## **Adaptive Multi-Reference Prediction Using A Symmetric Framework**

Zoe Liu\*, Debargha Mukherjee\*, Wei-Ting Lin+, Paul Wilkins\*, Jingning Han\*, Yaowu Xu\*;

\*Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA, USA 94043.

+University of California, Santa Barbara, CA 93106.

#### ABSTRACT

Google started the WebM Project in 2010 to develop open source, royalty--free video codecs designed specifically for media on the Web. Subsequently, Google jointly founded a consortium of major tech companies called the Alliance for Open Media (AOM) to develop a new codec AV1, aiming at a next edition codec that achieves at least a generational improvement in coding efficiency over VP9. This paper proposes a new coding tool as one of the many efforts devoted to AOM/AV1. In particular, we propose a second ALTREF FRAME in the AV1 syntax, which brings the total reference frames to seven on top of the work presented in [11]. ALTREF FRAME is a constructed, no-show reference obtained through temporal filtering of a look-ahead frame. The use of two ALTREF FRAMEs adds further flexibility to the multilayer, multi-reference symmetric framework, and provides a great potential for the overall Rate-Distortion (RD) performance enhancement. The experimental results have been collected over several video test sets of various resolutions and characteristics both texture- and motion-wise, which demonstrate that the proposed approach achieves a consistent coding gain, compared against the AV1 baseline as well as against the results in [11]. For instance, using overall-PSNR as the distortion metric, an average bitrate saving of 5.880% in BDRate is obtained for the CIF-level resolution set, and 4.595% on average for the VGA-level resolution set.

**Keywords:** video coding, VP9, VP10, WebM, AV1, AOM, H.264, HEVC, multi-reference prediction, adaptive prediction, ALTREF\_FAME.

#### 1. INTRODUCTION

Google started the WebM Project [1] in 2010 to develop open source, royalty--free video codecs designed specifically for media on the Web. The first codec released as part of the project was called VP8 [2] and is still used extensively in Google Hangouts. The second generation codec released by the WebM project, VP9 [3][4], -is currently served by YouTube, and enjoys billions of views per day. It achieves a coding efficiency similar to the latest video codec from MPEG entitled HEVC [5]. Realizing the need for even greater compression efficiency to cope with the growing demand for video on the web, the WebM team embarked on an ambitious project to develop a next



Figure 1. New coding tools explored by AOM/AV1

edition codec, VP10 [7], that achieves at least a generational improvement in coding efficiency over VP9. Starting from VP9, a set of new experimental coding tools have already been added to VP10 to achieve substantial coding gains. Subsequently, Google joined a consortium of major tech companies called the Alliance for Open Media (AOM) to jointly develop a new codec AV1 [8]. As a result, the VP10 effort has been largely merged with AV1.

Major tools that are being explored by AOM/AV1 are illustrated in Figure 1.

In this paper, we focus primarily on the use of the multiple reference prediction for the overall Rate-Distortion (RD) performance enhancement. Specifically, we describe tools that increase the flexibility and adaptability in selecting various combinations of reference frames, allowing the codec to handle a more diverse range of videos in terms of temporal correlations across successive frames.

# 2. SYMMETRIC FRAMEWORK USING MULTI-REFERENCE PREDICTION

Current VP9 codec uses three references for the encoding of each video frame, namely LAST\_FRAME, GOLDEN\_FRAME, and ALTREF\_FRAME. In the work we presented in [11], a new coding tool is proposed and the number of references is extended from three to six, through the adding of three new references: LAST2\_FRAME, LAST3\_FRAME, and BWDREF\_FRAME. In particular, LAST2\_FRAME and LAST3\_FRAME are two forward references, similar to LAST\_FRAME, whereas BWDREF\_FRAME is a backward reference, similar to ALTREF\_FRAME. The use of BWDREF\_FRAME exploits the existing "show\_existing\_frame" feature provided by VP9, to encode a look-ahead frame without applying temporal filtering, thus more applicable as a backward reference in a relatively shorter distance.

Specifically, in the single reference mode, where Intercoded blocks use a single prediction obtained from one reference frame, the proposed coding tool allows each frame to choose from up to six reference frames. In the compound reference mode, where Inter-coded blocks use a combination of two predictions, obtained from a forward reference and a backward reference respectively, four choices are provided for the forward references and two for the backward references. Each video frame consequently is offered an extensively larger set of multi-reference prediction modes, thus leading to a greater potential for the RD performance improvement.

Secondly, through the use of BWDREF\_FRAME, a symmetric framework of multi-reference prediction is established for the compound mode prediction: (1) A BWDREF\_FRAME may be selected from a nearer future frame, as opposed to the LAST\_FRAME; (2) A BWDREF\_FRAME or ALTREF\_FRAME may be selected from a farther future frame, as opposed to the LAST2\_FRAME; and (3) An ALTREF\_FRAME may be selected from a distant future frame, as opposed to the GOLDEN\_FRAME in the distant past. Such framework provides an opportunity to encode a variety of videos with dynamic temporal correlation characteristics in a more adaptive and optimal way. An instantiation of the framework is illustrated in Figure 2.



Figure 2(a). An example of video coding using a symmetric multi-reference prediction framework: Symmetric multi-reference prediction of a video clip in display order



**O: Overlay Frame** 

**Encoding Order** 

Figure 2(b). An example of video coding using a symmetric multi-reference prediction framework: Symmetric multi-reference prediction of a video clip in encoding order

#### 3. ADAPTIVE PREDICTION USING SECOND ALTREF FRAME

ALTREF FRAME is a no-show frame usually constructed from a distant future frame through temporal filtering. An AV1 encoder may apply different temporal filtering strength to construct an ALTREF FRAME, adapting to various motion smoothness levels across frames. A so-called Golden Frame (GF) group can be established, and all the frames within one GF group may share the same GOLDEN FRAME and the same ALTREF FRAME. LAST FRAME may be updated constantly. When the distant future frame that provides ALTREF FRAME is actually being coded, it is referred to as an OVERLAY frame but treated as a regular inter frame. OVERLAY frames usually cost fairly small amounts of bits as ALTREF FRAME may serve as an ideal prediction.

We propose the use of a second ALTREF FRAME in the new coding tool, namely ALTREF FRAME2. The use of two ALTREF FRAMEs allows the total number of reference frames further increase from six to seven. Moreover, the number of backward reference frames are more balanced with that of the forward reference

frames, and a more ideal symmetric reference framework may hence be established. The introduction of ALTREF FRAME2 has a great potential to better adapt to the various motion- / texture-wise characteristics in a video and provide more RDoptimized inter-predictors for the coding of each video frame.



Figure 3. The use of a second ALTREF FRAME (ALTREF2) in the hierarchical multi-layer framework



Figure 4(a). Binary tree structure design for context-based, bit-level entropy coding of the extended reference frames: Single reference prediction



Figure 4(b). Binary tree structure design for context-based, bit-level entropy coding of the extended reference frames: Compound reference prediction

#### 4. EXPERIMENTAL RESULTS

Results are collected over two standard video test sets with various resolutions and spatial / temporal characteristics, as presented in Table 1. Specifically, the set of *lowres* includes 40 videos of CIF resolution, and the set of *midres* includes 30 videos of 480p and 360p resolution. Each video contains 150 frames.

| Set of               | Set of <i>lowres</i> |                      | midres       |
|----------------------|----------------------|----------------------|--------------|
| Against AV1 baseline | Against [11]         | Against AV1 baseline | Against [11] |
| -5.880%              | -0.277%              | -4.585%              | -0.158%      |

#### Table 1. BDRate reduction using the metric of overall-PSNR by <code>ALTREF\_FRAME2</code>

### Table 2. Bitrate reduction using ALTREF\_FRAME2 (lowres set)

|                         | BWDREF + ALTREF (%) |          |         | BWDREF + ALTREF + ALTREF2 (%) |          |         |  |
|-------------------------|---------------------|----------|---------|-------------------------------|----------|---------|--|
| File                    | avg_psnr            | ovr_psnr | ssim    | avg_psnr                      | ovr_psnr | ssim    |  |
| akiyo_cif.y4m           | -5.483              | -6.286   | -1.512  | -5.639                        | -6.426   | -2.103  |  |
| basketballpass_240p.y4m | -5.172              | -5.208   | -2.589  | -5.478                        | -5.502   | -3.048  |  |
| blowingbubbles_240p.y4m | -6.940              | -6.662   | -5.797  | -7.028                        | -6.755   | -5.836  |  |
| bowing_cif.y4m          | -2.730              | -3.734   | -3.313  | -3.160                        | -4.187   | -3.688  |  |
| bqsquare_240p.y4m       | -10.187             | -10.376  | -6.651  | -10.203                       | -10.413  | -6.670  |  |
| bridge_close_cif.y4m    | -6.730              | -5.583   | -7.844  | -7.422                        | -6.311   | -8.716  |  |
| bridge_far_cif.y4m      | -5.495              | -5.894   | -7.623  | -6.092                        | -6.511   | -8.138  |  |
| bus_cif.y4m             | -4.988              | -4.807   | -3.456  | -5.147                        | -4.961   | -3.738  |  |
| cheer_sif.y4m           | -3.158              | -3.177   | -0.302  | -3.881                        | -3.917   | -1.088  |  |
| city_cif.y4m            | -4.988              | -5.126   | -2.027  | -4.963                        | -5.116   | -1.970  |  |
| coastguard_cif.y4m      | -9.831              | -9.767   | -11.453 | -9.970                        | -9.902   | -11.582 |  |
| container_cif.y4m       | -11.715             | -12.781  | -13.278 | -11.886                       | -12.974  | -13.648 |  |
| crew_cif.y4m            | -3.481              | -3.634   | -3.144  | -3.596                        | -3.751   | -3.175  |  |
| deadline_cif.y4m        | -3.658              | -4.275   | -1.361  | -3.963                        | -4.612   | -1.375  |  |
| flower_cif.y4m          | -12.568             | -13.093  | -6.024  | -12.640                       | -13.188  | -6.104  |  |
| flowervase_240p.y4m     | -8.978              | -9.158   | -8.202  | -8.906                        | -9.076   | -8.026  |  |
| football_cif.y4m        | -1.312              | -0.128   | -0.970  | -1.342                        | -0.179   | -1.038  |  |
| foreman_cif.y4m         | -4.245              | -4.347   | -0.736  | -4.759                        | -4.863   | -1.095  |  |
| garden_sif.y4m          | -8.368              | -8.729   | -5.558  | -8.572                        | -8.931   | -5.684  |  |
| hallmonitor_cif.y4m     | -1.679              | -0.288   | -0.148  | -2.590                        | -1.212   | -1.397  |  |

| harbour_cif.y4m        | -7.805  | -7.899  | -9.595  | -7.868  | -7.961  | -9.664  |
|------------------------|---------|---------|---------|---------|---------|---------|
| highway_cif.y4m        | -3.813  | -2.432  | -2.652  | -4.567  | -3.234  | -3.476  |
| husky_cif.y4m          | -3.938  | -4.175  | -3.397  | -4.272  | -4.503  | -3.848  |
| ice_cif.y4m            | -3.900  | -4.894  | -3.380  | -3.839  | -4.814  | -3.296  |
| keiba_240p.y4m         | -1.371  | -0.761  | -0.146  | -1.574  | -0.967  | -0.495  |
| mobile_cif.y4m         | -12.176 | -12.207 | -8.717  | -12.633 | -12.713 | -8.729  |
| mobisode2_240p.y4m     | -10.475 | -11.881 | -11.053 | -10.365 | -11.805 | -10.932 |
| motherdaughter_cif.y4m | -4.625  | -4.796  | -3.069  | -5.362  | -5.548  | -3.775  |
| news_cif.y4m           | -2.798  | -3.086  | 1.298   | -2.914  | -3.195  | 0.801   |
| pamphlet_cif.y4m       | -0.793  | -1.319  | -0.073  | -0.513  | -0.990  | 0.323   |
| paris_cif.y4m          | -2.938  | -3.434  | 1.508   | -3.105  | -3.593  | 1.292   |
| racehorses_240p.y4m    | -1.414  | -1.496  | 0.076   | -1.694  | -1.766  | -0.124  |
| signirene_cif.y4m      | -5.128  | -5.537  | -3.291  | -5.330  | -5.746  | -3.517  |
| silent_cif.y4m         | -3.322  | -3.466  | -2.018  | -3.688  | -3.840  | -2.418  |
| soccer_cif.y4m         | -1.081  | -0.945  | 1.995   | -1.590  | -1.426  | 1.101   |
| stefan_sif.y4m         | -7.504  | -7.198  | -5.411  | -7.853  | -7.569  | -5.623  |
| students_cif.y4m       | -6.025  | -6.691  | -4.647  | -6.230  | -6.921  | -5.021  |
| tempete_cif.y4m        | -9.561  | -9.410  | -8.374  | -9.705  | -9.564  | -8.458  |
| tennis_sif.y4m         | -2.367  | -2.855  | -1.220  | -2.722  | -3.181  | -1.611  |
| waterfall_cif.y4m      | -7.222  | -7.137  | -3.542  | -7.201  | -7.091  | -3.428  |
| {OVERALL}              | -5.499  | -5.617  | -3.942  | -5.757  | -5.880  | -4.225  |

Table 3. Bitrate reduction using ALTREF\_FRAME2 (midres set)

| File                               | BWDRE    | F + ALTREF | (%)    | BWDREF + ALTREF + ALTREF2 (%) |          |        |  |
|------------------------------------|----------|------------|--------|-------------------------------|----------|--------|--|
|                                    | avg_psnr | ovr_psnr   | ssim   | avg_psnr                      | ovr_psnr | ssim   |  |
| BQMall_832x480_60.y4m              | -5.800   | -6.275     | -4.836 | -6.111                        | -6.609   | -5.055 |  |
| BasketballDrillText_832x480_50.y4m | -3.492   | -3.971     | -0.310 | -3.781                        | -4.261   | -0.553 |  |
| BasketballDrill_832x480_50.y4m     | -2.921   | -3.307     | 0.254  | -3.167                        | -3.544   | -0.008 |  |
| Flowervase_832x480_30.y4m          | -4.591   | -3.969     | -3.336 | -4.652                        | -4.058   | -3.642 |  |
| Keiba_832x480_30.y4m               | -2.056   | -1.440     | -1.669 | -2.547                        | -1.924   | -2.463 |  |

| Mobisode2_832x480_30.y4m     | -3.031  | -2.616  | -1.126  | -2.604  | -2.132  | -0.547  |
|------------------------------|---------|---------|---------|---------|---------|---------|
| PartyScene_832x480_50.y4m    | -5.156  | -5.647  | -3.363  | -5.131  | -5.629  | -3.313  |
| RaceHorses_832x480_30.y4m    | -0.513  | -0.415  | -0.255  | -0.717  | -0.652  | -0.499  |
| aspen_480p.y4m               | -1.126  | -2.398  | -0.160  | -1.766  | -2.946  | -0.585  |
| city_4cif_30fps.y4m          | -4.513  | -4.675  | -1.709  | -4.579  | -4.744  | -1.622  |
| controlled_burn_480p.y4m     | -0.238  | -1.085  | 1.968   | -0.062  | -0.978  | 2.529   |
| crew_4cif_30fps.y4m          | -1.920  | -2.718  | -0.731  | -2.060  | -2.863  | -0.925  |
| crowd_run_480p.y4m           | -10.183 | -11.134 | -7.026  | -10.185 | -11.128 | -6.916  |
| ducks_take_off_480p.y4m      | -17.949 | -18.939 | -17.798 | -17.914 | -18.915 | -17.727 |
| harbour_4cif_30fps.y4m       | -7.822  | -8.328  | -8.240  | -7.913  | -8.386  | -8.298  |
| ice_4cif_30fps.y4m           | -2.410  | -3.196  | -0.014  | -2.520  | -3.318  | -0.042  |
| into_tree_480p.y4m           | -2.137  | -2.207  | -1.656  | -1.701  | -1.784  | -1.133  |
| old_town_cross_480p.y4m      | -4.227  | -4.337  | -2.139  | -3.909  | -4.032  | -1.685  |
| park_joy_480p.y4m            | -7.665  | -9.293  | -5.023  | -8.040  | -9.675  | -6.271  |
| red_kayak_480p.y4m           | 0.394   | 2.592   | 0.906   | 0.371   | 2.548   | 0.828   |
| rush_field_cuts_480p.y4m     | -8.649  | -9.423  | -6.059  | -9.001  | -9.783  | -6.665  |
| sintel_trailer_2k_480p24.y4m | -15.340 | -5.376  | -3.921  | -15.218 | -5.165  | -3.920  |
| snow_mnt_480p.y4m            | -0.678  | -0.408  | 0.895   | -0.792  | -0.529  | 1.074   |
| soccer_4cif_30fps.y4m        | -0.766  | -1.440  | 1.765   | -1.419  | -2.083  | 0.794   |
| speed_bag_480p.y4m           | -6.108  | -7.737  | -5.560  | -7.137  | -8.616  | -6.624  |
| station2_480p25.y4m          | -1.796  | -1.792  | -1.123  | -1.823  | -1.814  | -1.046  |
| tears_of_steel1_480p.y4m     | -3.775  | -4.141  | -0.996  | -4.053  | -4.422  | -1.276  |
| tears_of_steel2_480p.y4m     | -5.400  | -6.614  | -2.024  | -5.465  | -6.703  | -2.139  |
| touchdown_pass_480p.y4m      | -1.084  | -1.942  | 3.368   | -1.625  | -2.527  | 2.496   |
| west_wind_easy_480p.y4m      | -1.236  | -1.062  | -2.632  | -1.376  | -1.181  | -2.565  |
| {OVERALL}                    | -4.406  | -4.443  | -2.418  | -4.563  | -4.595  | -2.593  |

#### 5. EXPERIMENTAL RESULTS

In this paper, we propose a multi-layer, multi-reference symmetric framework for AOM/AV1, an effort for the next generational royal free, open source video codec. In particular, through the use of two ALTREF FRAMEs, together with five other reference frames, the framework provides a great potential for the overall Rate-Distortion (RD) performance enhancement. The experimental results have been collected over several video test sets of various resolutions and characteristics both texture- and motion-wise, which demonstrate a consistent coding gain by the proposed approach, compared against the AV1 baseline as well as against the results in [11]. For instance, using overall-PSNR as the distortion metric, an average bitrate saving of 5.880% in BDRate is obtained for the CIF-level resolution set, and 4.595% on average for the VGA-level resolution set.

#### REFERENCES

[1] http://www.webmproject.org/

[2] J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins, Y. Xu, *VP8 Data Format and Decoding Guide*, RFC 6386, http://datatracker.ietf.org/doc/rfc6386/

[3] D. Mukherjee, J. Bankoski, R. S. Bultje, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu, "The latest open-source video codec VP9 - an overview and preliminary results," *Proc. IEEE Picture Coding Symp.*, pp. 390-93, San Jose, Dec. 2013.

[4] D. Mukherjee, J. Bankoski, R. S. Bultje, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu, "A Technical Overview of VP9 - the latest opensource video codec," *SMPTE Motion Imaging Journal*, Jan/Feb 2015.

[5] Gary J. Sullivan, JensRainer Ohm, WooJin Han, and Thomas Wiegand, "Overview of the High Efficiency Video Coding (HEVC) Standard," *IEEE Trans. on Circuits and Systems for Video Technology*, Vol. 22, No. 12, Dec 2012.

[6] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard; Ajay Luthra. "Overview of the H.264/AVC Video Coding Standard," *IEEE Transactions on Circuits and Systems for Video Technology*, Vol. 13 No. 7, Jan 2011.

[7] D. Mukherjee, H. Su, J. Bankoski, A. Converse, J. Han, Z. Liu, Y. Xu, "An overview of

video coding tools under consideration for VP10: the successor to VP9," *Proc. SPIE, Applications of Digital Image Processing XXXVIII*, vol. 9599, Sep 2015.

[8] <u>http://www.aomedia.org/</u>

[9] M. Paul, W. Lin, C.-T. Lau, and B.S. Lee, "A long-term reference frame for hierarchical B-picture-based video coding," *IEEE Trans. on Circuits and Systems for Video Technology*, Vol. 24, No. 10, Oct. 2014.

[10] G. Bjøntegaard, "Calculation of average psnr differences between rdcurves," *VCEGM33*, 13th VCEG meeting, Austin, Texas, March 2001.

[11] Wei-Ting Lin, Zoe Liu, Debargha Mukherjee, Jingning Han, Paul Wilkins, Yaowu Xu, Jim Bankoski, and Ken Rose, "Efficient AV1 video coding using a multi-layer framework," submitted to *IEEE International Conference in Image Processing*, Beijing, China, September, 2017.