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Abstract 
In this paper, we propose a document image classification 

framework based on layout information. Our method does not use 
OCR; hence, it is completely language independent. Still we are 
able to exploit text data by extracting text regions with a novel 
MSER-based approach. Our MSER formulation provides great 
robustness against text distortions in comparison to the existing 
one. We introduce two types of novel image descriptors 
supplemented with Fisher vectors, based on Bernoulli mixture 
model. Classifiers, based on aforementioned descriptors, are 
assembled into meta-classification system that is able to classify 
document in complex cases when individual classifier accuracy is 
poor. Our meta-classification system demonstrates low processing 
time comparable to a single classifier. We show that our method 
outperforms the existing ones by the means of classification 
accuracy for a wide range of documents of both well-known and 
machine-generated document datasets. 

1. Introduction 
Scanned document classification is an important task in various 

document management systems, such as business processing 
workflows, digital libraries, multifunctional devices and so forth 
(fig. 1). Many of existing approaches [1] focus on textual 
information, as this is an essential data. However, there are many 
situations for business documents when the amount of text in a 
document is relatively small or even absent or includes multi-
language and handwritten text, which is difficult to recognize. 
Thus, some prior papers propose using text information along with 
the visual one to improve classification accuracy [2]. 

The most of business documents have pre-defined structure, 
which makes it possible to classify them on the basis of layout 
similarity. Existing methods rely on layout extraction in the form 
of XY-trees or region features. These methods are good for binary 
document images, but they lack of robustness in the case of 
complex documents with complicated background and distortions. 

 
Fig. 1. Document classification in content management systems 

 

In this paper, we propose a robust method for document images 
classification based on novel image descriptors of three types: a) 
Spatial Local Binary Pattern (SLBP), b) Grayscale Runlength 
Histogram (GRLH) and c) BRISK descriptors aggregated with 
Fisher vectors based on Bernoulli Mixture Model (BMMFV). 
These descriptors efficiently encode spatial document structure 
that provides layout-based classification without necessity to 
extract document layout tree. Our framework is able to extract text 
in OCR-free manner. It is achieved by using a novel formulation of 
MSER, MSER-SI, which can extract small or highly distorted text 
characters. A meta-classifier model aggregates proposed 
descriptors in order to improve classification performance in 
complex cases, when individual classifiers cannot provide 
sufficient accuracy. We show that proposed classification 
framework demonstrates low processing time comparable to a 
single classifier. 

2. Related Work 
There are several existing approaches [3] for OCR-free 

document image classification assembled into two major groups. 
The first group includes structure-based methods, which attempt to 
extract document layout directly and encode it with graphs, trees, 
or feature vectors. The second group uses general image 
representation methods, such as local and global image descriptors, 
convolutional neural networks, Fisher vectors and so forth.  

Structure-based methods use XY-trees [4, 5] to encode 
document structure mainly. The major advantage of XY-trees is 
that they can encode the structure directly. A root of the tree is the 
document itself, leaves are text or image blocks and edges are 
block relationships. The disadvantages are obvious: block 
extraction relies on binarization, which is hard to achieve in the 
case of documents with complex backgrounds. 

Another disadvantage is complex tree comparison: method [6] 
introduces a special grammar that makes it possible to compare 
trees in the form of text strings. Methods [7-9] convert XY-trees 
into a fixed-length feature vectors; hence, comparison is performed 
in the same way as for general image feature vectors. Finally, 
method [10] creates unique network model for each document 
class using Winnow algorithm and compares each document to 
these models one by one. 

The recent methods are mainly based on general image features 
enhanced with document-specific spatial information. The most 
trivial ones utilize gray pixel density supplemented with connected 
components [11], document lines [12], table sizes and positions 
[13], text strings [14], Viola-Jones features [15] or runlength 
histograms [16]. These methods are fast and simple, but they rely 
on document binarization mainly, which makes them useless in the 
case of complex background presence.  

Method [17] uses DTMSER transform to encode document 
structure, which is a combination of MSER regions and distance 
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transform. [18] is based on SIFT descriptors that are clusterized on 
the basis of regular grid. Similar, [19] exploits SURF descriptors 
clusterized using horizontal and vertical stripes. These methods are 
robust enough, but as we show further, using local descriptors only 
may lead to accuracy degradation in the case of different document 
backgorunds. 

Finally, one of the most advanced methods [20] is based on 
Fisher vectors (FV) encoding. First, it extracts SIFT descriptors 
and trains Gaussian Mixture Model (GMM). Using GMM, SIFTs 
are clusterized into descriptor histograms that are utilized for FV 
computation. In addition, authors propose calculating FV for 
several sub-images with further concatenation of them into a single 
feature vector, which provides more spatial information. Evolution 
of this method introduces a hybrid scheme [21], where extracted 
FVs are used as an input for a pre-trained deep network. Both of 
these approaches demonstrate state-of-the-art classification 
accuracy, but extraction of such complex features is a time-
consuming task. 

That is, we propose a novel document classification framework 
that introduces an extremely flexible scheme, which combines 
OCR-free text extraction, image-based feature vector extraction 
and classifier ensembling. Our ensembling model is able to classify 
the most of the documents using a single classifier. It uses several 
classifiers for complex documents only that significantly reduces 
processing time. 

The rest of the paper is organized as follows. In section 3 we 
introduce our approach to document classification. In subsection 
3.1 we give proposed classification framework overview; in 
subsection 3.2 we describe our approach for text extraction; in 
subsection 3.3 we explain proposed GRLH and SLBP descriptors 
and outline Fisher vectors based on Bernoulli Mixture Model; and 
in subsection 3.4 we give detailed explanation of our classification 
framework. Section 4 is dedicated to test setup and results. 
Subsection 4.1 describes datasets we use, including well-known 
ones and generated by ourselves. Finally, in subsection 4.2 we 
demonstrate the advantages of the proposed algorithms. 

3. Proposed Approach 
3.1. Processing pipeline overview 

In this section, we will discuss proposed processing pipeline. 
Our pipeline consists of three main stages: 1) text extraction; 2) 
preliminary classification with a single classifier; and 3) meta-
classification, which ensembles decisions of several classifiers in 
order to provide the final decision (fig. 2).  

Text extraction is an important pre-processing step. We propose 
a novel MSER-based approach for text regions detection with 
further classification of detected regions into text and non-text. The 
classification is performed using Grayscale Runlength Histogram 
(GRLH) descriptor, which is our modification of well-known RLH 
descriptor [16]. In contrast to RLH, GRLH extracts features 
directly from grayscale images, while RLH needs the binary ones; 
hence, it does not suffer from binarization errors. 

Document classification is based on three different visual feature 
types: GRLH, Spatial Local Binary Pattern (SLBP), and Fisher 
Vectors based on Bernoulli Mixture Model (BMMFV). All three 
descriptors use spatial pyramid extracted from grayscale image; 
hence, we totally avoid binarization in our pipeline.  

Intuition behind using these particular descriptors is the 
following: run length histograms were proven to be fast and 
simple, yet robust, for document classification, so they are good 
choice for classifying relatively simple documents. Fisher vectors 

are rather complex, but more robust to class intra variety and 
document distortions. SLBP is our extension to a classic Local 
Binary Pattern (LBP) descriptor, which is primarily used for local 
pixel patterns encoding. We improve it by extracting spatial 
pyramid of sub-images and further scaling each sub-image to the 
same, relatively small, size. Scaling provides implicit histogram 
normalization, which significantly improves classification 
accuracy in comparison to L1 or L2 normalization performed on 
non-scaled images. 

SLBP provides lower classification accuracy than GRLH and 
BMMFV, so we use it for ensembling only. Using the third 
classifier is necessary due to ambiguity in the cases when two 
classifiers yield very different results. 

 
Fig. 2. General flowchart of the proposed method. Optional blocks are outlined 
using dashes. 

Meta-classification addresses two problems. First, it attempts to 
provide the highest possible classification accuracy rate by 
utilizing classifier ensembling and, second, preserve high 
computational speed comparable to the single classifier. We 
achieve this goal by two-step processing: on the first step we 
perform classification with GRLH and estimate obtained 
prediction likehood. In the case if the likehood is low, we estimate 
prediction probabilities using SLBP and BMMFV based classifiers 
and pass them to a Support Vector Machine (SVM) classifier as 
concatenated feature vector. SVM yields the final prediction. 

In contrast to the most of the existing algorithms, our 
classification pipeline may also mark document as “unclassified” 
and pass it to the user for manual classification. That is, we 
implement active learning paradigm. In real document 
classification system, the number of initial training images is 
small. It is hard to provide a large collection of documents for each 
class, especially if the number of classes is large; hence, active 
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learning provides ability to significantly improve classification 
accuracy by adding misclassified samples to the training set. 

Another advantage of the proposed pipeline is flexibility: in our 
implementation, the only mandatory classifier is GRLH-based one, 
while all the other blocks, including text extractor, meta-classifier 
and other individual classifiers may be omitted for simple 
documents. 

3.2. Text extraction 
A typical way to extract text regions from image is using MSER 

[22]. It was shown that MSER regions are good representation of 
text characters [23]; hence using them for text candidate detection 
is a widely adopted technique. 

MSER detects Extremal Regions (ERs) that are defined as 
following: 

Q = ∀p ∈ Q, ∀q ∈ ∂Q:	I p < I q , (1) 

where Q is a region, ∂Q is a boundary of Q, and I(x) is a brightness 
of pixel x. Maximal Stable Extremal Regions (MSERs) are those 
regions among enclosed ERs Q0 ⊂ ⋯ ⊂ 	Q340 ⊂ Q3 ⊂ ⋯, which 
meet the following condition: 

q(i) = Q36∆\Q34∆ / Q3 . (2) 
MSER calculation is based on image binarizaion with different 

brightness thresholds. Connected component blobs found for each 
threshold are considered as ERs. ERs, which areas remain almost 
the same for several thresholds, are called stable. That is, they are 
MSERs by definition. This formulation is valid for a large-scale 
text, but document text characters may be too small to be stable 
(fig. 3). 
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Fig. 3. Comparison of photography text (left) and low quality document text 
(right). 

To overcome this issue, we propose using different formulation 
of ER regions, MSER-SI (MSER Supremum/Infimum): 

Q; = ∀p ∈ Q, ∀q ∈ ∂Q: inf p < inf q , (3) 
where infimum is taken in a NxN window around the pixel. 

Typically, MSERs are detected for both normal image and its 
inverse in order to find dark and light characters. In the last case, 
the difference between boundary and non-boundary pixels is 
determined as sup p > sup q . 

One can see that this formulation leads to detection of region 
that encloses character, but not the character itself. Characters can 
be found by binarization of each region with Otsu algorithm, but 
there is no need to perform it as we use grayscale-based 
descriptors. 

Found text regions are considered as text candidates. Thus, we 
need to classify them into text and non-text. We propose using 
GRLH descriptor that is calculated as following. 

First, we scan image lines in four directions, AB, AC, AD6, AD4, 
and look for runs that defined as following: 

R =
F ≔ min I
J ≔ max I
∀L ∈ F, J

M F − 1 − M F > P
M J + 1 − M J > P
M L − M L + 1 ≤ P		

. (4) 

Here R is a set of run pixel positions, T=50 is a run separation 
threshold and directions are determined according to the following 
recurrent equations, where M L = M S, T  assumed to be current 
run pixel and M(L + 1) is the next run pixel: 

 MUV L + 1 = M S + 1, T , 

MUW L + 1 = M S, T + 1 , 

MUXY L + 1 = M S + 1, T + 1 , 

MUXZ L + 1 = M S − 1, T − 1 . 

(5) 

Once the runs are found, we fill run length histograms for each 
direction. If the run length li < 128, histogram bin is determined 
according the following equation: 

ℎ\ = log` a\ + b\/bcde	 ∙ g ∙ ℎcde, (6) 
and according (7), otherwise: 

ℎ\ = log` a\ + bcde	 ∙ g ∙ ℎcde, (7) 
where ci is an average run brightness level, li is run length, cmax = 
255 is maximal brightness possible, q = 4 is a number of 
quantization levels, and hmax = 6 is a number of histogram bins. 
Obtained histograms are concatenated into a single feature vector 
comprised of 96 features and normalized in [0,1] interval. 

Classification is performed with SVM with χ2 kernel: 

h S, T = 	−i
S\ − T\

`

S\ + T\

j

\k0

, (8) 

where γ is set to 0.005. 

3.3. Document layout descriptors 
We encode document layout using three different descriptors: 

GRLH, SLBP and BMMFV. GRLH extraction is described in the 
previous section. One can note that we use it twice: for text 
extraction and for document classification. That is, we can find run 
lengths only once and fill both document descriptor and text region 
descriptor histograms simultaneously. 

GRLH document descriptor is computed slightly different in 
comparison to GRLH text descriptor. Similar to [16], we 
downscale input document image to 5x105 pixels and divide it into 
plurality of sub-images using a spatial pyramid containing 21 
images in total (fig. 4), which gives the best performance 
according to our experiments. For each sub-image we extract 
grayscale runlegnth histogram with 9 bins and 4 quantization 
levels. Hence, the total number of GRLH features increases up to 
3024. 

One can see that quantization level is the same for document and 
text descriptors. We utilize it to compute both descriptors 
simultaneously. An example is given in algorithm 1. 
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Algorithm 1. GRLH run extraction example for the single line 
Input: 
  L ← Current image line; 
  D ← Chosen direction; 
  lm ∈ n = {n0, … , nq} ← Sub-image regions; 
  st ∈ u = {u0, … , uj} ← Text candidate regions; 
 

Output: 
  vlm, vst  ← Histograms for each nw and ux, respectively; 
 

while not EndOfLine(L) do: 
    Ri := GetNextRun(L, D); 
    if ∃nw: I\ ∩ nw ≠ ∅ then 
        a\ ≔ }~�ÄÅℎ(I\); 
        if li < 128 then 
            ℎ\ ≔ log` a\ + b\/bcde	 ∙ g ∙ ℎcde, 
        else 
            ℎ\ ≔ log` a\ + bcde	 ∙ g ∙ ℎcde, 
        end if 
    end for 
    AddToHistogram(ÉÑÖ , hi); 
    if ∃ux: I\ − ux = ∅ then 
        a\ ≔ }~�ÄÅℎ(I\ ∩ ux); 
        … 
        AddToHistogram(ÉÜx, hi); 
    end if 
end while 

SLBP is our custom descriptor that is used in classifier 
ensembling. Typically, Local Binary Patterns (LBPs) are utilized 
for encoding local pixel information. There are several works 
considering document as a spatial pyramid that try to encode 
grayscale level distribution, but results shown in these works are 
relatively poor comparing to more advanced methods. In this 
paper, we propose several extensions to classic LBP that improve 
performance dramatically. Nevertheless, our experiments show 
that SLBP performance is slightly wore than GRLH. That is, we 
choose GRLH as the main descriptor as it can be utilized for both 
document and text classification and use SLBP to improve 
ensembling only. 

 
Fig. 4. An example of recursive document subdivision 

SLBP extraction is performed in the following manner: first, we 
convert input image to grayscale and recursively divide it into 
plurality sub-images, similar to GRLH. Obtained sub-images are 
downscaled to 100x100 pixels and each pixel is turned into a local 
binary pattern, according to equation 9: 

}áà Äâ = ä(Äâ, Ä\) ∙ 2
\40å

\k0 , (9) 

where Ä\ is an intensity of i-th neighbor pixel and ä(Äâ, Ä\) is a 
function 10, which compares pixel intensities and returns binary 
code: 

ä Äâ, Ä\ =
1, Äâ ≥ Ä\,
0, Äâ < Ä\.

 (10) 

We convert binary pattern into a numeric binary sequence by 
extraction of pattern elements starting from the top-left pixel in the 
counter clockwise direction with 3-pixel margin between central 
pixel and its neighbors. Extracted 1’s and 0’s form 8-bit pattern, 
which is interpreted as unsigned byte. Resulting bytes are 
combined into 8-bin histogram and normalized in [0; 1] range. 
Final descriptor has the following length: 21 sub-images x 8 bin 
histogram = 168. 

 
Fig. 5. Image scaling by SLBP descriptor 

Each sub-image has size 100x100 pixels, thus histogram values 
can be converted from integer to real numbers in [0;1] interval by 
dividing them by 10è. Image scaling is a critical part of our 
algorithm (see fig. 5). According to our experiments, 100x100 size 
leads to the best performance. Another advantage of SLBP is an 
implicit histogram normalization: it was shown in [16] that 
choosing particular normalization strategy can significantly affect 
classifier performance. Scaling each image to the same size 
resolves this ambiguity. 

The last descriptor we use is well-known Fisher Vectors (FV) 
[24, 25] that are proven to be great choice for document image 
classification. Typically, FV rely on Gaussian Mixture Model 
(GMM) which is applied for clusterization of SIFT descriptors. 
The major disadvantage of SIFT is high calculation complexity. 
Our classification framework is focused on processing time 
reduction; hence, we use BRISK descriptors instead. The former 
are binary descriptors, which means that they extract features that 
are distributed according to Bernoulli distribution, and not 
Gaussian. That is, we use Bernoulli Mixture Model (BMM) instead 
of GMM. 

FV with BMM (BMMFV) are obtained as following: first, local 
BRISK descriptors ê = {S0, … , Së, … , Sí} are extracted from input 
image and projected onto T/2 dimensional space using PCA 
(Principal Component Analysis). Then BMM ì = î\, ï\D, L =
1. . ñ, ó = 1. . A  is trained, where N is a number of components in 
BMM and D is a number of bits in each descriptor. Using this 
model, Fisher scores for each local descriptor are computed: 

òôöX
õ =

1

P
ië(L)

í

ëk0

(−1)04eúX

ï\D
eúX(1 − ï\D)04eúX

  (11) 

Here T is a number of binary features, extracted from an image, 
and ië L = ù(L|Sü, ì). Fisher matrix is obtained as following: 

†ôöX = Pî\
°ÖôÖX

¢
Ö£§

ôöX
• +

°Ö 04ôÖX
¢
Ö£§

(04ôöX)
•

.  (12) 

Ste
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Finally, Fisher vector is ò¶
õ is obtained by concatenation of 

normalized Fisher scores †ôöX
4
§

•òôöX
õ (L = 1. . ñ, ó = 1. . A). The 

Fisher vector is further normalized with power normalization and 
L2 normalization. Given a Fisher vector ß = ò¶

õ, the power-
normalized vector f(z) is calculated as ® ß = äLÄ� ß |ß|©, where 
™ = 0.5. We extract Fisher vectors for 21 sub-images, similar to 
SLBP and GRLH. 

3.4. Classification framework 
 

Proposed classification framework is shown in figure 6. We 
introduce two-step processing: on the first step we classify 
document image with GRLH based classifier and estimate 
prediction likehood. If the likehood is high enough, we take the 
prediction as the result. Otherwise, we classify the document with 
SLBP and BMMFV based classifiers and use meta-classifier to 
ensemble their predictions. We estimate a likehood of the final 
prediction and mark document as “unclassified” if it is too low. 

Let us describe the procedure more formally. If I ∈ 0; 1 ` is a 
document image then C = C0, … , C≠  is a set of classifiers, such 
as: 

ÆØ = ∞Ø, ®Ø : M → ùØ L M , (13) 

where L ∈ ℤ is i-th class, ∞Ø: M → ê is descriptor extractor, ê =
S0, … , SU ∈ 0; 1 U extracted descriptor, and ®Ø: ê → {ùØ(L|M)} is 

classification algorithm. 
We choose classifier Æ≥ according to the following criteria: 

Æ≥ ∈ Æ: ¥ = argmin
∂
∑ ÆØ M , (14) 

where P[∙] is an average image classification time. 
Classifier Æ∫ is used to find probabilities of each class i for the 

image I: 

Æ≥ M → {ù≥ L M }. (15) 

Assuming that the class with the highest probability is the 
predicted class, we estimate the prediction likehood using Bayes 
formula: 

ù ª≥ ∆à≥ =
ù ∆à≥ ª≥ 	ù ª≥

ù(∆à≥)
, (16) 

where ª≥ ≔ arg∞FS
\

ù≥(L|M) and ∆à≥ is obtained as follows: 

∆P∫ =
max
3
p∫(L|M)

p∫(L|M)3k 0..Ω \æø

. (17) 

p ∆P∫ M∫ , p M∫ 	and	p(∆P∫) can be found from training set by 
estimating corresponding likehood functions with EM algorithm. 

If the likehood ù ª≥ ∆à≥ > à≥	c\Ø, where à≥	c\Ø = 0.9 we 
consider Æ≥ prediction as true and bind I to the class with the 
highest probability ª≥. Otherwise, we classify the image with the 
all the rest classifiers and merge the predicted probabilities 
ùØ L M  into a single feature vector: 

à√ = [ù0 1 M , ù0 2 M , … , ùØ 1 M ,	
ùØ 2 M , … , ùj P M ], (18) 

where L = 1. . P are all possible image classes. 
Obtained vector à√ is used as an input for the meta-classifier C0 

that makes the final decision: 

Æâ: à√ → ùâ L M , (19) 

If ªâ ≔ argmax
\
ùâ(L|M) and ∆àâ is a ratio of maximal meta-

classifier probability to the other probabilities calculated in the 
same manner as (17) then we can determine the image class as: 

b M =

argmax
\
ù≥(L|M) , L®	ù ª≥ ∆à≥ > à≥	c\Ø,

argmax
\
ùâ(L|M) , L®	ù ªâ ∆àâ > àâ	c\Ø,

ƒ�baFääL®L~ó,					≈Åℎ~∆îLä~																					

 (20) 

Note, that all classifiers are the pairs ÆØ = ∞Ø, ®Ø  of descriptor 
extractor ∞Ø and classification algorithm ®Ø. In this paper we use 
GRLH, SLBP and BMMFV as extractors and SVM as 
classification algorithm. GRLH and SLBP SVMs use intersection 
kernel: 

h S, T = 	 ∞L � S\, T\ ,

j

\k0

 (21) 

where S = {S0, … , SU}, T = T0, … , TU 	и	S, T ∈ 0; 1 U are 
descriptors, and BMMFV is classified with SVM with linear 
kernel. Meta classifier is an SVM also. It uses the same χ` kernel 
(8) as text classifier, but with different parameter i = 0.05. 

The training is performed in the following manner: first, we 
train Æ0 …Æj classifiers using Platt’s framework [26]. Then we 
train meta-classifier Æâ on the same data using probabilities 
{ù0 L M … ùj L M } obtained with classifiers Æ0 …Æj. Finally, we 
estimate ù ∆à≥ ª≥ , ù ª≥ , ù(∆à≥) and 
ù ∆àâ ªâ , ù ªâ , ù(∆àâ) with EM algorithm. 
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Fig. 6. Proposed classification framework 
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4. Results and Discussion 
4.1. Document datasets 

There are several well-known document datasets that are utilized 
for document processing, but only few of them are suitable for 
classification. That is, we were forced to generate new datasets by 
ourselves. Our approach to document generation is template-based: 
first, we specify several different templates and then automatically 
fill them with random “lorem ipsum” text. If the number of words 
in each template is fixed, it is considered as fixed template and if 
the number of words can vary, it is flexible. 

Fixed templates correspond to fill-in forms, while flexible are 
similar to typical business documents, such as letters, bills, 
invoices and so forth. Documents with fixed templates are 
represented by NIST dataset [27]. Documents with flexible 
templates can be found in MARG dataset [28]. While classification 
of NIST is rather simple, MARG is more challenging due to high 
inter-class variability. In addition to these datasets, we generated 
four new datasets by ourselves. To make task more challenging we 
gathered two large in-house datasets also (see table 1 and figure 7). 
Let us describe all the datasets in detail. 

Table 1. Description of evaluation datasets 

Dataset Template Artificial Scanned # of 
classes 

# of test 
images 

NIST Fixed +/- + 20 824 
MARG Flexible - + 8 1135 
FlexScan Flexible + + 15 780 
FlexBack Flexible + +/- 15 780 
FlexDist Flexible + + 15 60 
FlexRot Flexible + - 15 840 
Fixed Fixed +/- - 43 1720 
Joint Flexible +/- - 78 3324 

NIST [27] is a document collection comprised of NIST Special 
Database 2 and NIST Special Database 6. It contains 20 types of 
filled forms with fixed layout. Total number of images is 11185. 
We took a random subset of 824 images for testing. 

MARG [28] consists of 9 classes with complex layouts. This 
dataset is very challenging. In our evaluation we use 1135 testing 
images from 8 classes out of 9. We removed class “othertype” 
because it has no particular layout. 

FlexScan is an automatically generated dataset comprised of 15 
classes. It contents documents with flexible layouts. We physically 
printed and scanned all the images from this dataset with 300 DPI 
resolution in order to simulate real documents. 780 images were 
taken for testing. 

FlexBack is the same dataset as FlexScan with random 
backgrounds added. We use it to evaluate performance of proposed 
classification pipeline in the case of highly distorted documents. 

FlexDist contains training images from FlexScan dataset and 60 
testing images that are heavily distorted with drawings, 
handwritten notes, coffee spots and so forth. In theory, each 
classification algorithm trained on FlexScan should be able to 
perfectly classify this dataset. 

FlexRot is comprised of images from FlexScan and FlexDist 
datasets rotated by ™ = ™0 + ™`, where ™0 ∈ {0°, 90°, 180°, 270°} 
and ™` ∈ [−3°, +3°] are random variables. We also change 
document image brightness and contrast by applying the following 
rule: 

M S = ™M S + Õ, (22) 

where M S ∈ [0; 255] are the pixels of the initial image and ™ ∈
0.85; 1.25 , Õ ∈ [−5; 5] are random variables. 

Finally, Fixed is an in-house dataset comprised of 1720 training 
images of filled forms assembled into 43 classes.  

Joint is an extreme case, comprised from NIST, FlexScan and 
Fixed, which is used for performance evaluation on large datasets. 
It includes 78 classes and 3324 testing images in total. 

  

 

 
a b 

    
c d 

    
e f 

Fig. 7. Evaluation datasets examples: a) NIST, b) FlexScan, c) FlexBack, d) 
FlexDist, e) Fixed, f) MARG 

4.2. Experimental results 
In this section, we will test proposed document image 

classification pipeline using aforementioned datasets. One can 
note, that we use text extraction algorithm as a pre-processing step. 
Therefore, let us compare our MSER-SI+GRLH algorithm to 
existing MSER+RLH algorithm first. 

  
a b 

Fig. 8. Text candidates (green areas) detected by: a) MSER and b) MSER-SI 

Comparison was performed using document collection [29] 
extended with a large number of magazine articles. We manually 
prepared groundtruth data for each image. All the images were 
downscaled to 6ˣ105 pixels. Evaluation was performed using two 
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criteria. First, we measured the total number of found text 
candidates. Similar to typical segmentation task, we considered 
region as found if it has more than 70% area overlapping with 
groundtruth text region. On the second stage, we measured the 
number of text regions found by the algorithms. 

Evaluation was performed by the means of precision, recall and 
F1 metrics. Table 2 contains comparison of the total number of 
found text candidate regions. One can see that MSER finds 
significantly less regions than our MSER-SI. Table 3 contains 
comparison of the number of text regions found by the algorithms. 
In the second case we used MSER-SI as detector; hence this 
comparison demonstrates the difference between RLH and our 
GRLH descriptor. Easy to see that RLH is slightly better in the 
terms of precision, but GRLH demonstrates much better recall. 

Table 2. Comparison of the amount of found text regions, % 

Method Precision Recall F1 
MSER 82.7 91.7 85.0 
MSER-SI 96.3 94.0 95.1 

Practically, it means that GRLH is able to find more text regions 
than RLH with slightly higher error rate. In addition, MSER-SI 
finds significantly larger number of text candidates than MSER, 
which is the major goal for text extraction in the case of document 
classification by the means of text layout. An example of text 
candidates found with MSER and MSER-SI is given in figure 8. 

Table 3. Comparison of the amount of real text regions, % 

Method Precision Recall F1 
MSER-SI + RLH 81.3 80.6 80.1 
MSER-SI + GRLH 80.4 85.0 83.7 

Let us now compare proposed SLBP descriptor with existing LBP. 
We performed comparison using FlexRot dataset. The results are 
given for the maximal accuracy; hence, the number of training 
images for each descriptor was different. The classifier for both 
descriptors is SVM with the same settings. Table 4 contains the 
results. As it was expected, naive LBP demonstrates poor 
accuracy. One can see that SLBP without scaling sub-images to 
100x100 pixels demonstrates poor results too. Therefore, both 
spatial pyramid utilization and scaling are essential for achieving 
good results with our descriptor. 

Table 4. Classification accuracy of SLBP and LBP 

Descriptor Accuracy, % 
LBP 62.9 
SLBP w/o scaling 76.4 
SLBP 89.4 

Finally, we compared our classification pipeline with several 
existing algorithms: RLH with SVM [16] and Fisher vectors based 
on Gaussian Mixture Model with SVM (GMMFV) [20]. We also 
added majority voting algorithm (MV) to comparison in order to 
prove that our approach to classifier ensembling gives better 
results than trivial voting. MV uses the same GRLH, SLBP and 
BMMFV based classifiers as in the proposed pipeline.  

Our approach is demonstrated in two modifications: the first 
one, CE (Classifier Ensembling), always uses all three classifiers, 
which means that classification with GRLH alone is omitted. The 
second modification, CE+, uses exactly the same pipeline that is 

shown in figure 6. We include two modifications in comparison in 
order to show that fast two-stage algorithm CE+ demonstrates 
similar results to the robust, but slow CE. 

In the most papers, algorithms are trained using a large number 
of training images, but real-life datasets are relatively small as it is 
hard to obtain a large number of documents. Therefore, we tried to 
determine an optimal number of training images first. We took 
FlexRot dataset and compared algorithms accuracy using different 
numbers of training images per class. The results are shown in 
figure 9. 

One can see that RLH demonstrates the worst results. GMMFV 
has low accuracy if the number of training images is small, but its 
results significantly improve when it is trained using more than 30 
images per class. MV demonstrates better results than individual 
classifiers, but proposed CE has the best accuracy for all possible 
training image numbers, except the largest ones that lead to 
overfitting 

 
Fig. 9. Classification accuracy depending on the number of training images 
per class 

According to obtained results, 10 images per class is an optimal 
number of training images. Lower numbers lead to significant 
accuracy decrease, while higher numbers of documents are hard to 
collect. Nevertheless, we test the algorithms using both 10 training 
images per class and “unlimited” number of the images. The 
algorithms were trained with different numbers of images until 
overfitting. The best result was taken as a maximal accuracy. 

The results for 10 training images are shown in table 5. The 
maximal accuracy could be found in table 6. In the most cases our 
algorithms CE and CE+ demonstrate the best or at least the second 
result. 

Table 5. Classification accuracy for 10 images per class, % 

Dataset Classifier 
RLH GMMFV MV CE CE+ 

NIST 100.0 100.0 100.0 100.0 100.0 
FlexScan 97.6 98.7 97.6 99.5 99.5 
FlexDist 95.0 91.7 96.7 98.3 98.3 
FlexRot 82.1 90.4 84.8 96.4 94.5 
Fixed 99.4 100.0 99.8 99.9 99.9 
Joint 99.0 99.6 99.0 99.7 99.7 
MARG 56.7 50.4 56.5 54.8 57.1 
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Table 6. Maximal classification accuracy, % 

Dataset Classifier 
RLH GMMFV MV CE CE+ 

NIST 100.0 100.0 100.0 100.0 100.0 
FlexScan 99.5 99.7 99.6 99.7 99.6 
FlexDist 96.7 93.3 100.0 98.3 98.3 
FlexRot 92.4 96.6 97.4 96.7 96.3 
Fixed 100.0 100.0 100.0 100.0 100.0 
Joint 99.9 99.9 99.9 99.9 99.9 
MARG 68.9 54.6 68.7 70.3 70.7 

Let us now compare processing time. We used FlexScan dataset 
for comparison and 10 training images per class. The results are 
shown in figure 10. Obviously, the fastest classifier is RLH-based 
as the RLH is the simplest algorithm and CE classifier is the 
slowest. Nevertheless, CE+ proposed in this paper demonstrates 
much better results than GMMFV and MV. That is, our classifier 
CE+ has significant performance improvement in comparison to 
complex classification algorithms. 

 
Fig. 10. Classification performance, img/sec 

Finally, we compared all algorithms using FlexBack dataset 
with our text extraction (TE) algorithm enabled and without it. The 
results are shown in table 7. Obviously, text extraction 
significantly improves classification accuracy of all algorithms. 
Regardless the TE presence, our algorithms demonstrate 
significantly better results in comparison to the others. Note, that 
GMMFV result is poor if TE is disabled. The reason is that the 
local descriptors encode to much noise as they cannot separate 
background from the text. 

Table 7. Classification accuracy for documents with complex 
backgrounds 

Dataset Classifier 
RLH GMMFV MV CE CE+ 

FlexBack 81.7 67.2 80.5 90.8 90.8 
FlexBack+TE 86.4 89.7 90.6 96.8 96.8 

5. Conclusion 
In this paper, we proposed a novel document image 

classification framework based on layout information. Our 
framework provides the best accuracy for the most of real-file 
classification scenarios. According to our experiments, proposed 
framework is able to classify up to 63 documents per second, while 
the best high-accuracy algorithms are capable to handle only 36 
images in the same time. Developed descriptors demonstrate high 
robustness to background presence and proposed text extraction 
algorithm significantly improves classification accuracy. 
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