 0.83 0.36 1.33 1.77
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(a) RGB (b) nearest (c) bilinear (d) bicubic

(e) JBF[5] (f) NAFDU [6] (g) GF1s [9] (h) GF 2s [10]

(i) SDIS [26] (j) TGV [18] (k) WMF [23] (l) ISUDU (ours)

Figure 10: Upscaling results using the Art image of the Middlebury 2005 data set [32]; Simulated scaling factor of 12 corresponding to our
system and added AWGN noise with σ =0.032=̂24cm.
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RGB input depth optimized NAFDU [6] ISUDU (ours)
Figure 11: Evaluation on 3 images of the Middlebury 2014 data set [33]: (first column) low resolution depth maps (scaling 12,
σ =9.43·10−3=̂7cm); (second column) upscaled depth maps using an RMSE-optimized NAFDU [6] and (last column) upscaled depth maps
after our method: Notice, all depth maps are in false color representation which gives a clearer view on the amount of flying pixels revealed
as light blur at object boundaries when comparing NAFDU and our approach.
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