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Abstract—Sparse coding - modelling data vectors as sparse
linear combinations of basis elements - has been widely and
successfully used in image classification, noise reduction, texture
synthesis, audio processing, etc. Although traditional sparse
coding with fixed dictionaries like wavelet and curvelet can
produce promising results, unsupervised sparse coding has shown
its advantage by optimizing the dictionary based on target data
provided. However, most of the existing unsupervised sparse
coding method failed to consider the high dimensional manifold
information. Recently, graph regularized sparse coding has been
proposed to incorporate manifold information. Better classifica-
tion and clustering results have been shown compared with naive
unsupervised sparse coding. The authors utilize modified feature-
sign search and Lagrange dual algorithm to solve the objective
function as two consecutive convex functions. This method relies
on large number of iterations to get state-of-art classification and
clustering results, which is computational intensive. In this paper,
we proposed a novel modified online dictionary learning method
which iteratively utilizes modified least angle regression and
block coordinate descent method to solve the problem. Instead of
getting entire coefficient matrix then generate dictionary matrix,
our method updates coefficient vector and dictionary matrix in
each inner iteration. Thus, efficiency and accuracy are reserved
at same time.

Index Terms—Image classification, image clustering, manifold
learning, sparse coding, dictionary learning, online dictionary
learning, least angle regression

I. INTRODUCTION

Sparse coding enables successful representation of stimuli
with only a few active coefficients. It has shown state-of-art
results in ordinary signal processing tasks like image denoising
[1] and restoration [2], audio [3] and video processing [4], as
well as more complicated tasks like image classification [5]
and image clustering [6]. When applied to natural images,
sparse coding produces learned bases that can resemble the
receptive fields of neurons in the visual cortex [7], which
is similar to the results of Independent Component Anal-
ysis (ICA) [8] and Gabor filter [9]. Compared with other
unsupervised methods like PCA and ICA, sparse coding can
learn overcomplete basis sets and doesn’t require statistical-
independence of the dictionary prototype signals. In machine
learning and statistics, slightly different matrix factorization
problems such as non-negative matrix factorization, its variants

[10] [11] and sparse principal component analysis [12] have
been successfully used to obtain interpretable basis elements.
With few basis elements needed for representation, sparse
coding is a good fit for an indexing scheme that would allow
quick retrieval.

Although having so many good properties, sparse coding
still facing ”Curse of dimensionality” when deal with high
dimensional data. Tasks like image classification and image
clustering can have very high dimensional feature space with
each feature having a number of possible values. A reasonable
thought would be sparse coding with dimensionality reduction.
Manifold learning is one of the methods that deals with
dimensionality reduction.

With more and more attention to sparse coding and manifold
learning, Cai [13] proposed a novel graph regularized nonneg-
ative matrix factorization method, then Gao [14] and Zheng [6]
proposed graph regularized sparse coding (GraphSC), which
explicitly considers the local geometrical structure of the data.
Much better results have been shown by the authors compared
with naive sparse coding. However, both authors use feature-
sign search with Lagrange dual algorithm to solve the problem,
good results rely on large number of iterations, which is
computational expensive. In this paper, we proposed a novel
method called modified online dictionary learning to solve the
same objective function more efficiently. With modified online
dictionary learning, which changed from original online dictio-
nary learning [15] by modifying the least angle regression for
coefficients optimization, we kept the feature of high efficiency
from online dictionary learning as well as high accuracy from
graph regularized sparse coding.

The rest of this paper is organized as follows: In Section
II, we give a brief description of sparse coding problem and
popular methods to solve the sparse coding problem. Section
III introduces the GraphSC algorithm, as well as the novel
optimization algorithm: modified online dictionary learning.
Experimental results on image clustering are presented in
Section IV. Finally, we conclude our paper in Section V.

Contribution

• Use K-SVD instead of PCA for preprocessing, less pro-
cessing time for convergence.
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• Locally linear embedding method (LLE)[16] as well as
Graph Laplacian [17] for constrains.

• We came up with a novel modified online dictionary
learning algorithm to solve the graph regularized sparse
coding problem efficiently.

II. SPARSE CODING

Given a data matrix X = [x1, ...,xm] ∈ R
n×m, let

D = [d1, ...,dk] ∈ R
n×k, where each di represents a basis

vector in the dictionary, and A = [α1, ..., αm] ∈ R
k×m be

the coefficient matrix, where each column is a sparse repre-
sentation for a data point. A good dictionary and coefficient
pair should minimize the empirical loss function, which can be
represented as

∑m

i=1 ‖xi −Dαi‖p. The typical norms used for
measuring the loss function are the Lp norms where p = 1, 2
and ∞. Here we concentrate on least square loss problems
when p = 2.

The objective function of sparse coding can be formulated
as:

min
D,A

‖X−DA‖2F + β
m∑

i=1

f(αi), (1)

s.t. ‖di‖
2 6 c, i = 1, ..., k

where f is a function to measure the sparseness of αi and
‖· ‖F denotes the matrix Frobenius norm.

Following [18] [19], we adopt the idea of L1 norm instead
of L0, which can produce similar results with affordable
computational cost. The objective function then becomes:

min
D,A

‖X−DA‖2F + β
m∑

i=1

‖αi‖1, (2)

s.t. ‖di‖
2 6 c, i = 1, ..., k

Although the objective function is not convex with D

and A together, it is convex with either one fixed. We
iteratively optimize the objective function by minimizing over
one variable with the other one fixed. Thus, it becomes an
L1-regularized least squares problem with an L2-constrained
least square problem.

III. GRAPH REGULARIZED SPARSE CODING
(GRAPHSC)

A. Algorithm

To incorporate manifold information, we follow the idea
of Cai [13] to build a nearest neighbor graph. Given a
set of m-dimensional data points x1, ...,xm, we construct a
nearest neighbor graph G with m vertices, where each vertex
represents a data point. Let W be the weight matrix of G.
If xi is among the k-nearest neighbors of xj or vice versa,
Wij = 1, otherwise, Wij = 0. We define ei =

∑m

j=1 Wij ,
and E = diag(e1, ..., em).

As mentioned previously, we mapping the weighted graph
G to the sparse representation A = [αi, ..., αm], the objective
function becomes:

• Laplacian Embedding fuction [17]:
1
2

m∑

i=1

m∑

j=1

(αi − αj)
2
Wij = Tr(ALAT ) (3)

Where L = E−W is the Laplacian matrix.

• Locally linear Embedding (LLE) function [16]:
1
2

m∑

i=1

m∑

j=1

|αi −
∑

j Wijαj |
2
= Tr(ALAT ) (4)

Where L = (I−W)
T
(I−W), I is identity matrix.

Although Laplacian embedding and locally linear embed-
ding are two different embedding methods, they share the same
objective function, thus can be solved by same optimization
method.

By incorporating the Laplacian or LLE regularizer into the
original sparse coding, we can get the following objective
function of GraphSC [6][20]:

min
D,A

‖X−DA‖
2
F + λTr(ALAT ) + β

m∑

i=1

‖αi‖1 (5)

s.t. ‖di‖
2
6 c, i = 1, ..., k

where λ > 0 is the regularization parameter.

B. Coefficients Learning

In this section, we show how to solve problem (5) with fixed
dictionary D by modified online dictionary learning algorithm.

Fixing dictionary D, the objective function becomes:

min
A

‖X−DA‖
2
F + λTr(ALAT ) + β

m∑

i=1

‖αi‖1 (6)

As problem (6) is convex, global minimum can be
achieved[21].

With modified online dictionary learning, we update each
vector αi individually, while keeping all the other vectors
constant. In order to solve the problem by optimizing over
each αi, we rewrite problem (6) in vector form.

Reconstruction error ‖X−DA‖
2
F can be written as:

m∑

i=1

‖xi −Dαi‖
2 (7)

As matrix L is symmetric in both Laplacian and LLE, the
regularizer Tr(ALAT ) can be rewritten as:

Tr(ALAT ) = Tr(
m∑

i,j=1

Lijαiα
T
j ) =

m∑

i,j=1

Lijα
T
i αj (8)

We combine reconstruction error with Laplacian or LLE
regularizer, add sparsity constrain to it, the objective function
becomes:
min
αi

m∑

i=1

‖xi −Dαi‖
2 + λ

m∑

i,j=1

Lijα
T
i αj + β

m∑

i=1

‖αi‖1 (9)

When updating αi, the other vectors {αj}j 6=i are fixed[6]
[15]. Thus, we get the following optimization problem:

min
αi

‖xi −Dαi‖
2 + λLiiα

T
i αj + αT

i hi+ β
k∑

j=1

|α
(j)
i | (10)

Where hi = 2λ(
∑

j 6=i Lijαj) and α
(j)
i is the j-th coefficient

of αi

In Algorithm 1 of modified online dictionary learning, we
keep dictionary D fixed, optimizing each individual coefficient
αi with all other coefficients fixed for each input data xi. The
method used is modified least angle regression which will be
explained in algorithm 3.

Algorithm 1: Modified Online Dictionary Learning (MODL)

Require: x ∈ R
m from p(x) (x sequentially aligned in p(x)),

β ∈ R (regularization parameter), D0 ∈ R
m×k (initial
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dictionary), T (number of samples in data set p(x)).
1: A0 ∈ R

k×k ← 0, B0 ∈ R
m×k ← 0 (Reset the

“past”information)
2: for t = 1 to T do
3: Draw xt from p(x) (sequentially drawn)
4: Sparse coding: compute using modified LARS

(Algorithm 3)

αt , argmin
α∈Rk

1

2
‖xt −Dt−1α‖

2
2 + λLttα

Tα+ αTht

+ β‖α‖1
5: At←At−1 + αtα

T
t

6: Bt←Bt−1 + xtα
T
t

7: Compute Dt using Algorithm 2, with Dt−1 as warm
restart, so that

Dt , argmin
D∈C

1

t

t∑

i=1

(
1

2
‖xi −Dαi‖

2
2 + λ

m∑

i,j=1

Lijα
T
i αj

+β
m∑

i=1

‖αi‖1)

= argmin
D∈C

1

t
(
1

2
Tr(DTDAt)− Tr(DTBt))

8:end for
9:Return DT , A for complete dictionary and coefficients

learning

Notation: C , {D ∈ R
m×ks.t.∀j = 1, ..., k,dT

j dj 6 1}.

C. Dictionary Update

There are many efficient methods for updating the
dictionary. Here, we use block coordinate descent [22]
with warm restart, same method in [15]. One of the main
advantage of this method is parameter free and no need for
learning rate tuning [15].

Back to our original problem, step 7 in algorithm 1.

min
D∈C

1

t

t∑

i=1

(
1

2
‖xi −Dαi‖

2
2 + λ

m∑

i,j=1

Lijα
T
i αj+β

m∑

i=1

‖αi‖1)

(11) Assume αi doesn’t depend on D, we need to minimize:

min
D∈C

1

t

t∑

i=1

(
1

2
‖xi −Dαi‖

2
2) (12)

Setting the gradient of D.,j to zero, we have:

0 =
1

t

t∑

i=1

(xi −Dαi)αj,i

⇒ =
1

t

t∑

i=1

(xi −D.,jαj,i −
m∑

k 6=j

D.,kαk,i)αj,i

⇒D.,j =
1

t∑

i=1

(αj,i)
2

︸ ︷︷ ︸

Aj,j

{
t∑

i=1

xiαj,i

︸ ︷︷ ︸

B.,j

−
m∑

k 6=j

D.,k (

t∑

i=1

αk,iαj,i)

︸ ︷︷ ︸

Ak,j

}

Where A =
t∑

i=1

αiα
T
i , B =

t∑

i=1

xiα
T
i .

Algorithm 2: Dictionary Update

Require: D = [d1, ...,dk] ∈ R
m×k (input dictionary)

A = [α1, ..., αk] ∈ R
k×k

B = [b1, ...,bk] ∈ R
m×k

1: Repeat
2: for j = 1 to k do
3: update the j-th column to optimize for (10)

uj ←
1

A[j, j]
(bj −Dαj) + dj

dj ←
1

max(‖uj‖2, 1)
uj

4: end for
5:Until Convergence
6:Return D, A (updated dictionary and coefficients)

D. Modified Least-Angle Regression

Least-Angle Regression (LARS) [23] is a regression
method that provides a general version of forward selection.
We follow the steps presented in [24]. In step 7 of Algorithm
3, instead of calculating the ordinary least square solution
(13), we calculate the graph constrained least square solution
(14) to incorporate structure information.

α
(k+1)
OLS = (DT

ADA)
−1

DT
Ay (13)

α
(k+1)
gcOLS= (DT

ADA + λLkkI)
−1

(DT
Ax− hk/2) (14)

Where I is identity matrix and hk = 2λ(
∑

k 6=j

Lkjαj) from

problem (10).

Algorithm 3: Modified Least-Angle Regression

1: Initialize the coefficient vector α(0) = 0 and the fitted
vector x̂(0) = 0.

2: Initialize the active set A = φ and the inactive set
I = 1, ..., p.

3: for k = 0 to p− 2 do
4: Update the residual ε = x− x̂(k)

5: Find the maximal correlation c = maxi∈I |d
T
i ε|

6: Move variable corresponding to c from I to A
7: Calculate the graph constrained least square solution:
α
(k+1)
gcOLS = (DT

ADA + λLkkI)
−1

(DT
Ax− hk/2)

Where I is identity matrix and hk = 2λ(
∑

k 6=j

Lkjαj)

8: Calculate the current direction: d = DAα
(k+1)
gcOLS - x̂(k)

9: Calculate the step length:

γ = min+i∈I {
dT
i ε− c

dT
i d− c

,
dT
i ε+ c

dT
i d+ c

}, 0 ≤ γ ≤ 1

10: Update regression coefficients:
α(k+1) = (1− γ)α(k)+γα(k+1)

gcOLS

11: Update the fitted vector x̂(k+1) = x̂(k) + γd
12:end for
13:Let α(p) be the full graph constrained least square solution
α(p) = (DT

ADA + λL(p−1)(p−1)I)
−1

(DT
Ax− hp−1/2)

where I is identity matrix and hp−1 = 2λ(
∑

p−1 6=j

L(p−1)jαj)

14: Output: the series of coefficients A = [α(0), ..., α(p)]

Notificatoin: di is column of Dictionary D, d is direction.
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Fig. 1: Examples from 2 data sets

TABLE I: Clustering Accuracy vs Computing Time (Seconds)
on CMU-PIE(C IS THE NUMBER OF CLUSTERS)

GraphSC MODL
C 0.8 0.84 0.88 0.92 0.96 0.90 0.95 1
4 12 N 13 N 14 N 11 12
20 32 38 57 72 105 24 26 N
36 48 69 73 82 123 51 52 N
52 N 65 97 127 N 44 46 N
68 71 87 130 218 N 60 63 N

IV. EXPERIMENTAL RESULTS

In this section, we present experiments on image clustering.
We compare the computation time and accuracy of our method
(MODL) with GrapSC methods [14] [6]. We use data set 1 of
CMU-PIE and COIL databases, examples are shown in fig. 1.

Instead of using PCA, K-SVD will be used for
preprocessing, after getting the coefficient matrix (A) by
GraphSC and MODL, K-means will be used for clustering.
We use computation time from matlab as efficiency evaluation
metric, normalized mutual information as clustering accuracy
evaluation metric [13] [6].

We also compared two manifold embedding methods LLE
and Laplacian Embedding. Because of similar nature in
calculation, we haven’t seen noticeable difference in both
computation efficiency and clustering accuracy.

All clustering tasks are based on a Windows 10 machine
with Intel Core i7-2820M 2.3GHz CPU and 8GB RAM. All
algorithms were implemented in MATLAB. We can easily
find out from figure 2 and 3, MODL is more efficient than
GraphSC in computing with same number of cluster. In
table I and II, all clustering accuracy is fluctuating by ±0.2,
computation time is fluctuating by ±10 seconds, ”N” means
none value.

V. CONCLUSION

In this paper, the authors present a novel modified online
dictionary learning method to solve graph regularized sparse
coding problem efficiently. Locally linear embedding method
are also proposed to compare with original graph Laplacian
constrain. During the processing, we found a preprocessing
method can have big impact on the convergence time. With
more optimized method like K-SVD for preprocessing, less

1http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Fig. 2: CMU-PIE:Computing Time vs Accuracy of GraphSC
and MODL (Number in parentheses is the number of Cluster
used)

TABLE II: Clustering Accuracy vs Computing Time (Seconds)
on COIL20 IMAGE LIBRARY(C IS THE NUMBER OF
CLUSTERS)

GraphSC MODL
C 0.84 0.88 0.92 0.96 0.98 0.90 0.95 0.98
4 N 17 N 21 27 N 16 19
8 54 87 132 179 N 31 33 N
12 N 102 187 241 N 49 53 N
16 94 147 211 N N 63 71 N
20 N 184 289 N N 77 81 N

time will be used for both GraphSC and MODL to converge.
As graph regularized sparse coding can be represented as a
quadratic convex problem plus a dictionary update problem,
for very large dataset, interior point method [25] can be a
great fit. Our further research would be solving large scale
graph regularized sparse coding with interior point algorithm.
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Fig. 3: COIL: Computing Time vs Accuracy of GraphSC and
MODL (Number in parentheses is the number of Cluster used)
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