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Abstract
Face pose contains rich information about the intent of a per-

son, hence, estimating the face pose is important in assessing the
attention of the driver. Most of the methods for pose estimation
derive some image features and then either model the appearance
(3D or 2D) or apply regression on the features. But these meth-
ods have high computational costs. On the other hand, we aim to
estimate pose from only the facial landmark locations. In most
driver monitoring systems, the important facial landmarks are
readily available as they are essential in assessing driver drowsi-
ness. Therefore, we utilize the existing eye landmarks along with
nose and mouth landmarks to estimate the face pose. For this, we
propose to apply linear regression on features derived only from
the 2D facial landmark locations. Instead of relying on a sin-
gle linear regression model, we propose to apply a global linear
model to predict the pose and then refine the predicted pose by ap-
plying a local model built for that pose region. Local models are
built using partially overlapping subsets of training samples. The
experiments on Pointing’04, MultiPIE, and Biwi Kinect datasets
show that the proposed two-level models achieve accuracy com-
parable to that of the state-of-the-art methods. At the same time,
the proposed method can process 2000 frames per second in Oc-
tave.

Index terms— Driver monitoring system, face pose, linear
regression.
Introduction

It has been widely studied and understood that the driver
drowsiness and inattention are the main causes for about 20−40%
of the road accidents every year. Hence, it is important to develop
a reliable and cost effective driver monitoring system that can de-
tect inattention and alert the driver. Face pose contains rich infor-
mation about the attention of the driver. In this work, we aim to
develop a cost effective pose predictor from the facial landmarks
of the driver.

There has been a lot of work on face pose estimation, a
good review can be found in [1]. Broadly, the approaches can be
summarized as follows. Appearance based methods and 3D face
model reconstruction methods [2] fit appearance and shape on the
given 2D face image and then infer the pose. There are many
methods, such as [3]-[8], that apply classification or regression
on features extracted from the image pixels. Methods such as [9]
exploit the fact that face detection models implicitly encode face
pose information. Subspace embedding or local subspace learn-
ing methods, like in [10], learn local subspaces for making the
models adaptable to the variations present across different poses.
Geometric methods, such as in [11, 6], try to model the geometric
relation between face pose and facial landmarks.

As mentioned, driver drowsiness detection is an important

task for any driver monitoring system. For performing this,
the system needs to assess activities like sleepy eyes, yawning
and talking which essentially needs landmarks of eyes, nose and
mouth. Hence, we assume that these important facial landmarks
are already available. Now, without adding any significant com-
putation, we aim to estimate the face pose using only the face
landmark locations.

For geometric methods, it is difficult to explicitly and accu-
rately model the complex geometric relationships. Instead, we
propose to model the relationship as a linear relationship between
features (extracted from facial landmark locations) and the face
pose. To derive this relationship from the available data, we pro-
pose to use a regression method. However, regression methods
typically fail to generalize (they overfit) when trained with limited
data and they get biased when the training data is non-uniform.
A linear regression model overcomes the generalization problem
but a single linear model fails to capture finer variations in the
predictor-outcome relationship over the full pose span. To over-
come these limitations, we propose to build piece-wise linear re-
gression models in a hierarchical way. The method in [8], first
applies image feature based coarse pose prediction and then ap-
plies a pose regression on landmark locations combined with the
predicted coarse pose. In our approach, we don’t use any im-
age features and limit only to the landmark locations. This elimi-
nates the need to develop a robust pose predictor based on image
features, just developing a robust landmark detector is sufficient.
Also, choosing only linear regression steps in our model makes it
computationally efficient.

Rest of the paper is organized as follows. The next section
explains our proposed method. Subsequent section, explains the
experiments and observations on MultiPIE [12], Pointing’04 [6]
and BIWI-Kinect Head Pose datasets. We conclude the paper with
a discussion on future work in the Conclusions section.

Proposed Method
In this section, we describe the landmarks that we choose for

pose prediction, feature vector derived from landmarks, and the
proposed regression applied on those feature vectors.

Approach: Our intuition is that the relative positions of fa-
cial landmarks and the corresponding face pose has an approxi-
mately linear relationship. We first build a global linear model
using all the samples spanning over the complete pose variation
under consideration. Then, we define a set of pose locations, de-
noted as model centers, at which we build local linear models
using samples from a fixed subset of pose variations around the
given model center. In summary, we apply a global linear model
to predict the pose and then refine the predicted pose by apply-
ing a local model close to the predicted pose. Rest of this section
explains the details of building one linear model.
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Figure 1. Chosen face landmarks.

Feature vector: We choose the following 13 landmarks de-
picted in Figure 1: eye-brow corner points, eye corner points,
nose-tip, mouth corner points, midpoint of upper lip and midpoint
of lower lip. Except for the midpoints on lips, rest of the land-
marks are rigid corners, hence, they can be detected with good
accuracy. Intuitive reasons for the choice of the landmarks are as
follows. Roll angle changes are reflected in the eye landmarks.
Yaw angle changes are reflected in the relative distance between
the nose-tip and eye corner points. Pitch angle changes are re-
flected in the change in depth information. To some extent, depth
changes are implicitly encoded in the relative change in distances
between the nose-tip and corners of eyes and mouth.

We derive normalized relative distances of the given land-
marks as feature vector. For this, we define the landmark location
of nose-tip as the reference point. Then, for each of the remaining
landmarks, we compute the distance with respect to the reference
point along both x and y directions. We form two vectors, one of
all the distances along x and the other of all the distances along
y. Denote them as dx and dy, respectively. By concatenating both
dx and dy we form a feature vector d′.

Normalization: To make the feature vector invariant to the
face size, we normalize the feature vector d′ with a constant
k = max(dy)−min(dy). The normalized feature vector d = d′/k.
Notice that, the normalization constant k is derived from only the
y components. This is chosen because, in general, the span of
(chosen) facial landmarks is larger in the vertical direction and
also relatively more consistent across different pose angles when
compared to that in the horizontal direction.

Linear model: Given a set of landmark locations, we de-
rive the normalized feature vector d and append it with a constant
(=1, for the intercept). Denote the corresponding face pose as p,
where p may be one of the pose components: yaw, pitch, and roll.
Now, we model the relation between d and p as follows. β T d = p
Where, β is the model parameters to be learnt.

Training: Given the training samples, the model parame-
ters in β are obtained as a closed form solution of linear least-
squares regression, given by: β = (DT D)−1DT p Where D is the
feature-matrix. Each row of the matrix D contains feature-vector
dT derived from a single training sample. Column vector p has
the corresponding target variable for each row of D.

In our two-level model, we build one global linear model us-

Figure 2. The circular dots (and stars) indicate the selected pose range

where the 13 landmarks are visible. On Pointing’04 [6], local models’ pose

centers and their corresponding pose ranges are indicated by the star sym-

bols and their respective color rectangles.

ing all the training samples and then we build local linear models
using partially overlapping local subsets of training samples.

Testing: Given a test face image with landmarks, the pose
prediction using either global or local linear model is obtained
simply by a single vector multiplication: p

′
= β T d

In our two-level model, we first apply the global model to
obtain a coarse pose prediction. We then use Euclidean distance to
find the model center nearest to this predicted pose and apply the
corresponding local linear model to get the final pose prediction.

Experiments and Observations
In this section we evaluate the proposed method on three

publically available datasets named MultiPIE [12], Pointing’04
[6] and Kinect [13], and compare with recently published results
on these datasets. As our proposed method needs the 13 land-
marks shown in Figure 1, we limit our experiments to the pose
range where all these 13 landmarks are visible. Pose prediction
from occluded landmarks for other pose angles will be taken up
in future work. Based on the visibility of these 13 landmarks we
choose the following yaw and pitch range in our experiments.

Yaw: +45◦to -45◦.

Pitch: +30◦to -30◦.

Rest of the section describes the experiments and the observations
on results.

Evaluation metrics: We use two metrics to evaluate the pro-
posed method. One is the mean absolute error (MAE) along with
the standard deviation (SD) of error in the predicted pose. The
other metric we use is the accuracy measured as a percentage of
samples for which the magnitude of prediction error is less than
some fixed tolerance.

Train-Test split: On all the three datasets we use the follow-
ing train and test data split. Spreading uniformly over the pose
angles in the given dataset, we pick 70% of the samples randomly
as the training set, and the rest 30% for testing set.
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Pointing’04
Pointing’04 [6] dataset has uniform distribution of samples

over yaw (±90◦) and pitch (±30◦). The dataset does not provide
facial landmarks annotations. We got the images manually anno-
tated for 13 facial landmarks as in Figure 1. As mentioned ear-
lier, based on the visibility of the chosen landmarks, we choose
the pose range of ±45◦ for yaw and ±30◦ for pitch (excluding
yaw = ±45◦ with pitch = ±30◦ combinations). We got around
1k images. From each discrete yaw and pitch combination, we
randomly pick 70% of the samples as training set and the rest as
testing set.

Local and global models: We build five local linear regres-
sion models and one global regression model. We use the com-
plete training set to build the global regression model. This model
serves as a coarse pose predictor and comprises the first level of
our combined model. We build five local linear regression models
centered at:
Center-1: (Yaw = -30◦, Pitch = 0◦),
Center-2: (Yaw = -15◦, Pitch = 0◦),
Center-3: (Yaw = 0◦, Pitch = 0◦),
Center-4: (Yaw = +15◦, Pitch = 0◦), and
Center-5: (Yaw = +30◦, Pitch = 0◦).

Each of these local linear regression models are built using
the samples within ±15◦ of yaw and ±30◦ of pitch from their
respective model center. For the local models, pose centers and
their corresponding pose ranges are indicated by the star symbols
and their respective color rectangles in Figure 2.

MultiPIE
MultiPIE [12] dataset has samples for discrete yaw angles

ranging from -90◦ to +90◦ at uniform intervals of 15◦ with no
variation in the pitch and roll components. The dataset does not
provide facial landmarks annotations which we need for our pose
model. We choose a subset of MultiPIE for which Zhu and Ra-
manan [7] have provided landmark annotations. We pick the pose
(yaw angle) range of -45◦ to +45◦ based on the visibility of the 13
chosen landmarks (see Figure 1). We got around 4k images. From
each discrete yaw bin, we randomly pick 70% of the samples as
training set and the rest as testing set.

Local and global models: We build five local linear regres-
sion models and one global regression model. We use the com-
plete training set to build the global regression model. We build
five local linear regression models with the following model pose
centers: Yaw = {-30◦, -15◦, 0◦, +15◦, +30◦}. Each of these local
linear regression models are built using the samples within ±15◦

of yaw from their respective model center.

BIWI-Kinect
Biwi-Kinect [13] head pose dataset has continuous real val-

ued pose annotation for 15k images. This dataset does not provide
facial landmark annotations. We use OpenFace [14] detector to
obtain facial landmarks. We visualize the detected landmarks and
manually filter out samples which have large landmark localiza-
tion errors. Then, based on the visibility of our chosen 13 facial
landmarks, we choose the pose range of ±45◦ for yaw, ±30◦ for
pitch and ±20◦ for roll. We got around 6.5k samples. Figure 3
shows their distribution for yaw and pitch combination. We ran-
domly pick 70% of the samples uniformly spread over the pose
ranges as training set and the rest as testing set.

Figure 3. Data distribution on Kinect [13] dataset for yaw and pitch varia-

tions.

Local and global models: We build 18 local linear models
and one global regression model. We train the global model using
the complete training set. For building the local linear models, the
18 possible combinations of 3 (-22.5◦, 0◦, +22.5◦) yaw angles, 3
(-15◦, 0◦, +15◦) pitch angles and 2 (-5◦, +5◦) roll angles are used
as model centers.

Each of these local linear regression models are built using
the samples within ±22.5◦ of yaw , ±30◦ of pitch and ±10◦ of
roll from their respective model center.

Observations
Table 1 and Table 2, respectively, shows the mean absolute

error (MAE) and accuracy on all the three datasets. On all the
datasets, the proposed two level model performs better than the
single global model.

Roll angle variations are there only in Kinect [13] dataset. As
can be seen from Table 1, for the roll angle, the proposed method
achieved a mean absolute error (MAE) of 1.47◦±2.0◦. This sug-
gests that the face landmarks are good enough to predict the roll
angle. For yaw angle, both on MultiPIE [12] and Kinect [13],
the proposed method achieved MAE of 2.9◦±4.6◦ and for pitch
on Kinect [13] it achieved MAE of 3.01◦±4.16◦. These results
are comparable to the state-of-the-art methods. On Pointing’04
[6], for yaw, the proposed method achieved MAE of 5.50◦±7.07◦

and for pitch it achieved MAE of 7.76◦±9.71◦. Whereas, the best
results on Pointing’04 [6] are MAE of 4.24◦±0.17◦ for yaw and
MAE of 2.69◦±0.19◦ for pitch by X. Geng et al., in [3]. As can
be seen for Table 2, for a tolerance of±15◦, the proposed method
has achieved more than 95% accuracy for yaw and close to 90%
accuracy for pitch on Pointing’04 dataset, and more than 95% for
yaw and pitch on both MultiPIE and Kinect datasets. Note that
the results for most of the recent methods are on entire datasets,
whereas, the above mentioned results are obtained by applying
our proposed method to a subset of these datasets. However, the
results obtained are very promising.

Figure 4 shows the pose prediction results for some of the
test images of Kinect [13] dataset where the proposed method
achieved good results. Pointing’04 [6] dataset, pose labels are
obtained by asking the person to look at some pre-defined mark-
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MAE and SD results on three datasets. The proposed single regression model is named as ”Global model” whereas the proposed
two level model that combines global model and the local models is named as ”Combined model.”

Dataset Model Yaw Pitch Roll
MAE◦ SD◦ MAE◦ SD◦ MAE◦ SD◦

MultiPIE [12]
Global model 5.02◦ 6.70◦ - - - -
Combined model 2.93◦ 4.11◦ - - - -
D. Huang [10] 4.33◦ - - - -

Pointing’04 [6]

Global model 7.23◦ 9.17◦ 8.73◦ 10.51◦ - -
Combined model 5.50◦ 7.07◦ 7.76◦ 9.71◦ - -
Hulens [9] 11.25◦ - - - - -
N. Gourier [6] 5 to 15◦ - - - - -
X. Geng [3] 4.24◦ 0.17◦ 2.69◦ 0.19◦ - -
N. Alioua [4] 6.1◦ - 4.6◦ - - -
G. L. Marcialis [11] 9.6◦ - 13.6◦ - - -

BIWI-Kinect [13] Global model 4.83◦ 6.92◦ 4.48◦ 6.17◦ 1.59◦ 2.12◦

Combined model 2.98◦ 4.67◦ 3.01◦ 4.16◦ 1.47◦ 2.00◦

A. Schwarz [15] 5.1◦ 9.5◦ 3.9◦ 6.1◦ 4.2◦ 7.3◦

Gabriele Fanelli [2] 3.8◦ 6.5◦ 3.5◦ 5.8◦ 5.4◦ 6.0◦

J. Chen [5] 9.9◦ 12.4◦ 12.9◦ 17.2◦ 6.9◦ 9.8◦

Accuracy results on three datasets. The proposed single regression model is named as ”Global model” whereas the proposed
two level model that combines global model and the local models is named as ”Combined model.”

Dataset Model Yaw Pitch
< 5◦ < 10◦ < 15◦ < 5◦ <10◦ < 15◦

MultiPIE [12]
Global model 60.03 % 88.55 % 96.21 % - - -
Combined model 84.36 % 96.93 % 99.35 % - - -
Zhu [7] 91.4 % 97.0 % 99.99 % - - -

Pointing’04 [6]

Global model 41.29 % 74.89 % 90.68 % 31.98 % 61.13 % 86.23 %
Combined model 56.27 % 83.40 % 95.14 % 37.65 % 68.42 % 89.87 %
Hulens [9] - - 72 % - - -
X. Geng [3] 73.3 % - - 86.24 % - -

BIWI-Kinect [13] Global model 66.09 % 88.24 % 94.51 % 67.46 % 88.87 % 97.79 %
Combined model 83.29 % 95.39 % 98.57 % 81.67 % 97.20 % 99.31 %

ers on a wall. The way each person may orient their head while
looking at the given marker is subjective, hence, the ground truth
pose labels may be inconsistent. Figure 5 shows the results for
some of the images from the test sets. Ground truth pose given
in the datasets are same for the images in each row. Clearly, we
can see the inconsistency between the given ground truth pose
and the observable actual face pose. Notice that for such cases the
predicted pose of the proposed method looks perceptually more
appropriate than the ground truth pose.

The proposed method takes only one second to predict the
pose for about 2000 images in Octave. In summary, in spite of
inconsistent pose labels and non-uniform sample distribution,
the results of the proposed two-level linear regression model is
very encouraging. By preparing dataset with uniform sample
distribution over pose using a more accurate pose sensor, the
results for the proposed method may improve further. Moreover,
recent works on landmarks detection, such as in [16], detect the
landmarks visibility score. Utilizing the visibility score under
different pose ranges, we foresee that the proposed method can
be extended to work in all pose variations.

Conclusions
Using 13 visible rigid facial landmarks, we have proposed to

apply a global linear regression followed by a local linear regres-
sion to predict the pose in the range of±45◦ yaw,±30◦ pitch, and
±20◦ roll. The results on the datasets MultiPIE, Pointing’04, and
Biwi-Kinect are comparable to the state-of-the-art methods. On
Biwi-Kinect dataset, which has continuous pose values, the pro-
posed method achieved pose prediction with mean absolute error
within 5◦. If we build our models on a dataset with more uniform
samples with continuous pose values the results may improve fur-
ther. For assessing the attention of a driver from face pose, pose
prediction with mean absolute error within 5◦ would be reason-
ably sufficient. Notice that below 5◦ even a human may not be
able to differentiate well. Assuming a thorough customization
with more uniform and consistent data, we conclude that the pro-
posed method is good enough for face pose prediction for driver
monitoring systems.

Encouraged by the results of the proposed method and its
low computational complexity, we will work on collecting uni-
form samples with more accurate pose sensors, and then work
on extending the proposed method to cover all pose variations by
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utilizing the landmark visibility score.
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Figure 4. Sample images from the test set of Biwi Kinect dataset [13]. Notations: GT = ground truth pose, Pd = predicted pose; Y = yaw, P = pitch, and R =

roll.

a)

b)

c)

d)
Figure 5. Sample images from the test set of MultiPIE [12] (rows a and b) and Pointing’04 [6] (rows c and d). Notations: GT = ground truth pose, Pd = predicted

pose, Y = yaw.
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