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Abstract. In this paper, we propose an accurate and robust video
segmentation method. The main contributions are threefold: (1)
multiple cues (appearance and shape) are explicitly used and
adaptively combined to determine segment probability; (2) motion
is implicitly used to compute the shape cue; and (3) the segment
labeling is improved by utilizing geodesic graph cuts. Experimental
results show the effectiveness of the proposed method. c© 2016
Society for Imaging Science and Technology.

INTRODUCTION
Video segmentation is important for video manipula-
tion tasks such as composition, compression, and 2D–3D
conversion, as well as image understanding tasks such
as object recognition. Considerable research has been
done especially for bilayer segmentation of video, where
a single foreground (FG) object is segmented from the
background (BG).1–3 The recent state-of-the-art methods
utilize pixel-wise probabilistic information based on the
local appearance and shape propagated from the previous
segmented frame using motion.2

In this paper, we propose an accurate and robust video
segmentationmethod. Themain contributions are threefold:
(1) multiple cues (appearance and shape) are explicitly used
and adaptively combined to determine segment probability;
(2) motion is implicitly used for the shape cue; (3) segment
labeling is improved by incorporating geodesics, i.e., using
geodesic graph cuts4 rather than simple graph cuts.3
Experimental evaluation demonstrates the effectiveness of
the proposed method.

RELATEDWORK
To solve image and video segmentation problems, many
researchers have used either texture or edge information.5–7
For example, the Magic Wand method6,7 starts with a
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user-specified point or region to compute a region of
connected pixels such that all the selected pixels fall within
some adjustable tolerance of the color statistics of the
specified region. While the user interface is straightforward,
finding the correct tolerance level is often cumbersome
and sometimes impossible. The Intelligent Scissors method5
allows a user to choose a ‘‘minimum cost contour’’ by roughly
tracing the object’s boundary with the mouse. As the mouse
moves, the minimum cost path from the cursor position
back to the last ‘‘seed’’ point is shown. If the computed
path deviates from the desired one, additional user-specified
‘‘seed’’ points are necessary.

While easier than just selecting pixels manually with
a traditional selection tool, commercial image editing tools
still demand a large amount of attention from the user.
As a result, the user must control the curve carefully. If a
mistake is made, the user has to ‘‘back up’’ the curve and
try again. New methods have been developed for reducing
human interactions.8–10 Graph cut is a particularly powerful
optimization technique that can be used for interactive
segmentation.3 This method works by allowing the user to
give loose hints as to which parts of the image are foreground
or background without enclosing regions or being pixel
accurate. These hints usually take the form of clicking or
dragging on foreground or background elements. Thus, it is
very quick and easy to use for single images.

However, it may require human interaction for every
frame in a video, which can accumulate to an excessive
amount. Therefore, several methods specifically tailored for
video based on graph cuts have been proposed.2,13,14 Both
the method by Wang et al.13 and the method by Li et al.14
treat the video as a 3D grid and apply graph cut. In this
approach, the user inputs may be given in the 3D voxel
space13 or as image-based inputs for selected key frames.14
The limitation of 3D grid based video segmentation is that
the motions between successive frames are not sufficiently
modeled. The SnapCut method by Bai et al.2 uses a different
approach, where each frame is segmented sequentially based
on explicit motion estimation to infer the object boundary.
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This approach tends to give more robust results for complex
objects and environments.

Now, we briefly review the graph-cut segmentation
method and the SnapCut method, which is closely related to
the proposed method. The graph-cut segmentation method
is based on optimization of the following cost function:3

E(L)=
∑
xi∈P

R(xi)+ λ ·
∑

xi,xj∈Ni

V (xi,xj), (1)

where li ∈ {F,B} is the segmentation label (F and B
represent foreground and background, respectively) for pixel
xi ∈ P and R(xi) is a region cost term based on the label
L(xi) = li ∈ {F,B}. V (xi, xj) is a boundary cost between
xi and xj, where Ni is the set of pixels around xi. The
parameter λ is a relative weight between the region cost
R and the boundary cost V . Generally, the boundary cost
corresponds to ameasure of the similarity between the colors
of adjacent pixels and the region cost is based on color
models of the foreground and background. The graph-cut
method minimizes Eq. (1) by casting the problem as a graph
partitioning using the min-cut/max-flow graph algorithm.

The SnapCut method is summarized as follows: (1) the
region cost term R(xi) in Eq. (1) is obtained by mixing
local FG/BG probabilities for all xi ∈ P ; (2) local FG/BG
probability is obtained by adaptively combining color and
shape probabilities. More details are as follows: Given the
true segmentation of frame t , local windows are defined
on the segmentation boundary, and the respective local
appearance and shape information are propagated to frame
t + 1 by moving windows with motion vectors estimated
by optical flow. Inside each local window, the respective
appearance of FG and BG, modeled as Gaussian Mixture
Models (GMMs), and the shape, motion compensated
segmentation labels of frame t , are adaptively combined to
compute local pixel-wise segment probabilities. Then, the
local probabilities are mixed to construct global pixel-wise
probability and the graph-cut method to assign pixel-wise
labels from the segment probabilities.

Although the graph cut3 is one of the most widely
used methods for segmentation, it has a well-known
shortcoming, called shrinking bias, causing bias toward
shorter boundary length. Recently, the geodesic graph-cut
method was proposed4, where geodesics based on pixel
segment probability1 are incorporated into the graph-cut
cost function. This method alleviates the problem of the
shrinking bias considerably.

PROPOSED ALGORITHM
The proposed framework is based on the adaptive localized
classifiers of the SnapCut method,2 with several major
improvements to enhance segmentation accuracy. Figure 1
shows an overview and Figure 2 summarizes each step of the
proposed method.

Review of Adaptive Localized Classifiers
It is assumed that a ground-truth segment mask of the
object on the first frame is available as an initial seed

Figure 1. Overview of the proposed method. We combine image
gradient based geodesics, color, shape and motion segmentation cues
to accurately propagate object and background segment probabilities to
adjacent video frames.

Figure 2. The framework of the proposed method.

mask. From the initial mask, a number of overlapping local
windows are created along the boundary of the FG object.
Within each local window, color and shape statistics are
computed for FG and BG segments, respectively, and applied
as pixel-wise probability priors. Color is modeled by GMMs
Gt = {GF,t ,GB,t } while shape is modeled by the previous
segment mask and a shape confidence map fs.

For a pixel x , its color-based FG probability is defined
as:

pc(x)= pc(x|F)/(pc(x|F)+pc(x|B)), (2)

where pc(x|F) and pc(x|B) are the corresponding probabili-
ties computed from the two GMMs.

The color and shape prior weights are adaptively
determined by the color confidence fc , which measures how
separable the local FG color is against that of the BG. With
Lt (x) as the segmentation mask of frame t , fc is defined as:

fc = 1−
(∫

Wk

∣∣Lt (x)− pc(x)
∣∣ ·ωc(x) dx

)/∫
Wk

ωc(x) dx,

(3)
where Wk is the kth local window and ωc(x) is weighting
function ωc(x)= exp(−d2(x)/σ 2

c ), where d(x) is the spatial
distance between x and the FG boundary, computed by
the distance transform. Since ωc(x) is larger for pixels
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(a) (b)

Figure 3. Motion cue mapping functions.

closer to the boundary, the color prior influence increases
when the color-based probabilities agree well with Lt (x),
especially near the FG boundary. This is achieved by the
shape confidencemap fs(x)= 1− exp(−(d2(x)/σ 2

s )), where
the parameter σs is defined based on fc as:

σs =

{
σmin+ σd ·

(
fc−fcutoff
1−fcutoff

)r
fcutoff < fc ≤ 1,

σmin 0≤ fc ≤ fcutoff,
(4)

where σd = σmax − σmin. We use fcutoff = 0.85, σmin = 2,
r = 2, and σmax equals the size of the local window. It is clear
that a high fc will result in a large σs, resulting in a loose shape
constraint, and vice versa. Finally, the FG probability pkcs(x)
is defined as:

pcs(x)= fs(x) · Lt+1(x)+ (1− fs(x))pc(x). (5)

Local classifiers are propagated to adjacent frames based on
motion estimation. Specifically, each local window is moved
based on a two-step motion estimation stage comprising
(1) global affine motion estimation based on matched
speeded-up robust feature points15 and (2) pixel-wise optical
flow. The displacement vector for a window is defined as the
average motion of pixels within that window. For the newly
positioned windows of the next frame, the shape prior, i.e.,
the segment mask is updated based on the estimatedmotion,
and the color prior is augmented with GMMs built from the
new frame. Among the GMMs from the previous frame and
the new frame, the one that gives the larger FG region is
selected.

Implicit Motion Cue
In a fast moving region, when the motion is large, it is
observed that the local motion estimation (optical flow)
gives a relatively large error, and a shape deformation
occurs. Under this observation, we propose a method to
improve segmentation probability by utilizing the local
motion information.

As created in the initialization step, the local window size
is fixed. When a large local motion estimation error occurs
from a relatively large motion of the object, the local window
may not fully cover the local region at t + 1 corresponding
to a region at t . Although a large local window alleviates this
misalignment problem, it causes an inaccuratemotion vector
result due to averaging over a large area. Hence, instead of
using a large window by default, we dynamically adjust the
window size during the window propagation step (see the

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 4. Improving foreground probability using implicit motion cue:
(a) input frame, (b) optical flow, (c) and (d) local windows and shape
confidence, (e) and (f) corresponding foreground probability, and (g) and
(h) resulting segment without/with implicit motion cue, respectively.

local model update in Ref. 3) in accordance with the motion
magnitude as follows:

sk(t + 1)= sdefault+ h(|v̄k|), (6)

where sk(t + 1) is the new size of the ith window at time
t + 1, sdefault is the default window size, |v̄k| =

√
v̄2
x,k+ v̄2

y,k
is the magnitude of averaged optical flow (vx,k, vy,k) for the
kth window and h(·) is a mapping function of the motion to
window size.

As described above, we assume that shape changes more
in fast moving regions than small motion regions. Under this
assumption, the magnitude of a motion would be a factor
to decide the shape confidence fs(x), as well as the color
confidence fc . Moreover, the motion-based shape confidence
can reduce the side effect of the motion-based window size
adjustment in Eq. (6): including shape with long contour
pixels increases a possibility of foreground probability pcs(x)
to be carved where the shape is mismatched due to motion
estimation error and rapid shape change (see Figure 4).
As the result, we decide to use the motion magnitude for
adjusting the shape confidence fs(x). The shape confidence
fs(x) is affected by σs in Eq. (4), which is determined by fc
and other parameters. Ifmotionmagnitude is directly used to
determine σs, the color confidence information is eliminated
from the shape confidence fs. Instead, we use the motion to
modify the σmin as follows:

σ k
min = σ̄min+ g (|v̄k |), (7)

where σ̄min is the default value of σmin. Then we compute σs
in Eq. (4), for the kth window, using σ k

min in Eq. (7) as σmin in
Eq. (4). The profiles of h(|v̄|) in Eq. (6) and g (|v̄|) in Eq. (7)
are shown in Figures 3(a) and 3(b), respectively.

Fig. 4 shows the effectiveness of the motion-cue-based
window size and shape confidence compensation. The
overlaid gray regions, in Fig. 4(c) and (d), represent a shape
confidence map fs(x). The motion estimation error and
shape change incur an incorrect and very narrow shape
confidence map (high confidence on the shape) so that the
resulting ambiguity in the foreground probabilities yields
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incorrect segmentation. On the other hand, the proposed
method alleviates the problem, giving a more accurate
segmentation result.

Local Geodesics
As mentioned in the overview, we utilize the geodesic
graph-cut algorithm to alleviate the shrinking bias and
enhance robustness to motion estimation error. However,
geodesic graph cut is an interactive image segmentation
method that uses the geodesic distance from a user’s scribble
to a pixel. The method cannot be easily integrated into our
non-interactive and local window based video segmentation
framework.

In this section, we attempt to develop a method
to automatically create geodesic seeds, i.e., without user
interaction, for each local window. Precise creation of
geodesic seeds is critical for achieving good foreground and
background geodesic costs because the geodesic distance is
very sensitive to seed placement.

It is obvious that foreground/background seeds should
be placed in correct regions where they are separated well.
If we assume that each local window is propagated well
and the local region is covered by the window, we can
utilize the already existing good information, namely, color
and shape probabilities. From this observation, we devise a
simplemethod to construct local seeds using the color–shape
probability pcs(x) in (5) as follows:

�F = {x;pcs(x)≥Tseed},

�B = {x; 1− pcs(x)≥ Tseed},
(8)

where the threshold Tseed = 0.95 is used for our experiment.
The upper part of Figure 5(c) shows an example of created
geodesic seeds, where white pixels represent foreground
seeds and black pixels represent background seeds. The local
geodesic distance for each window is computed as

Dl(x)=min
s∈�l

dl(s, x), (9)

where�l is the set of points (seeds) with label l ∈ {F,B}. The
geodesic distance from a point to another point according to
the color model for the label l is given by

dl(a, b)=min
La,b

∫ 1

0
|∇pl(s)·L̇a,b(s)| ds, (10)

where La,b is a path from a to b parameterized by s =
[0, 1] and ∇pl(s) = ∇pc(La,b(s)|l) is the gradient of color
probability pc(x|l) along the path La,b. Finally the local
geodesic cost is obtained as follows:

Gl(x)=Dl(x)/(DF (x)+DB(x)). (11)

Fig. 5 shows the effectiveness of combining geodesic costwith
the color–shape probability. The wrong shape confidence
results in wrong segmentation (see Fig. 5(a) and (b)). The
foreground cost is rather improved (dotted red ellipse in
Fig. 5(d)) by combining the geodesic cost using the seeds
generated as described above (Fig. 5(c)).

(a) (c)

(b) (d)

Figure 5. Improving segmentation probability by combining geodesics.

Geodesic Graph-cut Segmentation
Now, we need to obtain the region cost ER and the boundary
cost EB in Eq. (1) to segment foreground out of background
by the graph-cutmethod viamin-cut/max-flow optimization
algorithm.

First, we combine color–shape probability pcs(x) in
Eq. (5) and geodesic distance Gl(x) in (11) to make the local
region cost for each local window as follows:

RkF (x)= (1− pkcs(x))+ u(x) ·Gk
F (x),

RkB(x)= pkcs(x)+ u(x) ·Gk
B(x),

(12)

where k is the index of local windows and the local
geodesic weight function u(x) is the confidence of geodesics
computed by

u(x)=
∣∣∣∣DF (x)−DB(x)
DF (x)+DB(x)

∣∣∣∣2.5 . (13)

Note that, to convert the probability pkcs(x) to a cost,
1−pkcs(x), rather than pkcs(x), is combined into RkF (x).

Then we integrate all local region costs Rkl (x) in Eq. (12)
into a global region cost Rl(x). Since the windows overlap
each other, we obtain the global region costRl(x) byweighted
combination of the local region costs as

Rl(x)=
∑
k
(Rkl (x) ·ωk(x))/

∑
k
ωk(x), (14)

where the weight function ωk(x)= exp(−(x − ck)2/σ 2).
For the boundary cost term V , we compute the

boundary cost at a pixel x bymeasuring color difference with
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(a) without window resizing (b) with window resizing

Figure 6. A sample result for comparison between with and without
motion-based local window resizing.

eight neighboring pixels as follows:

b(x, xi)xi∈N =
1

dp(x, xi)
· e−{β·dc (c(x)−c(xi))

2
}, (15)

where dp(xi,xj) and dc(c(xi)−c(xj)) are position difference
and color difference between pixels xi and xj, respectively.
The parameter β is computed as given in Ref. 1. Then, we add
the boundary cost weight corresponding to u(x) in Eq. (13),
and to resolve the jagged boundary problem,we also combine
the global probability of boundary (gPb)16 as follows:

V (x, xi)= (1+ ū(x, xi)+ gPb(x)) · b(x, xi), (16)

where geodesics-based boundary weight ū(x, xi)= (u(x)+
u(xi))/2, and gPb(x) is the probability of boundary at pixel
x .

Finally, we can segment, i.e., obtain pixel-wise label,
foreground and background byminimizing cost function (1)
with Eqs. (14) and (16). The resulting segment mask Lt+1(x)
is used for segmenting the next frame at time t + 1.

Other Refinements
Although a full-frame foreground probability map can be
constructed in the way described in previous sections, and
they can give good results in many cases, this process can be
iterated to generate more accurate segments. This iterative
refinement is effective, especially in cases where a large
motion occurs. The iteration scheme is simple: repeat the
process using Lt+1(x) as an initial mask.

Another refinement we must consider is when the local
window is located on the frame border. For such a local
window, the segmentation of a target object will occur along
the frame border line since there is no background beyond
the frame border. This causes a problem if the object moves
inward in the next frame such that the segmented boundary
of the border line becomes a shape prior for the next frame.
We resolve this problem by examining the history of the
current local windows if they were on the frame border
in the previous frame. If it is determined that the current
local window was on the frame border previously, the shape
prior is assumed false and the local color confidence level
is dynamically increased. This forces the system to ignore

(a) input frame #3 (b) matched features with
previous frame

(c) a result without boundary
compensation

(d) a result with boundary
compensation

Figure 7. A sample result showing effectiveness of boundary
compensation.

the segmented border line and look for a new segmentation
boundary.

RESULTS ANDDISCUSSION
We present experimental results on a variety of image
sequences from movies and TV.

Figure 6 presents improved segmentation performance
by using motion-based window resizing described in the
Implicit Motion Cue section. In the test scene, Harry raises
his arm to the face rapidly while the torso is almost static.
When fixed windows are used, portions of the figure’s hand
and head are missed due to over-fitted appearance modeling
and insufficient compensation of motion estimation error.
These problems are overcome by increased local window size
based on the motion estimation.

Figure 7 shows the effectiveness of the proposedmethod
to deal with the new appearance on the image boundary.
As shown in Fig. 7(b), the upper hair unseen in the
previous frame appears due to camera movement (upper
direction). Without shape confidence compensation on the
frame border, the image boundary on the previous frame is
preserved as an object’s boundary as in Fig. 7(c). Figure 7(d)
shows that, although there are segmentation errors at the
corner of the head, the newly appeared hair is segmented
relatively well.

Figure 8 presents the results of segmentation of the
proposed method for the Avatar sequence. In the scene, the
foreground and background are of low contrast in color;
the scene is rather cluttered by the trees, rocks, and grasses.
Although, some background is labeled as foreground in
the landing gear region of the helicopter, the proposed
method resulted in a reasonable segmentation, considering
the complexity of foreground and background scenes.

We compare the proposed method to SnapCut,3 which
has been transferred into the Roto Brush released in Adobe
After Effects CS5. As shown in Figure 9, the thin and
long horns of an alien horse are preserved in the proposed
method.
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(a) first frame and ground truth (b) #10

(c) #28 (d) #49

Figure 8. Segmentation results for Avatar-1 sequence.

#7 #26

#7 #26
(b) our results

(a) SnapCut results

Figure 9. A result comparing SnapCut to ours for Avatar-2 sequence.

We further provide a quantitative comparisonwithmore
recent semi-supervised video segmentationmethods that are
all based on an initial or a sparse number of user annotated
frames.18–21 Specifically, we evaluated the proposed method
using the benchmark dataset recently made public by
Perazzi et al.,17 and compared the results with other semi-
supervised methods, as presented in Table I. Here, the region
similarity J is the Jaccard index, which is defined as the
intersection over-union of the estimated segmentation and
the ground-truth mask. The contour accuracy F is defined
as F = (2PcRc/Pc +Rc), the F-measure of Pc and Rc , which
are the precision and recall of the segmentation boundary,
respectively. In order to be robust to small inaccuracies,
contour-based precision and recall Pc and Rc are computed
via a bipartite graph matching.17 Finally, J/F-mean denotes
the mean for all sequences, while J/F-object recall measures
the fraction of sequences scoring higher than a threshold 0.5.

While the performance of the proposed method was
better than the method by Chang et al. (temporal superpixels
[TSP]),18 it was worse than the methods by Ramakanth
and Babu SeamSeg (SEA),19 Grundmann et al. Hierarchical
graph-based video segmentation (HVS),20 and Fan et al.

Table I. Quantitative comparison of region similarity (J) and contour accuracy (F).

Measure J-mean J-object recall
TSP Ref. 18 SEA Ref. 19 HVS Ref. 20 JMP Ref.21 Proposed
0.358 0.556 0.596 0.607 0.451
0.388 0.606 0.698 0.693 0.482

F-mean F-object recall
0.346 0.533 0.576 0.586 0.455
0.329 0.559 0.712 0.656 0.459

JumpCut (JMP).21 While the temporal relationship between
only a pair of frames is analyzed in the proposed method, all
the comparison methods focus on utilizing the appearance
similarity andmotion relationships of several frames at once.
This seems to be the main reason for the difference in
performance.

CONCLUSIONS
We proposed a novel video segmentation method that
adaptively combines motion, appearance, and shape cues to
compute the segment probability and adaptively determines
the size of the local window according to video character-
istics. Experimental results have shown that the proposed
method is superior to the state-of-the-art segmentation
method in cases where a large motion occurs, FG/BG color
contrast is low, and the foreground object is complicated.

We believe that the proposed method can be applied to
2D–3D conversion of film and TV. Although recently, new
movies are being filmed in 3D from the beginning, many
existing 2D legacy footages and contents require conversion
to 3D. The current conversion process involves precise
manual operation, consisting of careful segmentation of indi-
vidual objects using rotoscoping. To date, no computational
solution exists that could replace the manual procedures
in high-quality production. This incurs a heavy cost in
conversion, ranging up to $100,000 per minute of converted
footage. Our proposed method can be used to considerably
cut down the manual work and the production cost.

For future work, we plan to extend the proposedmethod
to further utilize appearance and motion information
of multiple frames simultaneously. We believe that this
extension may increase the robustness of the proposed
method.
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