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Abstract
This paper investigates the compression of infrared images

with three codecs: JPEG2000, JPEG-XT and HEVC. Results are
evaluated in terms of SNR, Mean Relative Squared Error (MRSE)
and the HDR-VDP2 quality metric. JPEG2000 and HEVC per-
form fairy similar and better than JPEG-XT. JPEG2000 performs
best for bits-per-pixel rates below 1.4 bpp, while HEVC obtains
best performance in the range 1.4 to 6.5 bpp. The compression
performance is also evaluated based on maximum errors. These
results also show that HEVC can achieve a precision of 1◦C with
an average of 1.3 bpp.

Introduction
Thermal cameras have mainly been used in military or med-

ical applications, however, decrease in the price of infrared sen-
sors makes it affordable for a much wider range of applications:
inspection of houses or energy systems, search and rescue opera-
tions, wildlife monitoring, firefighting, etc.

Infrared (IR) images differ from those in the visible spectrum
commonly used, because they do not relate to consumer electron-
ics, i.e. the end user will be a professional or a computer vi-
sion algorithm that aims at performing a task and not an observer
watching a movie for example. Most common tasks are inspec-
tion/detection, navigation and tracking.

Infrared sensors can be split in 3 categories: Short wave
(SWIR), medium wave (MWIR) and Long wave infra red
(LWIR). This paper focuses on the latter (LWIR), also called the
thermal band. It is the most commonly used type of sensor. The
reason being that in the band acquired by LWIR sensors (7.5-
15µm), there is no need for solar or infrared illumination for ob-
jects to emit radiations.

Even though thermal sensors usually have lower resolution
than the average visible camera, there may still be a need to com-
press IR images, sequences and videos. One scenario is the case
of an IR camera mounted on a small unmanned aerial vehicle
(UAV). The images shall be stored on a light and small system
and/or transmitted via a wireless network, and therefore compres-
sion can improve the overall system performance.

Thermal images differ from visible spectrum images in vari-
ous ways. Most thermal sensors nowadays offer 16 bits bitdepth,
which is different from the classical 8 bit chain for visible images.
In order to process them, two options then exist: either dynamic
range reduction (tone mapping) to 8 bits before a standard com-
pression or compression with higher bitdepth. HDR displays are
still rare and in most cases nowadays the final user will watch the
images on a regular 8 bit display. However, HDR displays are be-
coming more common and in case of automatic computer vision
processing, it can be a great advantage to have the original 14 bits
data available. Moreover, among the developed tone mapping op-
erators (designed for visible images) some are local, which may

not fit in case of infrared images as it would modify the relative
temperature values within the image.

Depending on the applications, the requirements in terms of
precision can vary, for most sensors the advertised temperature
resolution is around 50mK.

Although many studies investigate the presence of noise in
IR images: in order to reduce it [1, 2, 3] or to assess its effect on
quality [4], very few investigate the effect of compression on IR
images.

The aim of this paper is to investigate compression perfor-
mance and the effect of compression of high bitdepth infrared im-
ages on the objective quality.

The remainder of the paper is organized as follow: firstly
some previously published studies performed on compression of
infrared images or compression of high bitdepth visible images
are introduced. Secondly the performed experiment is presented
and finally the results obtained are detailed.

Previous Work
Lossless compression of infrared images was studied in the

context of medical images by Schaefer et al. in [5]. They compare
five image compression schemes (JPEG, JPEG-LS, JPEG2000,
PNG and CALIC) and conclude that the best performance is
achieved by JPEG-LS for lossless coding in terms of compression
ratio obtained and compression speed. However, their images are
8 bit bitdepth.

The Natural Scene Statistics of infrared images is studied by
Goodall et al. in [4] where they study the impact of noise and
blur on the perceived quality of infrared images. However, their
images are either to start with available with 8bits bitdepth or they
linearly scale them to that range.

The Motion Imagery Standards Board, released a report on
the compression of infrared images and videos [6] in 2014. In
this, they compare h.264 FRExt compression, JPEG2000 (and
MPEG-2 with tone mapping) compressions and approve both
h.264 FRExt and JPEG2000 as viable compression standards.
No quality evaluation (objective nor subjective) is however per-
formed.

For JPEG-XT compression, HDR-VDP2 was found to per-
form best with regard to correlation with Mean Opinion Scores
[7] in comparison with the other tested metrics (SNR, MRSE and
SSIM) on a dataset of 20 HDR images.

A study comparing HEVC and h.264 standards for the
compression of 12bits visible videos was done by Banitalebi-
Dehkordi et al. in [8]. They found that HEVC performs better
both in terms of average obtained MOS (10%) and bit rate (25%).
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Experiment
Image Datasets

In this study we have focused on IR images/video databases
with a bitdepth higher than 8 bits. The images and videos used in
the experiment come from three datasets:

• The LTIR dataset from Linkping University [9], which con-
tains 13 videos of 16 bit bitdepth (plus additional 8 bits bit-
depth videos). These were acquired with various thermal
cameras of resolutions ranging from 320x256 to 640x480

• The ASL dataset from ETH in Zurich [10], which contains
9 videos of 16bits bitdepth. The videos were acquired using
a FLiR Tau 320 camera and have a resolution of 324x256.

• An image dataset from DTU in Copenhagen, which contains
90 images of 16 bitdepth of photovoltaic panels acquired by
a UAV.

It can be noted that for all these datasets, these images are
provided in 16 bits formats, however to the best of our knowledge
they have been acquired with 14 bits sensors.

Codecs and settings
The datasets contain both images and videos, however this

preliminary study was performed on individual images only. We
chose to compress only the first frame of each video. This yields
a total of 112 images in the experiment. Three different codecs
were evaluated: JPEG-XT [11], JPEG 2000 [12] and HEVC [13].
The settings for each of them is detailed in this section.

For the JPEG-XT compression, two of the three profiles were
used: profile b and c. For a detailed description of the codec, the
reader is referred to [7]. The JPEG-XT compression is controlled
by two quantization parameters: q for the base layer (the LDR
image) and Q for the residual layer. In this experiment, a set of
100x100 quantizer pairs covering uniformly the possible range (1-
100) were used. In order to decompose the image into base and
residual layers, the tone mapping operator from Reinhard et al.
[14] was used.

For the HEVC compression, we used the Format Range Ex-
tension (RExt) of the HEVC test Model (HM) for compression.
It can deal with videos up to 16 bitdepth [15]. The full possible
range of quantization parameters was explored, i.e. from -48 to
51 (for 16 bitdepths data).

The JPEG2000 compression was done using the OpenJPEG
implementation of the standard (http://www.openjpeg.org/). The
targeted bitrate is defined in terms of compression ratio. We have
aimed at compression ratios ranging from 1 to 50.

Results and Quality Metrics
The image values are mapped into luminance values for all

the metrics using a Gamma of 2.2 and a Peak White of 350 cd/m2.

Objective quality metrics
In order to evaluate the performance of the various codecs,

the following objective metrics were applied: Signal-to-Noise Ra-
tio (SNR [16]), the Mean Relative Squared Error (MRSE [17])
and the HDR Visual Difference Predictor (HDR-VDP2 [18]). The
SNR is defined according to JPEG-XT committee recommenda-
tion:

SNR = 10 · log
(

maxi∈N(xi)

∑i∈N(xi− yi)2

)
, (1)

Figure 1. SNR as a function of bits per pixel for all encodings

Figure 2. MRSE as a function of bits per pixel for all encodings

where xi and yi are the targeted and actual luminance of pixel i,
respectively, and N the total number of pixels. It represents the
PSNR for HDR content: indeed, as there exists no pre-defined
range for the images, each evaluation is normalized according to
its own maximum.

The MRSE evaluator is computed as:

MRSE =−10 · log

(
1
N ∑

i∈N

(xi− yi)
2

x2
i + y2

i

)
, (2)

where the notations are similar.
The direct comparison of codecs can be seen in Figure 1 for

SNR, in Figure 2 for MRSE and in Figure 3 for HDR-VDP2. In
Figures 1, 2 and 3 the data are averaged over all images of all
datasets for each parameter setting of a codec.

It should be noted that for JPEG2000 compression, the points
with lossless compression have been removed as their RMSE or
SNR values would be infinite. That explains why there is no point
for JPEG2000 compression above 6.5 bpp. Indeed the lossless
compression is achieved with JPEG2000 at 7.5 bpp on average.

At mid-range and high bitrates, it is seen that HEVC is per-
forming best. Below 1.4 bpp for SNR and MRSE (and 1.8 for
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Figure 3. HDR-VDP2 as a function of bits per pixel for all encodings

Figure 4. MRSE as a function of bits per pixel for the JPEG2000 encoding

HDRVDP2), JPEG2000 gives better performance. The JPEG-XT
codec is inferior in performance globally and seems to saturate
for the MRSE and SNR evaluators. It should be noted that what
appears as outliers for JPEG-XT can be due to unrealistic/extreme
sets of quantizer pairs (e.g. q = 1 and Q = 100). It should also
be noted that the tone mapping to the LDR images has not been
optimized for any of the images.

The MRSE values for each of the different codecs are de-
picted in Figures 4, 5 and 6 respectively, as a function of the
bits-per-pixel used to code each image. The corresponding HDR-
VDP2 values obtained are shown in Figures 7, 8, and 9. In those
figures (Fig. 4-9), the color corresponds to the compression set-
tings: compression ratio for JPEG2000, quantization parameter
for HEVC and LDR quantization parameter q for JPEG-XT.

Compared to MRSE, the HDR-VDP2 plots have a larger
number of points as they also include the points with lossless qual-
ity that were removed from MRSE as the measure quality is then
infinite.

Finally, despite uniformly covering the range of possible
quantizer values, the JPEG-XT results are not regular in terms
of obtained bitrate or objective quality. It may be noted that for

Figure 5. MRSE as a function of bits per pixel for the HEVC encoding

Figure 6. MRSE as a function of bits per pixel for the JPEG-XT encoding

Figure 7. HDRVDP2 as a function of bits per pixel for the JPEG2000

encoding
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Figure 8. HDRVDP2 as a function of bits per pixel for the HEVC encoding

Figure 9. HDRVDP2 as a function of bits per pixel for the JPEG-XT encod-

ing

Figure 10. SNR as a function of bits per pixel for HEVC encoding grouped

by dataset

Figure 11. RMSE as a function of bits per pixel for the DTU dataset

JPEG-XT the results are split between the two clusters.
One interesting point is also the effect of the content on the

compression performance. As can be seen in Figure 10, depend-
ing on the content, the performance for quasi lossless encoding
can vary from 5 bpp to around 11 bpp. (What we refer to as quasi-
lossless coding are the almost vertical parts of the curve with very
high SNR values above 100 dB).

Temperature errors
As stated in the introduction, IR images will be used for a

specific application, whether by a computer vision algorithm or
by a professional looking for a target.

For the images from the DTU database, the conversion for-
mula from digital numbers to temperatures in ◦C was available to
the authors.

The results are shown in Figure 11 for the Root Mean
Squared Error (RMSE) of the error and in Figure 12 for the max-
imum temperature error in each image averaged over the set of
images. The horizontal dashed line indicates a specification of
accuracy at 1◦C.

As can be seen from the figure, results are coherent with the

24
IS&T International Symposium on Electronic Imaging 2017

Visual Information Processing and Communication VIII



Figure 12. Maximum temperature error as a function of bits per pixel for the

DTU dataset

objective evaluations depicted in the previous section. It can how-
ever be noted that even at low bpp HEVC outperforms the other
compression schemes. HEVC achieves a maximal error of 1◦C
for 1.3 bpp (the maximum error within each image is averaged
over the 90 images), a maximal error of 1/2◦C for 2.2 bpp and a
maximal error of 1/4◦C for 3.3 bpp.

Conclusion
In this paper the compression of infrared images is presented

through three codecs: JPEG2000, JPEG-XT and HEVC. Evalua-
tions by objective metrics (SNR, RMSE and HDR-VDP2) show
that HEVC performs best for average to high bits-per-pixel (on av-
erage from 1.4 to 6.5 bpp), and that for lower bitrates JPEG2000
outperforms HEVC. JPEG2000 also achieves lossless compres-
sion using 7.5 bpp on average. According to the two signal-
based evaluators (SNR and MRSE), JPEG2000 and HEVC per-
form fairly similar and clearly better than JPEG-XT. HDR-VDP2
evaluates that the three performances are relatively more compa-
rable but still with JPEG2000 and HEVC as the better performing
codecs. Evaluating results by maximum temperature error also
show that an accuracy better than 1◦C (in terms of average maxi-
mum error) can be achieved with 1.3 bpp on average with HEVC.
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