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Abstract
After the sound, 2D images and videos, 3D models repre-

sented by polygonal meshes are the actual emergent content due
to the technological advance in terms of 3D acquisition [1]. 3D
meshes can be subject to several degradations due to acquisition,
compression, pre-treatment or transmission that distort the 3D
mesh and therefore affect its visual rendering. Because the human
observer is generally located at the end of this line, quality assess-
ment of the content is required. We propose in this paper a view-
independent 3D Blind Mesh Quality Assessment Index (BMQI)
based on the estimation of visual saliency and roughness. Given
a 3D distorted mesh, the metric can assess the percived visual
quality without the need of the reference content as humans do.
No assumption on the degradation to evaluate is required for this
metric, which makes it powerful and usable in any context requir-
ing quality assessment of 3D meshes. Obtained results in terms of
correlation with subjective human scores of quality are important
and highly competitive with existing full-reference quality assess-
ment metrics.

Introduction
Nowadays, with the development of 3D scanners, 3D meshes

represent the most emergent content. These latters are used in
many fields and applications. Medical industry uses 3D meshes
for organ analysis and detailed representation of chemistry com-
ponents. The architectural domain uses them for the modelization
and the visualisation of buildings, bridges, etc. The automative
industry adopts 3D meshes for representing new concepts and
design cars. 3D meshes find their place also in cinema, video
games, fashion and 3D printing which is a prominent application
of these last decades. Other futuristic applications like the Holo-
portation [2] and the 3D mainstream photography [3] benefit from
the flexebity of 3D meshes. In this context, it is evident that the
quantity and the frequency of exchanges of 3D meshes will in-
crease exponentially. This leads to new challenges concerning the
implementation of methods that assess their objective visual qual-
ity while taking into account some properties of the human visual
system (HVS).
A first approach for assessing the quality of 3D meshes is to per-
form subjective evaluations when seeking human opinions. How-
ever, this method is slow, tedious and inadequate for real time
applications. An alternative approach falls within the objective
assessment of quality and aims at predicting the quality in an au-
tomatic manner. The goal is to design quality metrics that are
correlated with subjective scores provided by humans observers.
In the literature, such quality assessment approaches are classi-
fied into 3 categories: 1) full reference (the original version of
the distorted content is fully available for the comparison), 2) re-
duced reference (partial informations about the original content
and the distorted one are available) and 3) no reference (no infor-

mation is available about the reference content) metrics. In the
majority of real time applications manipulating 3D meshes, the
reference version (considered as free distorted) of the 3D mesh is
not available which makes the objective quality assessment of the
3D content more difficult. This capacity of assessing objects with-
out their reference version is an easy task for humans but this is
far from being the case for machines and algorithms. Many qual-
ity assessment metrics for 3D meshes were proposed in the state-
of-the-art, however they are still limited due to their dependence
to the reference version of the 3D mesh. Perceptually-based no-
reference/blind quality assessment algorithms can play a signifi-
cant role in several computers graphics applications such as opti-
mizing and assessing performances of compression and restaura-
tion approaches, dynamically adjusting the quality of a monitor,
3D TV or parameters of mesh processing methods in a transmis-
sion application, etc. In this context, we propose a no-reference
perceptual metric for the quality assessment of a 3D mesh based
on saliency and roughness called BMQI (Blind Mesh Quality In-
dex). The paper is organized as follows. Section 2 describes the
link between visual saliency, visual roughness and quality assess-
ment. We present in the same section an overview of the pipeline
of our approach. In section 3, we present the proposed metric
with its associated details: multi-scale saliency detection method,
roughness estimation, patch segmentation and regression stage. In
section 4, we present the considered subject-rated mesh datasets
and analyze the correlation results of the proposed metric with the
human subjective scores. Finally, we conclude and point some
perspectives of this work in section 5.

The proposed metric

Visual saliency, roughness and quality assess-
ment

The principal challenge met while designing this no-
reference quality assessment metric was to select visual features
that have the capability to quantify the structural deformation that
the 3D mesh undergo and that are correlated with human percep-
tion. To do this, we use multi-scale visual saliency and roughness
maps. Visual saliency is an important characteristic for human vi-
sual attention. Its use in computer graphics applications like mesh
quality assessment [4], optimal view point selection [5] and sim-
plification [6] has proven beyond any doubt its correlation with
human visual perception. We suppose as in [4] that visual qual-
ity of a 3D mesh is more affected when salient regions are af-
fected rather than less or not salient regions. This characteristic
was studied in [7][8]. Likewise, variations of 3D mesh rough-
ness appear to be correlated with human perception [9]. Indeed,
a roughness map points regions that expose a strong visual mask-
ing effect. Regions with high roughness magnitude expose an im-
portant degree of visual masking effect since distorsions are less
visible on these ones. We show that local variations of saliency
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and roughness combined together succeed in assessing the visual
quality of a distorted 3D mesh without the need of its reference
version.

Method

Given a 3D distorted mesh, we start by computing a multi-
scale saliency map MS with our method proposed in [5] and a
roughness map R with the method proposed in [10]. Then, we
adapt the approach of [11] to our context and segment the 3D
mesh into a number of superfacets NSF . In our context, these Su-
perfacets will play the role of local patches since the human visual
system (HVS) locally processes information. Once the segmen-
tation is performed, we affect to each vertex vi of a superfacet
SFj its respective values of saliency MS(vi) and roughness R(vi).
Afterwards, we construct a feature vector of 4 attributes for each
superfacet SFj:

φ j =
[
µSFj ,σSFj ,δSFj ,γSFj

]
with j ∈ [1,NSF ] . (1)

where µSFj and σSFj represent respectively the local mean
saliency and local standard deviation saliency of the superfacet
SFj and are defined as:

µSFj =
1
|SFj| ∑

vi∈SFj

MS(vi) (2)

σ j =

√
1
|SFj| ∑

vi∈SFj

(MS(vi)−µ j)2 (3)

where |SFSFj | represents the cardinality (i.e, the number of
vertices) of the superfacet SFj.

δSFj and γSFj denote respectively the local mean roughness
and the local standard deviation roughness and are defined as:

δSFj =
1
|SFj| ∑

vi∈SFj

LRF(vi) (4)

γSFj =

√
1
|SFj| ∑

vi∈SFj

(LRF(vi)−δSFj )
2 (5)

Finally we perform a learning step using the constructed fea-
ture vector. This is done using the Support Vector Regression
(SVR) [12] that is also used for scoring the visual quality of the
3D mesh. Figure 1 presents the block-diagram of our approach.

Segmentation, learning and regresssion

Superfacets segmentation

One of the novelties of the proposed approach falls within
the use of the superfacets - the result of an over-segmentation of
the mesh surface into regions whose borders fit well the semantic
entities of the mesh - into the pipeline of a mesh quality assess-
ment metric. To segment the mesh, we modified the approach of
[11] which, for a 3D mesh M and a number of desired superfacets,
execute the following steps based on the farthest point principle:

Figure 1: Block diagram of our metric

Initialization : The method begins by associating the center of
the first superfacet to the triangle of which the centroid is
the nearest to the global centroid of the mesh. Then, each
center of a new superfacet is affected to the triangle with
the euclidian distance to the latest considered triangle is the
highest.

Update of the centers: Once the triangles have been affected to
different superfacets, it’s necessary to compute the new cen-
ter of each superfacet. For this, the method computes the
mean area of all triangles belonging to a superfacet and as-
sociates the new center to the triangle of which the area is
the nearest to the computed mean area. If the new center is
different from the prior one, the algorithm stops. Otherwise,
the classification step is computed.

Classification: For each triangle, the method computes, using
the Dijkstra Algorithm, the shortests paths between the cen-
ters of the defined superfacets and the triangles of the mesh.
When a triangle is considered while computing the shortest
path from a superfacet center and if the current computed
distance is less than the prior stored one (obtained from the
initialization step or from an expansion that started from
a different center) then both distance and label associated
to the considered triangle are updated (the superfacet that
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contains the triangle is fixed).

Geodesic weight: Given two adjacent faces fi and f j sharing
an edge ei, j with a median point mi, j and two respec-
tive centroids ci and c j, the geodesic weight is defined as
geo( fi, f j)= ||ci−mi, j||+ ||mi, j−c j||. This latter is affected
to the weight w( fi, f j) of the edge ei, j as follows:

w( fi, f j) =
geo( fi, f j)

d
(6)

where d is the length of the diagonal of the bounding box
including the 3D mesh.

Learning and regression

Even if it’s unsual that a human observer associates a quality
score in the form of a scalar to a 3D mesh but rather proceeds to
a classification of the quality according to the perceived sensation
(for exemple: ”good” or ”bad” quality), nevertheless, the applica-
tions context of the quality metrics forces us to provide a single
scalar reflecting the perceived quality. For this, we use the ex-
tension of Support Vector Machines (SVM) to regression: SVR.
The aim is to estimate a function f presenting at most a maximal
deviation ε reflecting the dependance between a features vector
xi and an affiliation class yi. Thus, for a features vector xi of a
distorted 3D mesh Mi with a subjective quality score yi, the re-
gression function of an observation x to classify is defined as :

fSV R = ∑
xi∈VS

αiyiK(xi,x)+b (7)

where VS are the support vectors, (xi,yi) is the learning set, α

is the Lagrange coefficient obtained from a minimization process
and K(xi,x) represents the RBF(Radial Basis Function) kernel de-
fined by:

K(xi,x) = exp(γ||xi− x j||2) (8)

Indeed, the RBF function is often used as a kernel function
due to its resemblance to a similarity measure between 2 examples
to classify. Also, the motivations related to the use of the SVR are
as follows:

1. The regression solution includes a small number of exam-
ples xi (rapidity and efficiency).

2. Results of the regression depend of the used kernel. The test
of different kernels is beneficial in so far as the correlation
rate between the objective scores and subjective ones may
depends on the chosen kernel.

Experimental results
Datasets

In order to compare our no-reference metric with the full-
reference methods proposed in the state-of-the-art, we use 2
publicly available subject-rated mesh databases: 1) Liris/Epfl
General-Purpose database [13] and 2) Liris-Masking database
[14]. The first database contains 4 reference meshes. These are
affected with two distorsions: additive noise and smoothing. The
distorsions are performed according to 3 strengths on 3 different
regions of the surface mesh: 1) uniformly on the surface mesh,

2) specifically on rough or smooth regions and 3) specifically on
transitional regions (between rough and smooth regions). In to-
tal, 22 distorted meshes of each 3D reference mesh are generated
and evaluated by 12 human observers. Figure 2 shows some 3D
meshes of the Liris/Epfl General-Purpose database with their re-
spective normalized MOS(Mean Opinion Score).

The second database Liris-Masking consists in 4 reference
meshes. 6 distorted versions with the additive noise are gener-
ated for each reference 3D mesh. Only rough and smooth re-
gions are considered while distorting the 3D meshes according to
3 strengths to simulate the masking effect. The main goal of this
database is to evaluate the masking effect detection capacity of
proposed metrics. 12 human observers have assessed the visual
quality of the corpus. We present some 3D meshes of the Liris-
Masking database with their respective normalized MOS in figure
3.

Performance and analysis

We begin by carrying out a learning step onto the Liris-
Masking database in order to determine the RBF kernel’s parame-
ters (γ and C which represents the error penality coefficient) with
a 4 parts cross-validation. Each of these parts represents the dis-
torted versions of one of the four reference mesh associated to
their subjective quality score. The SVR regression was performed
using the LIBSVM [15] library. The selected parameters of the
RBF kernel for the Liris-Masking database are: gamma = 0.002
and C = 32. For the Liris-Epfl General Purpose database, the se-
lected parameters are : gamma = 0.005 and C = 2 (where C is
penalty error).

To evaluate the performance of the proposed metric, we
compute the Spearman Rank Ordered Correlation Coefficient
(SROCC) between the predicted scores and the subjective hu-
man scores of quality provided by the subject rated databases.
We present in table 1 the SROOC correlation values of our no-
reference metric and the correlation values of 7 full-reference
metrics from the state-of-the-art associated to the Liris-Masking
database. We can notice that our approach BMQI produces impor-
tant correlation values for all the 3D meshes without the need of
their reference version on the contrary of the full-reference met-
rics. These results confirm that our metric succeeds very well in
taking into account the visual masking effect.
We do not show the correlation over the whole database since
the subjective evaluation protocol used while designing the Liris-
Masking database has established the referential range for the rat-
ing separately for each 3D mesh and therefore the correlation val-
ues over the whole set of 3D meshes are not really meaningful
[16].

Table 2 shows the correlation values of our metric associ-
ated to the Liris/Epfl General Purpose database. We notice that
the performances of BMQI on this database are not as good as
those on Liris-Masking database. Indeed, distorsions on the Liris-
Epfl General Purpose database (noise addition and smoothing)
are applied on 4 distinct regions of the surface mesh (uniform
regions, rough regions, smooth regions, and transitional regions).
This aims at reflecting the distorsions associated to common mesh
processing methods like simplification, compression and water-
marking [17] which makes the quality assessment more difficult.
From the results presented in table 2, it seems that BMQI assesses
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(e) (f) (g) (h)

Figure 2: Examples of 3D meshes belonging to the Liris/Epfl General-Purpose database. The top row shows the 4 reference meshes.
The second row presents 4 distorted 3D meshes: e) 3D mesh Armadillo affected with noise on rough regions (MOS=0.84), f) 3D mesh
Dinosaur uniformly smoothed (MOS=0.43), g) 3D mesh RockerArm affected with noise on smooth regions (MOS=0.75) and h) 3D mesh
Venus affected uniformly with noise (MOS=1).

Mesh database Full-reference No-reference
Liris Masking HD RMS 3DWPM1 3DWPM2 MSDM2 FMPD TPDM SMQI BMQI

Armadillo 48.6 65.7 58.0 48.6 88.6 88.6 88.6 88.6 94.3
Lion-vase 71.4 71.4 20.0 38.3 94.3 94.3 82.9 83.0 94.3

Bimba 25.7 71.4 20.0 37.1 100.0 100.0 100.0 100.0 100.0
Dinosaur 48.6 71.4 66.7 71.4 100.0 94.3 100.0 100 83.0

Table 1: SROOC values (%) of different viewpoint-independent metrics on the Liris-Masking database.

the visual quality in a multi-distorsion context with less precision
than in a mono-distorsion context even if the correlation values
of the three groups of meshes (Dinosaur, Venus and RockerArm)
are important. This is mainly due to the correlation value of the
sub-corpus Armadillo, this one is lower in comparison to other
correlation values. This can be explained by the generated multi-
scale saliency map that may not reflect well the distorted salient
regions. Thus, the objective quality scores aren’t consistant with
the quality scores of human observers. The number of superfacets
and their size are 2 parameters that could influence the perfor-
mance of the proposed metric. A precise definition of theses pa-
rameters may improve the results. Finally, when we consider the
whole corpus of the Liris-Epfl General Purpose database, our ap-
proach provides a correlation value relatively low in comparison
to the full-reference metrics of the state-of-the-art. This is related
on one hand to the low correlation value of the Armadillo sub-
corpus and on the other hand to the number of 3D meshes con-
sidered in the learning step that is very small. Indeed, a corpus
consisting in 88 meshes with their associated MOS wouldn’t al-
low the design of an effective quality metric in a multi-distortion
context.

In the light of these results, and given the capacity of our ap-
proach to assess the perceived quality of a distorted mesh without
the need of its reference version, our no-reference metric seems
nevertheless competitive with the full-reference methods. For ex-

ample, our no-reference approach obtains better correlation rates
associated to the Liris-Masking database in comparison to our
previous full-reference approach [4]. This could be explained by
the segmentation of the mesh into superfacets.

Performance on independant 3D meshes

We have also tested our no-reference metric for the quality
assessment of 3D meshes not belonging to any database. This
permits to analyse the behavior of our metric when assessing the
visual quality of any 3D mesh. Figure 4 presents two reference
3D meshes with their distorted versions. The distorsions consid-
ered are: additive noise and simplification. It’s important to note
that the simplification distorsion wasn’t considered in the learn-
ing process for selecting the parameters of the RBF kernel since
both subject rated databases doesn’t include this type of distor-
sion. In experimentations, we use the selected parameters asso-
ciated to the Liris/Epfl General Purpose (see subsection Perfor-
mance Analysis). From the top row of figure 4, we can notice that
BMQI provides coherent scores of quality in accordance with hu-
man perception. The reference mesh (figure 4(a)) obtains a per-
ceived quality score equal to 6.13. Its noised version obtains a
quality score equal to 6.25 and its simplified version (more vi-
sually distorted) obtains a quality score equal to 6.74 (note that a
low score signifies a good quality score and vice versa). The same
remarks could be made to the second row of figure 4.
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Mesh database Full-reference No-reference
Liris/Epfl G.-Purpose HD RMS 3DWPM1 3DWPM2 MSDM2 FMPD TPDM SMQI BMQI

Armadillo 69.5 62.7 65.8 74.1 81.6 75.4 84.9 77.5 20.1
Venus 1.6 90.1 71.6 34.8 89.3 87.5 90.6 91.6 88.9

Dinosaur 30.9 0.3 62.7 52.4 85.9 89.6 92.2 84.4 83.5
RockerArm 18.1 7.3 87.5 37.8 89.6 88.8 92.2 91.8 92.7

Base entire 13.8 26.8 69.3 49.0 80.4 81.9 89.6 84.6 78.1

Table 2: SROOC values (%) of different viewpoint-independent metrics on the LIRIS/EPFL Genaral Purpose database.

(a) (b)

(c) (d)

Figure 3: Examples of 3D meshes belonging to the Liris-
Masking. The top row shows 2 reference 3D meshes. The second
row presents 2 distorted 3D meshes: c) 3D mesh Vase-Lion af-
fected with noise on rough regions (MOS=0.20) and d) 3D mesh
Bimba affected with noise on smooth regions (MOS=1.0).

Conclusion
In this paper we have proposed an approach to address the

difficult problem of the blind quality assessment of 3D meshes.
This new index uses simple characteristics computed on a multi-
scale saliency and roughness maps in order to asses the perceived
quality of a 3D mesh without the need of its reference version.
The good performance in terms of correlation with humans judg-
ments proofs that our measure is competitive with full reference
metrics. Our future work consists on enhancing both the multi-
scale saliency maps and the learning/regression step. Indeed, we
believe that the subject rated databases have to be more important
in terms of dimension to provide an optimal learning and thus
leading to a better prediction of quality in a context of different
types of distorsions. Another improvement would consist in con-
sidering the multi-scale aspect from the superfacets sizes.
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