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Abstract
In this study, we develop an unsupervised coarse-to-fine

video analysis framework and prototype system to extract a
salient object in a video sequence. This framework starts from
tracking grid-sampled points along temporal frames, typically us-
ing KLT tracking method. The tracking points could be divided
into several groups due to their inconsistent movements. At the
same time, the SLIC algorithm is extended into 3D space to gen-
erate supervoxels. Coarse segmentation is achieved by combin-
ing the categorized tracking points and supervoxels of the corre-
sponding frame in the video sequence. Finally, a graph-based fine
segmentation algorithm is used to extract the moving object in the
scene. Experimental results reveal that this method outperforms
the previous approaches in terms of accuracy and robustness.

Introduction
Object level video segments are semantically meaningful

spatiotemporal units such as moving persons, moving vehicles,
flowing river, etc. Segmentation of video sequence into a num-
ber of component regions would benefit many higher level vision
based applications such as scene analysis, object localization and
content understanding. However, single target object extraction
would be a more demanding task considering consumers needs.
In many cases, a consumer video sequence simply targets at cap-
turing a single object’s movement in a specific environment such
as dancing, skiing, running, etc. In general, motion object detec-
tion and extraction for a static video camera is relatively straight-
forward since the background barely changes and a simple frame
differencing would be able to extract a moving foreground ob-
ject. However, it is still challenging for the object moving on a
cluttered and/or dynamic background.

The goal of background modeling and foreground object ex-
traction is to build a model of the background/foreground in an
offline manner and extract the object of interest by comparing
the estimated model with the frames. The model must be ro-
bust enough to cope with background changes in different ways.
In recent years, a trend towards modeling spatio-temporal uni-
form (in terms of either appearance or motion) regions instead of
single pixels has been observed [1]. These works rely on super-
pixels/supervoxels for object segmentation in videos. However,
these methods is computationally expensive and group superpix-
els together according to pure spatio-temporal similarity without
exploiting real-world object features. As an improvement, Gior-
dano et al. [2] proposed an approach without making any specific
assumptions about the videos and it relies on how objects are per-
ceived by humans according to Gestalt laws. Khoreva et al. [3]
proposed an empirical approach to learn both the edge topology

1Work performed at Kodak Alaris during an internship from Rochester
Institute of Technology.

and weights of the graph. The most confident edges are selected
by the graph structure while the classifiers are learned to combine
features and seamlessly integrated by its accuracy. In [4] and [5],
FPFH and HoG have been used as features to represent superpix-
els. The high dimension feature space slows down the compu-
tation, although some improvements (e.g., [6]) were proposed to
provide a better balance of trade off between segmentation quality
and runtime.

Moreover, much research has been devoted to graph mod-
els for segmentation, such as [3] and [7]. Fan and Loui [8] pro-
posed a graph-based approach that models the data in a feature
space, which emphasizes the correlation between similar pixels
while reducing the inter-class connectivity between different ob-
jects. In [9], a reduced superpixel graph was reweighted such that
the resulting segmentation was equivalent to the full graph under
certain assumptions.

In this work, we develop a novel coarse-to-fine framework
and prototype system for automatically segmenting a video se-
quence and extracting a salient moving object from it. The pro-
posed framework comprises of point tracking and motion cluster-
ing of pixels into groups. In parallel, a pixel grouping method
is used to generate supervoxels for the corresponding frames of
the video sequence. Coarse segmentation is achieved by com-
bining the results of previous steps. Subsequently, a graph-based
technique is used to perform fine segmentation and extraction of
the salient object. The following section presents the proposed
coarse-to-fine video segmentation framework and the details of
the key component algorithms. Then the performance evaluations
and experimental results will be discussed in an individual sec-
tion. Finally, some concluding remarks are presented in the last
Section.

System Framework and Algorithms
The proposed framework is shown in Fig. 1, and consists of

several stages: 1) the point tracking algorithm is applied to the
consecutive frames of the input video, and then 2) these track-
ing points are clustered into groups; in parallel, 3) a pixel group-
ing method is used to generate supervoxels for the corresponding
frame of the video sequence; 4) coarse segmentation is achieved
by combining the results of previous steps; finally, 5) a graph-
based segmentation technique is used to perform fine segmenta-
tion and generate a mask of most salient object.

This video segmentation scheme exhibits state-of-the-art
boundary adherence, improves the performance of segmenta-
tion algorithms with reduced memory consumption. This new
approach is a major enhancement to the previous graph-based
framework [8], with the following distinctions and advantages:

• We deal with the video sequence with any resolution and any
length, i.e., there is no restriction on the size of the video.
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Figure 1. The overall framework of the proposed algorithm.

For a long video sequence, it is divided into small clips that
are processed by the system one by one.

• The parallel approach combines the spatial and temporal in-
formation and takes advantage of both graph-based algo-
rithms and pixel grouping methods. Consequently, it pro-
vides a marked improvement on accuracy and speed.

• It is an unsupervised scheme, i.e., there is no user interaction
required to generate the accurate object mask.

A. Points Tracking
There are a lot of widely-used points tracking algorithms,

such as particle filtering [10] and mean shift tracking [11], and
each of them has its own characteristics. A popular and well-
performed video object tracking algorithm is the Kanade-Lucas-
Tomasi (KLT) point tracker [12, 13]. The algorithm basically
provides the trajectories of a bundle of points. In our work, the
points to be tracked are selected in a grid-based manner in order
to make the initial points distributed uniformly in the entire frame,
as shown by the red dots in Fig. 2(a). As the point tracking al-
gorithm progresses over time, points can be lost due to lighting
variation, out of plane rotation, or articulated motion as shown in
Fig. 2(b) and Fig. 2(c). To track an object over a long period of
time, we may need to reacquire points periodically.

(a) (b) (c)
Figure 2. KLT point tracking. (a) Selected tracking points in the 1st frame;

(b) and (c) Tracking points in the 3rd and 5th frame. (Please print in color.)

There are some algorithms proposed to improve the accuracy
of KLT points tracking. One such proposal is the TLD algorithm
proposed by Kalal [14].

The KLT points tracker requires some premises: 1) the lu-
minance between two adjacent frames should be constant; 2) the
object moves continuously in time domain, otherwise the move-
ment should be “small” enough; 3) a point and its neighborhood
have similar motion vector, i.e., spatial consistent. Intuitively, if
a window w in frame I is the same as that in the adjacent frame
J, we have I(x,y, t) = J(x′,y′, t + τ). The constant-luminance hy-
pothesis holds the equality and gets rid of the effect of luminance
changes. The second premise ensures the existence of the track-
ing points. The points in the same window that have the same

offset is guaranteed by the third premise.

B. Motion Clustering
In a video sequence, the collection of points which locates

in the high-dimensional space often lie close to low-dimensional
structures corresponding to several classes the data belongs to.
The Sparse Subspace Clustering (SSC) algorithm proposed by El-
hamifar and Vidal [15] clusters tracking points that lie in a union
of low-dimensional subspaces. The point trajectories acquired by
KLT point tracker are grouped into two clusters using SSC al-
gorithm. Among infinitely many possible representations of the
data in terms of other points, a sparse representation corresponds
to selecting a few points from the same subspace. This motivates
solving a sparse optimization problem whose solution is used in
a spectral clustering framework to infer the clustering of data into
subspaces.

Fig. 3 shows the clustering results on two frames. Due to
the fact that the object moves in a different way from the back-
ground does, the tracking points on the object are separated from
the points on the background. Actually, this algorithm can be
solved efficiently and can handle data points near the intersections
of subspaces. Another key advantage of this algorithm with re-
spect to the state-of-the-art is that it can deal with data nuisances,
such as noise, sparse outlying entries, and missing entries, directly
by incorporating the model of the data into the sparse optimiza-
tion program.

Figure 3. Demonstrations of point trajectory clustering using SSC on two

frames. The yellow and red markers represent two clusters, foreground and

background respectively. (Please print in color.)

C. Supervoxel Clustering
In our work, the Simple Linear Iterative Clustering (SLIC)

[16] is extended to 3D space for dealing with 3D data clustering
problem.

Considering the aspect of computational efficiency, the en-
tire video sequence is divided into clips and each chip contains
a fixed number of frames, which is determined by the computing
ability of the processor. Each clip can then be processed individu-
ally. The resolution of consumer videos is sometimes comparable
or higher than 720p HD videos, which contain too much details
in each frame and cause undesired effects and redundant compu-
tations on the 3D SLIC performance. Bilateral filtering [17] can
be used on each frame in order to solve this problem so that the
edges around the objects are preserved and the other regions are
smoothed. Also, bilateral filtering reduces the noise in each chan-
nel.

Suppose that the desired number of supervoxels on each
frame is n and the thickness of each supervoxel is D along the
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temporal axis. Assuming that the supervoxels are initially square
in each frame and approximately equal-sized. All cluster centers
are initialized by sampling the clip on a regular grid spaced S pixel
apart inside each frame and t pixel between frames (along tempo-
ral axis). Without considering the accuracy for small color differ-
ences, the video sequence is converted into CIELAB space, since
the nonlinear relation for L∗, a∗, and b∗ good model to mimic
the nonlinear response of the eye. Furthermore, uniform changes
of components in the CIELAB color space aim to correspond to
uniform changes in perceived color, so the relative perceptual dif-
ferences between any two colors can be approximated by treating
each color as a point in a three-dimensional space and taking the
Euclidean distance between them. Also, the motion information
can be represented by motion vectors obtained from optical flow.
Consequently, each cluster is then represented by the vector

C = [x y z L∗ a∗ b∗ u v] (1)

where x and y represent the spatial location and z carries the tem-
poral information, L∗,a∗ and b∗ represent the spectral information
and u,v are motion information extracted by optical flow.

In the assignment step, the cluster of each pixel is determined
by calculating the distance between the pixel itself and the cluster
center in the 2S×2S×2D search region, as shown in Fig. 4.

S
2S

S

2S

D

2D

Initialized 
supervoxel

Figure 4. Initialization and the search region of supervoxel. Red box shows

the initialized supervoxel along D consecutive frames. Blue box is the search-

ing area for this cluster. Each pixel is calculated eight times since it enclosed

by eight cluster search region. (Please print in color.)

The problem arises when the distance is measured. In this
case, the distances in each domain are calculated separately and
then combined after multiplying the appropriate weights, i.e., the
distance d is defined by the pixel location, the CIELAB color
space and motion vector in the image is as follows:

d =

√

d2
l

2S2 +D2 +
d2

c
m

+
wm ·d2

m
RS

(2)

where m is the regularity that controls the compactness of the su-
pervoxel, wm is a weight on motion information, R is frame rate,

and

dl =

√

∆x2 +∆y2 +wz ·∆z2 (3)

dc =
√

wL∗ ·∆L∗2 +∆a∗2 +∆b∗2 (4)

dm =
√

∆u2 +∆v2 =

√

∆ẋ2 +∆ẏ2 (5)

where wz and wL∗ are the weights for the temporal distance and
L∗ channel. In the distance measure, the location is normalized
by the maximum distance in the 3D lattice 2S2 +D2 according
to Fig. 4. The weight for the depth component wz is introduced
since the inter-frame (lateral) position distance should be treated
differently as in-frame (transverse) distance. Considering two ad-
jacent supervoxels with depth D in the temporal axis, these two
supervoxels would shrink transversely and expand up to 2D in
lateral direction during the iterations if the region surrounded is
relatively uniform and the weight wz is small. This causes the in-
creased number of clusters on a single frame, which is unexpected
for some applications.

Note that 3D SLIC does not explicitly enforce connectivity.
The adjacency matrix is generated and the clusters with a number
of pixels under a threshold are reassigned to the nearest neighbor
cluster using connect component analysis. Fig. 5 shows the re-
sults of 3D SLIC algorithm after the connect component analysis.

Figure 5. Results of 3D SLIC voxel grouping on three consecutive frames.

The boundaries of each supervoxel are shown in yellow. The block enclosed

by the yellow boundaries in the corresponding position between frames has

the same label. (Please print in color.)

Note that for some HD videos that contain too much redun-
dant details on the background, the SLIC voxel grouping gener-
ates some tiny clusters which are too fine and increase the com-
putation and processing time. To solve this problem, it is recom-
mended to cluster the videos of this kind after the bilateral filter-
ing. The fine edges can be removed and the main boundaries of
the object and background would be retained.

D. Coarse Segmentation
For each supervoxel, coarse segmentation is performed by

combining the SSC output and supervoxels. As shown in Fig.
6(a), the SSC algorithm provides an approximate region contain-
ing the object of interest. Based on that, we propose a strategy
with the following rules: for each supervoxel in the video clip (as
shown in Fig. 6(b)), if all the tracking points in it are marked
red, this supervoxel is considered as background (black region in
Fig. 6(c)); similarly, if all the tracking points in a supervoxel are
marked yellow, this supervoxel is labelled as foreground (white
region in Fig. 6(c)); otherwise, for the supervoxels containing
both colored markers, they are considered as undetermined re-
gions, as shown by the gray region in Fig. 6(c)).
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(a) (b) (c)
Figure 6. Coarse segmentation by combining the results of SSC and 3D

SLIC algorithms. (a) Tracking points generated by KLT and SSC. The yel-

low and red markers represent the foreground and background region re-

spectively; (b) The 3D SLIC supervoxels on the same frame; and (c) The

mask generated by combining (a) and (b). The black, gray and white re-

gions denote determined background, undetermined region and determined

foreground respectively. (Please print in color.)

E. Graph-based Fine Segmentation

For fine segmentation, we propose to use the GrabCut [18]
algorithm since it requires a set of pixels for background, i.e., it
allows incomplete labeling. Also, GrabCut looks for the mini-
mum iteratively rather than in an one-time manner. Each iteration
improves the parameters of the GMMs to generate a better seg-
mentation.

For the video frames in RGB color space, the object and
background are modeled by a full-covariance Gaussian mixture
with K components (typically K = 5). In order to deal with the
GMM tractably, in the optimization framework, an additional vec-
tor k = [k1,k2, · · · ,kn, · · · ,kN ] is introduced, with kn ∈ 1, · · · ,K,
assigning, to each pixel, a unique GMM component, with one
component either from the background or the foreground model.
Using the mask generated by the coarse segmentation, the black,
white and gray regions are flagged with background, foreground
and undetermined, or simply marked as 0, 1 or 2 for the image.
Applying k-means clustering, the pixels belonging to either ob-
ject or background are clustered into K groups (GMMs). The
mean and covariance of the GMM can be estimated by the RGB
values of pixels in each cluster, and the weight can be determined
by the ratio of the number of pixels in the cluster to the number
of overall pixels. Finally, use texture (color) and boundary (con-
trast) information to get a reliable segmentation result within a
few iterations, as illustrated in Fig. 7.

(a) (b)
Figure 7. Result of fine segmentation using GrabCut method. (a) The

algorithm segment the undetermined region to light and dark gray regions;

and (b) The light and dark gray regions are merged to the background and

foreground respectively to form the final mask.

Experimental Results
We conduct experiments on a variety of video content. We

run the proposed algorithm on multiple types of data, and generate
a mask of the extracted object for each frame. We also compare
our segmentation results to those produced by other state-of-the-
art methods [19, 20, 21, 22, 23]. Both qualitative and quantitative
results will be presented to support the effectiveness and robust-
ness of our proposed method.

A. Parameters Settings
The parameters used in the experiments are listed as follows.

In the point tracking and clustering process, we set the initial point
sampling interval as 10 pixels and the tracking points are reset ev-
ery 5 frames. The number of clustering groups depends on the ap-
plication. Typically, we set it to 5. To group pixels, the 3D SLIC
algorithm is performed every 30 frames (clip size). For demon-
stration, the desired number of supervoxels in one frame is set to
100; the desired depth of supervoxels is D= 5 frames; the regular-
ity m = 22; depth of supervoxel D = 5; the weights for temporal
distance and L∗ channel are wZ = 50 and wL = 1 respectively. On
average, the 3D SLIC algorithm runs 5 iterations to get a reliable
result. To construct the visual effects, the brightness, size, trans-
parency and location of the extracted object and the background
image/video could be adjusted and controlled by the user control.

B. Evaluation on SegTrack Dataset
We first consider video sequences from the SegTrack [23]

dataset since a pixel-level segmentation ground truth for each
video is available. To quantitatively evaluate the segmentation
performance, we use the ground truth provided with the origi-
nal data. We compare our method with five state-of-the-art meth-
ods as shown in Table 1. The “penguin” video sequence is not
available for our segmentation application since the ground truth
for the “penguin” sequence is designed for object tracking in a
weakly supervised setting, in which only one penguin is manu-
ally annotated by the original user at the each frame. Note that
our method is an unsupervised methods, whereas [20] and [23]
are supervised method which needs an initial annotation for the
first frame. One can see that our algorithm outperforms the other
unsupervised methods except for the “parachute” and “birdfall2”
video where it is still comparable to the best one. As mentioned
before, for the “parachute” video sequence, our result is based on
the fact that the person under the parachute should be a part of the
object and extracted. However, the person in the ground truth of
“parachute” sequence was removed in the original dataset, which
leads to a slightly inaccurate error calculation. Due to the small
size of moving object and the complex background in the scene,
the pre-defined density of tracking points may not be high enough
to extract the foreground in “birdfall2” video sequence, which
leads to the pixel error a little higher than the best one. How-
ever, this can be improved by making the density of the tracking
points self-adjustable. The results in Table 1 take the average of
the difference between pixel error and the ground truth, i.e.,

error =
xor(our result, ground truth)

number of frames
(6)

where xor is an exclusive OR operation.
Fig. 8 shows an example of the qualitative results of

“parachute” video sequence in SegTrack dataset. In this video
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Table I: Quantitative pixel-level errors and comparison with the
state-of-the-art methods on SegTrack dataset.

[19] [20] [21] [22] [23] Ours
parachute 220 502 201 221 235 219

girl 1488 1755 1785 1698 1304 1471
monkeydog 365 683 521 472 563 345

birdfall2 155 454 288 189 252 232
cheetah 633 1217 905 806 1142 621
penguin* NA NA NA NA NA NA

* The video sequence “penguin” is not applicable to this evaluation.

sequence, the foreground and background regions move in differ-
ent ways. Compared to the last column of Fig. 8(b) and (c), the
person under the parachute is segmented into the foreground in
our results instead of merged into background as shown in ground
truth. This makes the segmentation result more reasonable, al-
though it leads to the slight error increase in Table 1. Fig. 9 com-
pares our results with the ground truth on “girl” video sequence.
The “girl” video sequence suffers from low resolution and severe
motion blur which increases the difficulty for segmentation. The
point tracking and supervoxel generation are affected by the mo-
tion blur. This becomes the main source of the pixel-level error.

(a) Original frames

(b) Ground truth

(c) Our results
Figure 8. Qualitative results of SegTrack “parachute” video sequence.

All the experiments are performed on an Intel R© CoreTMi5-
4590 CPU at 3.30GHz with 16GB memory. Before extensive
code and data structure optimization, the processing time per
frame is around 0.52s, 15.86s, and 7.62s for points clustering,
supervoxel generation and final segmentation respectively.

C. Evaluation on Kodak Alaris Consumer Video
Dataset

With the rapid development and lower cost of smartphones
and new digital capture devices, consumer videos are becoming

(a) Original frames

(b) Ground truth

(c) Our results
Figure 9. Qualitative results of SegTrack “girl” video sequence.

ever popular as is evident by the large volume of YouTube video
upload, as well as video viewing in Facebook social network.
These large amount of videos also pose a challenge for organiz-
ing and retrieving videos for the consumers. Besides the SegTrack
dataset, we have conducted evaluations of our proposed approach
on some of the videos from Kodak Alaris consumer video dataset.
The videos in the dataset are mostly captured in standard HD for-
mat with high frame resolution. Fig. 10 shows the qualitative
results of “gymnast1” video sequence in this dataset. Because of
the high resolution of the video, we apply bilateral filtering on
the original frame to remove some fine details of the background
and keep the main edges. The bilateral filtering does not affect
the performance of either SSC or 3D SLIC algorithm, but rather
saves the computation. Another example is shown in Fig. 11. In
this video, some parts of the moving object (dog) is similar to the
background trees in color, and the other parts are as white as the
background sky. It turns out that our algorithm produces reason-
ably good results for this difficult task.

(a) Original frames in the video sequence.

(b) Mask representing the extracted object in the sequence.
Figure 10. Object segmentation results on “gymnast1” video sequence in

Kodak Alaris consumer video dataset.
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(a) Original frames in the video sequence.

(b) Mask representing the extracted object in the sequence.
Figure 11. Object segmentation results on “dog” video sequence in Kodak

Alaris consumer video dataset.

Conclusion
We have proposed a novel and accurate coarse-to-fine ap-

proach to segment the salient object in video sequences. This
approach involves a parallel scheme, which consists of KLT, SSC
and 3D SLIC algorithm to identify the approximate location of the
most salient object. Subsequently, an unsupervised graph-based
method is used for fine segmentation. Since the coarse segmen-
tation determines the location of the moving object rather than
the exact boundaries, the robustness of this approach can be guar-
anteed. It is also worth mentioning that this algorithm can be
easily extended to multiple objects segmentation by controlling
the number of classes in the SSC stage. Compared to other state-
of-the-art approaches, it has stronger ability to segment video se-
quences accurately in any resolution and length within a shorter
time. The experimental results also validate the effectiveness and
performance of the proposed method.
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