
Automatic Glare Detection via Photometric, Geometric, and
Global Positioning Information
Mehran Andalibi, Department of Mechanical Engineering, Embry-Riddle Aeronautical University, Prescott, Arizona, USA
Damon M. Chandler, Department of Electrical and Electronic Engineering, Shizuoka University; Hamamatsu, Shizuoka, Japan

Abstract
Glare due to sunlight, moonlight, or other light sources can

be a serious impediment during autonomous or manual driving.
Automatically detecting the presence, location, and severity of
such glare can be of critical importance for an autonomous driv-
ing system, which may then give greater priority to other sensors
or cues/parts of the scene. We present an algorithm for automatic
real-time glare detection that uses a combination of: (1) the inten-
sity, saturation, and local contrast of the input frame; (2) shape
detection; and (3) solar azimuth and elevation computed based
on the position and heading information from the GPS (used un-
der daylight conditions). These data are used to generate a glare
occurrence map that indicates the center location(s) and extent(s)
of the glare region(s). Testing on a variety of daytime and night-
time scenes demonstrates that the proposed system is effective at
glare detection and is capable of real-time operation.

Introduction
A very common occurrence during navigation is the pres-

ence of overly intense light that can overwhelm the driver or vi-
sual sensors of an autonomous ground vehicle, and thereby reduce
visibility. When dazzled by a light source, typical reactions by the
drivers are (1) flipping down the sunshades, which is not always
effective, especially when the glare is caused by a low-positioned
external light source, e.g., low sun or direct light from the head-
lights of the oncoming vehicle; (2) using one hand to occlude
the strong light source from the eyes of the driver, which is not
safe and can block the view of some important obstacles on the
road; and (3) wearing sunglasses, which has comfort issues [1].
For autonomous vehicles which depend on onboard cameras for
navigation, none of these reactions are possible, thus resulting in
the partial or full loss of environment perception and subsequent
failures.

Although the detection of glare is an important problem,
there are relatively few publications on glare detection using dig-
ital cameras [2, 3, 4, 5, 1, 6]. The existing approaches to glare
detection generally rely on one or two simplistic image proper-
ties, followed by ad-hoc thresholding. The obvious and most
commonly used feature is light intensity [2, 3], which can cer-
tainly detect the light source(s), but which cannot differentiate
these sources from other bright regions (e.g., clouds), as demon-
strated in Figure 1.

To overcome this limitation, other approaches supplement
intensity with hue, followed by spatial filtering or transformations
[4, 5]. However, hue often fails to delineate the boundaries of the
glare region(s), particularly when the image is subject to compres-
sion, as demonstrated in Figure 2. Instead of analyzing the scene,
another class of approach has focused on analyzing an image of

the drivers face [1, 6]. Unfortunately, this approach cannot be
used in autonomous systems nor in scenarios where the drivers en-
vironment is different from the actual to-be-driven location (e.g.,
in remote navigation).

Figure 1. Using light intensity alone to detect the glare regions also cap-

tures bright, non-glare regions: (a) Original image; (b) binarized intensity

values using a threshold of 95% of the maximum value.

Figure 2. HSV color space components of an image with glare: (a) Intensity

values (V channel); (b) hue values (H channel); (c) saturation values (S chan-

nel). Previous approaches have used intensity and hue; part of our approach

uses intensity and saturation, the latter being more reliable at detecting the

spatial extent of each glare region.

In this paper, we present an algorithm for glare detection
that can reliably detect the presence of glare in both daytime and
nighttime settings, and which can be used in autonomous or re-
mote navigation settings (i.e., which does not rely on the analy-
sis and co-presence of a human driver). Our approach employs
an adaptive combination of features which remain computational
simplistic, but which can reliably detect both the location(s) and
extent(s) of the glare region(s). We specifically use a combina-
tion of: (1) the intensity, saturation, and local contrast of the input
frame; (2) shape detection; and (3) solar azimuth and elevation
computed based on the position and heading information from the
GPS (used under daylight conditions). These data are used to gen-
erate a glare occurrence map that indicates the center location(s)
and extent(s) of the glare region(s).

The main contributions of this work are as follows: Our ap-
proach is the first to use a combination of photometric, geometric,
and GPS information to perform glare detection. For the photo-
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metric approach, we propose a combination of lightness, satura-
tion, and local contrast that performs more reliably than previous
hue-based approaches, and which does not require facial analy-
sis of the assumed co-located driver. We also propose a geomet-
ric approach by detecting circular regions within the preliminary
glare occurrence map, which to the best of our knowledge has not
been previously used for glare detection. Lastly, to the best of our
knowledge, our approach is the first to make use of the suns az-
imuth and elevation to further refine the localization process. The
authors have no previous publications on this topic.

This paper is organized as follows. In the Algorithm sec-
tion, we provide details of the algorithm. In the Results section,
we evaluation and discuss the performance of the algorithm. The
Conclusions section provides general conclusions and directions
for future work.

Algorithm
Our proposed algorithm operates by using four efficient im-

age features along with GPS heading and position information
(during daytime navigation). The input to the algorithm is a frame
of the navigation video; the output is an equally sized map denot-
ing the probability of glare at each spatial location. The algorithm
operates independently on individual frames of the input video;
no temporal input is used.

Photometric Features
Each input frame (image) is assumed to contain RGB pixel

values, where each of the R, G, and B color planes is represented
by 8 bits/pixel. Let I denote this input image. The following three
photometric features are then computed from I.

Intensity
Glare regions tend to be the brightest regions in an image,

and thus light intensity can be a useful feature. We use the value
component from the HSV color-space to obtain the grayscale in-
tensity of each pixel. Let V denote the intensity map. V is com-
puted as follows:

V (x,y) = max
x,y

{IR(x,y), IG(x,y), IB(x,y)}, (1)

where IR, IG, and IB denote the red, green, and blue channels of I.
Figures 3(b) and 4(b) show the resulting intensity maps for

the example input images shown in Figures 3(a) and 4(a), respec-
tively.

Saturation
Regions with very low color saturation are also good candi-

dates of glare regions. We use the saturation component from the
HSV color-space to obtain the color saturation of each pixel. Let
S denote the saturation map. S is computed as follows:

S(x,y)=

{

V (x,y)−minx,y{IR(x,y),IG(x,y),IB(x,y)}
V (x,y) , for V (x,y) > 0

0, otherwise.

(2)

Figures 3(c) and 4(c) show the resulting saturation maps for the
example input images from Figures 3(a) and 4(a), respectively.

(a) Original image (b) Intensity map

(c) Saturation map (d) Contrast map

Figure 3. Original image (a) and the various photometric feature maps

(b)-(d).

Local Contrast
Regions with very low luminance contrast are also good can-

didates of glare regions. To measure the local contrast, we first di-
vide the image into overlapping blocks of size 17×17 pixels (with
4 pixels of offset to the next block). Then, within each block, we
measure the RMS contrast, given as the standard deviation of the
luminance values of the block, divided by the mean of the lumi-
nance values of the block. Let C denote the contrast map. C is
computed as follows:

C(x,y) =

√

1
288 ∑x′,y′ [L(x′,y′)− L̄(x,y)]2

max{10, L̄(x,y)}
, (3)

where L(x,y) = [0.02874 ×V (x,y)]2.2 denotes the estimated lu-
minance in cd/m2 (assuming sRGB conditions); where {x′,y′}
denote the coordinates corresponding to the 17× 17 block cen-
tered at (x,y); and where L̄(x,y) denotes the mean luminance of
that block. We use a lower limit in the denominator of 10 cd/m2

to avoid disproportionately large contrasts.
Note that C(x,y) is not computed for every (x,y) but only

for every fourth coordinate. The remaining values are filled in via
pixel replication in order to obtain a map that is equal in size to
the other maps.

Figures 3(d) and 4(d) show the resulting contrast maps for
the example input images from Figures 3(a) and 4(a), respectively.

Overall Photometric Map
The intensity, saturation, and contrast maps are combined

into a single photometric-based glare occurrence map, Gphoto, as
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(a) Original image (b) Intensity map

(c) Saturation map (d) Contrast map

Figure 4. Original image (a) and the various photometric feature maps

(b)-(d).

follows:

Gphoto(x,y) = I(x,y)× (1−S(x,y))× (1−C(x,y)), (4)

followed by normalization to span the range [0,1]. Thus, regions
of high light intensity, low color saturation, and low luminance
contrast are estimated to be the most likely candidates of glare
regions.

Figure 5(b) shows an example GPS-based glare occurrence
map for the input image in Figure 5(a). Additional maps are
shown later in Figure 6.

Geometric Feature
In addition to photometric properties, sources of glare can

have distinct geometric cues: (1) the sources tend to be circular,
and (2) the sources sometimes exhibit rays which emanate from
the center of each source. Unfortunately, the rays are subtle, and
therefore difficult to detect reliably without significant computa-
tion. However, circular shapes can be detected relatively quickly
and with reasonable accuracy by using Hough-transform-based
methods.

Thus, for our geometric feature, we detect circles. We specif-
ically employ the Hough-transform-based algorithm from [7], ap-
plied to a Gaussian-blurred version of the Gphoto(x,y) map. The
circle-detection algorithm is used to search for circles with radii
from 10-200 pixels. The Gaussian filtering is used to remove
noise; we use a filter size of 15× 15 pixels with a standard de-
viation of 5 pixels. The algorithm from [7] yields both the center
locations and the radii of the detected circles. We generate our
geometric-based glare occurrence map, Ggeo, from these data by
using a mixture of Gaussians.

Let {(xi,yi)} and {ri}. i = 1, · · · ,N, denote the sets of de-
tected circle center points and radii, respectively. Let Ci denote an
otherwise zero-valued map (of the same dimensions as the input
image and Gphoto) with a single Gaussian blob with a standard
deviation of 1.5ri and centered at (xi,yi). Ggeo is then generated
as follows:

Ggeo(x,y) =
1
N

N

∑
i=1

Ci(x,y), (5)

(a) Original image (b) 

(c) (d) 

Figure 5. Original image (a) and the various glare occurrence maps (b)-(d).

followed by normalization to span the range [0,1].
Figure 5(c) shows an example geometric-based glare occur-

rence map for the input image in Figure 5(a). Additional maps are
shown later in Figure 6.

Global Positioning Information
During daytime conditions, the main source of glare is the

sun. If the sun is covered partially by clouds, the glare regions
detected using the aforementioned features would be erroneously
larger than the true glare source. However, when GPS informa-
tion is accessible, the time, date, latitude, longitude, elevation,
and heading of the vehicle/camera can be acquired. By using the
latitude, longitude, time, and date, the solar azimuth and elevation
can be calculated. This azimuth and elevation can then be used in
conjunction with the vehicle heading and the road slope (which
are also measurable from GPS data) to determine the position of
the sun within the frame.

We denote the sun’s elevation and azimuth angles by h and
A, the heading with respect to North by hd, the camera horizontal
and vertical fields of view by HFOV and V FOV , and the road
slope angle by sp. The road slope angle can be determined from
the vehicle’s elevation readings followed by a linear least-squares
curve fitting:

sp =
∑5

1 diei −5d̄ē

∑5
1 d2

i −5d̄2
, (6)

where ei and di are the elevation and traveled distance readings
(w.r.t. to a start point) and d̄ and ē are the average values of the
last five readings of elevation and traveled distance.

The sun appears in the image if the follows conditions are
satisfied:

h− sp <V FOV/2 and A−hd < HFOV/2. (7)

The x and y image coordinates of the suns center can be calculated
via:

xsun = 1+ round(W /2[1+(h− sp)/(HF OV/2)]) (8)

ysun = 1+ round(H/2[1− (A−hd)/(V FOV/2)]) (9)
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where W and H denote the width and height of the image.
If the sun is partially occluded by clouds or other white ob-

jects, the pixels surrounding the sun might be considered as be-
longing to the glare region. To assist this and related conditions,
we generate a GPS-based glare occurrence map, denoted by Gsun,
which is based on (xsun,ysun), and which is used only during day-
time conditions. Specifically, Gsun is an otherwise blank image
containing a single Gaussian kernel centered at (xsun,ysun) and
with a properly chosen kernel size. (In our present implementa-
tion, we use a fixed Gaussian standard deviation of 1/12th of the
image’s height.)

Figure 5(d) shows an example GPS-based glare occurrence
map for the input image in Figure 5(a). Additional maps are
shown later in Figure 6.

Overall Glare Occurrence Map
In summary, good candidates for glare regions exhibit high

light intensity, low color saturation, and low luminance contrast;
this fact is captured by Gphoto. Sources of glare tend to be cir-
cular in shape, a fact captured by Ggeo. Furthermore, during the
daytime, and assuming the availability of GPS information, the
sun’s position within the image can be used Gsun to estimate the
location of the dominant glare source.

The requirements of each particular navigation setting will
dictate the proper way to use and/or combine the maps. In an au-
tonomous navigation setting, one reasonable goal would be mit-
igate the effects of the glare by selectively darkening the glare
regions either digitally of physically. In this case, the location,
extent, and intensity of each glare region is needed. Gphoto and
Ggeo can provide this information; and these maps can further be
combined with Gsun to, for example, completely obscure the sun
from the imaging sensor.

Still, from an investigative standpoint, it is useful to explore
simple combination rules. In the following section, we test and
analyze two simplest combination rules for the three maps: a
weighted average, and a weighted product.

Results
Qualitative Results

Figure 6 shows representative results of the proposed tech-
nique on various images taken from a driver’s viewpoint. The first
column shows the original images. The second through fourth
columns show the individual maps Gphoto, Ggeo, and Gsun. The
remaining columns shows maps generated via the following com-
bination rules:

If Gsun is available:

Gmean = 3
4 Gphoto +

1
8 Ggeo +

1
8 Gsun. (10)

Gprod = Gphoto × ( 3
4 +

1
8 Ggeo +

1
8 Gsun). (11)

If Gsun is not available:

Gmean = 1
2 Gphoto +

1
2 Ggeo. (12)

Gprod = Gphoto × ( 1
2 +

1
2 Ggeo). (13)

Note that these are all pointwise operations performed on individ-
ual pixels of the maps. For Gprod , because Gsun contains only the
detected sun location, Gsun is scaled and offset to prevent elimina-
tion of glare due to reflections. Ggeo is similarly scaled and offset
so as not to eliminate potential glare regions that are non-circular

or otherwise undetected by the geometric analysis. The weights
for Gmean were selected for these same reasons.

Observe from Figure 6 that the proposed technique is quite
effective at detecting the glare regions. Gprod and Gmean both
appear to yield reasonably accurate detection results; however,
observe that Gmean tends to be a bit more liberal than Gprod (e.g.,
above the sun in the third image, and around the left lights in the
fourth image).

Quantitative Results
We tested the proposed algorithm of a small dataset of 10

images (nine daytime images, and one nighttime image) of size
640× 480 pixels. GPS and date/time information was available
only for five of the images. To quantify the predictive perfor-
mance, we used F-measure as region-based criteria for evaluation,
and we used Boundary Displacement Error (BDE) as a boundary-
based criterion.

Given a ground-truth binary glare map GT and a detected
binary glare map DT , the F-measure is computed via:

Fα =
(1+α)×Precision×Recall

α ×Precision+Recall
, (14)

where Precision and Recall are given as follows:

Precision =
A(D∩G)

A(D)
, (15)

Recall =
A(D∩G)

A(G)
, (16)

where the A(·) operator computes the area of a region. In this pa-
per, we used a value of α = 0.5. The ground-truth binary glare
maps (GT maps) were generated via hand-segmentation by the
first author. The detected binary glare maps (DT maps) were gen-
erated from Gphoto by using a threshold of 0.9, and from Gprod
and Gsum by using a threshold of 0.85.

The BDE measures the average displacement error between
the boundaries of two regions. Let BD and BG represent the
boundary point set of the detected and ground truth regions, re-
spectively. The BDE from BD to BG, denoted as E(D,G), is com-
puted as the average of distances from every point p in BD to BG:

E(D,G) =
1

|BD|
∑

p∈BD

d(p,BG), (17)

where |BD| represents the number of points in set BD and d(p,BG)
represents the minimum Euclidean distance from p to all points
in BG:

d(p,BG) = minq∈BG{
√

(p1 −q1)2 +(p2 −q2)2},

where (p1, p2) and (q1,q2) are coordinates of p and q, respec-
tively.

The BDE from BG to BD, denoted as E(G,D), is computed
similarly. The final BDE between BD and BG is therefore com-
puted as the average of these two BDEs:

BDE(BD,BG) =
1
2
(E(D,G)+E(G,D)). (18)
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No sun at night, 

thus is not used

Input image

Figure 6. Representative results of the proposed algorithm; see text for details.

Table 1: F-measure and BDE for the 10 test images.

F-measure BDE

Gphoto Gmean Gprod Gphoto Gmean Gprod

Image 1 0.918 0.973 0.973 1.7 0.1 1.8
Image 2 0.760 0.944 0.949 2.0 0.2 1.4
Image 3 0.655 0.684 0.660 25.3 17.7 26.6
Image 4 0.961 0.973 0.968 26.7 16.5 26.5
Image 5 0.930 0.866 0.912 29.8 19.1 29.2
Image 6 0.675 0.703 0.714 39.8 27.4 37.6
Image 7 0.958 0.937 0.977 1.2 0.1 1.3
Image 8 0.790 0.843 0.811 6.7 2.0 6.1
Image 9 0.850 0.823 0.874 1.3 2.0 1.8

Image 10 0.871 0.822 0.826 6.0 4.6 6.3

Average 0.837 0.866 0.857 14.0 13.9 9.0

The results of these measures are shown in Table 1. Note that
GPS and date/time information were unavailable for the latter five
images, and Image 10 was the single nighttime image. Overall,
the results are quite promising. In all but two cases, the use of ge-
ometric and GPS information can improve the photometric-only
results. These data also demonstrate that Gmean is better choice if
the goal is to more accurately detect the boundaries of the glare
regions.

Conclusions
In this paper, we presented a new method for detecting the

location and extent of glare regions captured by moving vehicles’
onboard cameras using photometric, geometric, and global posi-
tioning information. Among these features, photometric informa-
tion can be used for both daytime and nighttime sequences all the
times; global positioning information detects the sun glare in all
daytime conditions and can limit the size of the glare region, es-

pecially if the sun is occluded by bright objects, such as white
clouds; and geometric information seems to be promising for fur-
ther assisting the detection process. The accuracy of the method,
evaluated using qualitative results and quantitative measures, was
relatively high.

Although we have not reported the runtime performance of
the method, for the 640× 480 images used in this study, the av-
erage runtime is under 40 ms per image on a 3.2 GHz i7-970
workstation using a basic OpenCV implementation. A full per-
formance analysis is part of our future work.
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