
Deep Reinforcement Learning framework for Autonomous Driv-
ing
Ahmad El Sallab1, Mohammed Abdou1, Etienne Perot2 and Senthil Yogamani3
1 Valeo Egypt, Cairo
2 Valeo Bobigny, France
3 Valeo Vision Systems, Ireland

Abstract
Reinforcement learning is considered to be a strong AI

paradigm which can be used to teach machines through interac-
tion with the environment and learning from their mistakes. De-
spite its perceived utility, it has not yet been successfully applied
in automotive applications. Motivated by the successful demon-
strations of learning of Atari games and Go by Google DeepMind,
we propose a framework for autonomous driving using deep rein-
forcement learning. This is of particular relevance as it is difficult
to pose autonomous driving as a supervised learning problem due
to strong interactions with the environment including other vehi-
cles, pedestrians and roadworks. As it is a relatively new area
of research for autonomous driving, we provide a short overview
of deep reinforcement learning and then describe our proposed
framework. It incorporates Recurrent Neural Networks for in-
formation integration, enabling the car to handle partially ob-
servable scenarios. It also integrates the recent work on atten-
tion models to focus on relevant information, thereby reducing
the computational complexity for deployment on embedded hard-
ware. The framework was tested in an open source 3D car rac-
ing simulator called TORCS. Our simulation results demonstrate
learning of autonomous maneuvering in a scenario of complex
road curvatures and simple interaction of other vehicles.

INTRODUCTION
A robot car that drives autonomously is a long-standing goal

of Artificial Intelligence. Driving a vehicle is a task that requires
high level of skill, attention and experience from a human driver.
Although computers are more capable of sustained attention and
focus than humans, fully autonomous driving requires a level of
intelligence that surpasses that achieved so far by AI agents.

The tasks involved in creating an autonomous driving agent
can be divided into 3 categories, as shown in Figure 1:

1) Recognition: Identifying components of the surrounding
environment. Examples of this are pedestrian detection, traffic
sign recognition, etc. Although far from trivial, recognition is a
relatively easy task nowadays thanks to advances in Deep Learn-
ing (DL) algorithms, which have reached human level recognition
or above at several object detection and classification problems
[8] [2]. Deep learning models are able to learn complex feature
representations from raw input data, omitting the need for hand-
crafted features [15] [2] [7]. In this regard, Convolutional Neural
Networks (CNNs) are probably the most successful deep learn-
ing model, and have formed the basis of every winning entry on
the ImageNet challenge since AlexNet [8]. This success has been
replicated in lane & vehicle detection for autonomous driving [6].

2) Prediction: It is not enough for an autonomous driving
agent to recognize its environment; it must also be able to build
internal models that predict the future states of the environment.
Examples of this class of problem include building a map of the
environment or tracking an object. To be able to predict the fu-
ture, it is important to integrate past information. As such, Recur-
rent Neural Networks (RNNs) are essential to this class of prob-
lem. Long-Short Term Memory (LSTM) networks [5] are one
such category of RNN that have been used in end-to-end scene la-
beling systems [14]. More recently, RNNs have also been used to
improve object tracking performance in the DeepTracking model
[13].

3) Planning: The generation of an efficient model that incor-
porates recognition and prediction to plan the future sequence of
driving actions that will enable the vehicle to navigate success-
fully. Planning is the hardest task of the three. The difficulty
lies in integrating the ability of the model to understand the envi-
ronment (recognition) and its dynamics (prediction) in a way that
enables it to plan the future actions such that it avoids unwanted
situations (penalties) and drives safely to its destination (rewards).

Figure 1: High level autonomous driving tasks
The Reinforcement Learning (RL) framework [17] [20] has

been used for a long time in control tasks. The mixture of RL with
DL was pointed out to be one of the most promising approaches to
achieve human-level control in [9]. In [12] and [11] this human-
level control was demonstrated on Atari games using the Deep Q
Networks (DQN) model, in which RL is responsible for the plan-
ning part while DL is responsible for the representation learning
part. Later, RNNs were integrated in the mixture to account for
partial observable scenarios [4].

Autonomous driving requires the integration of information

70
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-023
© 2017, Society for Imaging Science and Technology

from multiple sensors. Some of them are low dimensional, like
LIDAR, while others are high dimensional, like cameras. It is
noteworthy in this particular example, however, that although
raw camera images are high dimensional, the useful information
needed to achieve the autonomous driving task is of much lower
dimension.

For example, the important parts of the scene that affect driv-
ing decisions are limited to the moving vehicle, free space on the
road ahead, the position of kerbs, etc. Even the fine details of
vehicles are not important, as only their spatial location is truly
necessary for the problem. Hence the memory bandwidth for rel-
evant information is much lower. If this relevant information can
be extracted, while the other non-relevant parts are filtered out, it
would improve both the accuracy and efficiency of autonomous
driving systems. Moreover, this would reduce the computation
and memory requirements of the system, which are critical con-
straints on embedded systems that will contain the autonomous
driving control unit.

Attention models are a natural fit for such an information
filtering process. Recently, these models were successfully de-
ployed for image recognition in [23] and [10], wherein RL was
mixed with RNNs to obtain the parts of the image to attend to.
Such models are easily extended and integrated to the DQN [11]
and Deep Recurrent Q Networks (DRQN) [4] models. This inte-
gration was performed in [16]. The success of attention models
drives us to propose them for the extraction of low level infor-
mation from the raw sensory information to perform autonomous
driving.

In this paper, we propose a framework for an end-end au-
tonomous driving model that takes in raw sensor inputs and out-
puts driving actions. The model is able to handle partially ob-
servable scenarios. Moreover, we propose to integrate the recent
advances in attention models in order to extract only relevant in-
formation from the received sensors data, thereby making it suit-
able for real-time embedded systems. The main contributions of
this paper: 1) presenting a survey of the recent advances of deep
reinforcement learning and 2) introducing a framework for end-
end autonomous driving using deep reinforcement learning to the
automotive community. The rest of the paper is divided into two
parts. The first part provides a survey of deep reinforcement learn-
ing algorithms, starting with the traditional MDP framework and
Q-learning, followed by the the DQN, DRQN and Deep Attention
Recurrent Q Networks (DARQN). The second part of the paper
describes the proposed framework that integrates the recent ad-
vances in deep reinforcement learning. Finally, we conclude and
suggest directions for future work.

REVIEW OF REINFORCEMENT LEARNING

For a comprehensive overview of reinforcement learning,
please refer to the second edition of Rich Sutton’s textbook [18].
We provide a short review of important topics in this section. The
Reinforcement Learning framework was formulated in [17] as a
model to provide the best policy an agent can follow (best action
to take in a given state), such that the total accumulated rewards
are maximized when the agent follows that policy from the cur-
rent and until a terminal state is reached.

Motivation for RL Paradigm
Driving is a multi-agent interaction problem. As a human

driver, it is much easier to keep within a lane without any inter-
action with other cars than to change lanes in heavy traffic. The
latter is more difficult because of the inherent uncertainty in be-
havior of other drivers. The number of interacting vehicles, their
geometric configuration and the behavior of the drivers could have
large variability and it is challenging to design a supervised learn-
ing dataset with exhaustive coverage of all scenarios. Human
drivers employ some sort of online reinforcement learning to un-
derstand the behavior of other drivers such as whether they are
defensive or aggressive, experienced or in-experienced, etc. This
is particularly useful in scenarios which need negotiation, namely
entering a roundabout, navigating junctions without traffic lights,
lane changes during heavy traffic, etc. The main challenge in au-
tonomous driving is to deal with corner cases which are unex-
pected even for a human driver, like recovering from being lost in
an unknown area without GPS or dealing with disaster situations
like flooding or appearance of a sinkhole on the ground. The RL
paradigm models uncharted territory and learns from its own ex-
perience by taking actions. Additionally, RL may be able to han-
dle non-differentiable cost functions which can create challenges
for supervised learning problems.

Currently, the standard approach for autonomous driving
is to decouple the system into isolated sub-problems, typically
supervised-learning-like object detection, visual odometry, etc
and then having a post processing layer to combine all the results
of the previous steps. There are two main issues with this ap-
proach: Firstly, the sub-problems which are solved may be more
difficult than autonomous driving. For example, one might be
solving object detection by semantic segmentation which is both
challenging and unnecessary. Human drivers don’t detect and
classify all visible objects while driving, only the most relevant
ones. Secondly, the isolated sub-problems may not combine co-
herently to achieve the goal of driving. In RL, this is explicitly
handled by a reward signal corresponding to good driving which
can model the interplay between driving (taking action) and plan-
ning (where to drive). As the reward is based on stable driving
and not crashing typically, it is challenging to train an RL system
with a real car because of the risks involved. Thus most of the
current RL research is done using video game simulation engines
like TORCS or Unity. Figure 2 is a screen-shot of multi-agent
simulation in Unity game engine which illustrates a difficult driv-
ing scenario where the white car tries to navigate in heavy traffic
with sharp turns. This problem is relatively easier to model using
RL.

MDP
The model is developed under the Markov Decision Process

(MDP) framework, which is a tuple of (S, A, Psa, γ , R) where: a)
Set of Environment states (S) b) Set of Actions (A) c) Discount
Factor (γ) d) Reward (R) e) State Transition Probabilities (Psa)

We define a value-function that defines the value of being in
a state S and following the policy π(s) till the end of the episode.
The value-function is the expected sum of the discounted rewards
as follows:

V π (s) = E[R(s0)+ γR(s1)+ γ
2R(s1)+ . . . |s0 = s,π(s)]

The objective is to find the policy that maximizes the expec-

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 71

Figure 2: Illustration of multi-agent simulation in Unity

tation of the accumulated rewards:

J(π) = max
π

E[V π (s)]

π
∗(s) = argmax

π
J(π)

The solution to such a problem lies in finding a policy π(s),
which is formed of a set of actions A that maximizes the total re-
wards from a source to goal states S. There are popular algorithms
to solve this problem for finite state-space like Value iteration and
Policy iteration [17].

Q-learning
Q-learning [21] is one of the commonly used algorithms to

solve the MDP problem. The actions a ∈ A are obtained for every
state s∈ S based on an action-value function called Q : S×A→R.
The Q-learning algorithm is based on the Bellman equation:

Qt+1(s,a)← Qt(s,a)+α[r+ γ argmax
a′

Qt(s′,a′)−Qt(s,a)]

The updates to the Q tables are done recursively by Temporal Dif-
ference (TD) incremental learning [17]. The algorithm starts from
an initial state, and proceeds until the episode ends, i.e. a termi-
nal state is reached. In every step, the agent is in the current state
s, it takes an action following the policy π(s), and then observes
the next state s together with the reward received from the envi-
ronment r. The algorithm continues until convergence of the Q
function or a certain number of episodes is reached.

DEEP REINFORCEMENT LEARNING
Depending on the problem domain, the space of possible ac-

tions may be discrete or continuous, a difference which has a pro-
found effect on the choice of algorithms to be applied. In this
section we will discuss two algorithms: one which operates on
discrete actions (DQN) and one which operates on continuous ac-
tions (DDAC).

Deep Q Networks (DQN)
When the states are discrete, the Q-function can be easily

formulated as a table. This formulation becomes harder when the
number of states increases, and even impossible when the states
are continuous. In such case, the Q-function is formulated as a
parameterized function of the states, actions; Q(s,a,w). The solu-
tion then lies in finding the best setting of the parameter w . Using

this formulation, it is possible to approximate the Q-function us-
ing a Deep Neural Network (DNN). The objective of this DNN
shall be to minimize the Mean Square Error (MSE) of the Q-
values as follows:

l(w) = E[(r+ γ argmax
a′

Qt(s′,a′,w)−Qt(s,a,w))2]

J(w) = max
w

l(w)

This objective function is differentiable end-to-end in with
respect to its parameters, i.e. ∂ l(w)

∂w exists. Thus, the optimiza-
tion problem can be easily solved using Gradient-based meth-
ods (Stochastic Gradient Descent (SGD), Conjugate Gradients
(CG),etc). The algorithm is called Deep Q-Networks (DQN)
[12][11].

Deep Deterministic Actor Critic (DDAC)
The DQN algorithm is suitable for continuous states cases,

but action selection still requires the action values to be discrete.
Several algorithms were suggested for continuous actions cases,
where two functions are learned: 1) the actor; which provides the
policy mapping from a state to action, and 2) the critic; which
evaluates (criticizes) the value of the action taken in the given
state. The critic function is the same as the Q-function. The algo-
rithms to learn both functions follow the policy gradient methods
[19]. Under the framework of deep learning, both functions can be
learned through two neural networks; Q(s,a,w) and π(s,u) , since
the whole objective is still differentiable w.r.t. the weights of the
Q-function and the policy. Hence, the gradient of the Q-function
(the critic) is obtained as in DQN: ∂ l(w)

∂w , while the gradient of
the policy function (the actor) is obtained using the chain rule as
follows:

∂J
∂u

=
∂Q
∂a
|a=π(s,u)

∂π(s,u)
∂u

Deep Recurrent Reinforcement Learning
The Q-learning algorithms are based on the Markov assump-

tion of the MDP. In situations where the full observability of the
environment is not available, this assumption is not valid any-
more. Partially observable MDP (POMDP) arises in different
scenarios in autonomous driving, like the occlusion of objects
during tracking, mapping and localization. POMDPs are tackled
using information integration over time, where the true state of
the environment is not directly revealed from single observation,
but gradually form over multiple observations at different time
stamps. The recurrent neural networks (RNN) present themselves
as a natural framework to tackle POMDPs. In [13] RNN was
successfully applied for the task of end to end multi-object track-
ing. Moreover, LSTMs [5] are integrated to the DQNs to form
the Deep Recurrent Q Networks (DRQN) in [4]. The application
of DRQN in [4] to Atari games does not show the full power of
the model, since the MDP assumption is usually enough for Atari
games, hence the authors try a variant of the Pong game namely
Flickering Pong, where they show the advantage of adding recur-
rence.

72
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

Deep Attention Reinforcement Learning
In the DQN model, the spatial features are extracted via a

CNN, which learns the features from data. These features may not
be contributing equally to the final optimization objective. Similar
to the recognition process in human beings, only a limited amount
of information is needed to perform the recognition tasks, and not
all the high dimensional sensory data. Attention models [23] are
trying to follow the same concept, where only part of the CNN
extracted features are used in the classification task. This part
is learned in parallel to the original learning process. In [10], a
separate network called glimpse network is trained to deploy the
kernel operation at certain parts of the image. The motion of the
kernel is learned via the REINFORCE algorithm [22] to learn the
best sequence of motions of the kernel over the input image. The
result is a motion that resembles the reading process in human
beings in case of feeding images of digits for example. The idea
is exploited in [16] to improve the DQN and DRQN models, by
including a filter after the CNN features extractor, resulting in the
DARQN model. The DARQN was shown to attend and highlight
parts of the Atari games that are of special importance. In the
Sequest game, the agent was able to focus on the oxygen level
of the submarine, while in Breakout game; the agent was able to
track the ball position [22].

Figure 3: Deep Reinforcement Learning framework

Apprenticeship learning
The Reinforcement learning algorithms described so far fol-

low the concept of episodic learning, or learning from delayed
rewards [20]. In this setting, the rewards function is assumed to
be known to the algorithm. However, in some cases, instead of
having clear mapping of a state to reward function, we have a

demonstrated expert behavior to the agent. The goal of the agent
in this case is to decipher the intention of the expert, and decode
the structure of the reward function. This is referred to as Inverse
Reinforcement learning [1]. The reward function is encoded as
a linear combination of features, functions that map the state ac-
cording to some features of interest. For example, for the driving
task, one feature function could detect how far is the car from the
lanes. Another approach is described in [3], where the demon-
strated expert behavior is utilized in a supervised model, where
the actions taken by the expert together with the states are consid-
ered as the training examples to a CNN.

PROPOSED DRL FRAMEWORK FOR AU-
TONOMOUS DRIVING

Following the models described for Deep Reinforcement
Learning(DRL), we propose a pipelined framework for end-end
training of a DNN for autonomous driving as illustrated in Figure
3. The inputs are the states of the environment and their aggrega-
tions over time, and the output is the driving actions. We discuss
each part in detail below with reference to a high-level block dia-
gram in Figure 4.

Spatial aggregation
The first step of the pipeline is the spatial aggregation net-

work. This stage contains two networks: 1) Sensors fusion and 2)
Spatial features, which are described below. The car state includes
its position, orientation, velocity and acceleration. In case of au-
tonomous driving, the surrounding environment state needs to be
encoded as well. The environment state may include the objects,
their location, orientation, motion vectors, dimensions,etc. Tra-
ditional autonomous driving algorithms would make use of these
state vectors to plan the motion path in such an environment. The
state of the surrounding objects is usually not directly observed,
but rather deduced by the algorithm through a set of sensors read-
ings (Camera, LIDAR, etc). Fusing such sensory information is
critical for estimation of a robust state, which by itself is an active
area of research. On the other hand, an end-end deep learning sys-
tem would use a different encoding of the state. For example in
[12], the states are just the snapshots of the game, which include
by default a lot of implicit information. Such information is not
explicitly given to the algorithm, but rather deduced through the
DNN (more specifically the CNN), in the form of features.

Sensor fusion
This way of presenting the raw information to the DNN de-

pends on its ability to extract relevant features, makes sensors fu-
sion a natural task in the course of the learning process. In other
words, it is possible to group all the sensors’ information that en-
code the environment in a raw input vector, and present this to the
DNN, leaving the fusion task to the weights adjustment process
taking place inside the DNN using SGD for example. The gra-
dients will take care of weighting each sensor features according
to how relevant it is to minimizing the overall cost function dis-
cussed in the RL section. A CNN is best suited to this part of the
pipeline.

Spatial features
The fused sensors representation enables further processing

of the data, focusing on the important part that is relevant to the

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 73

Attention Glimpse
Network

CNN
Kernel Action Signal

Spatial
Features

Sensor Fusion
Representation

Figure 4: Block diagram of modules in DRL framework

driving task. A CNN would extract deeper representations, fol-
lowed by an attention filter to direct the convolution kernels to
the parts of the data that are of interest. The integration of atten-
tion models has a high potential for embedded systems integra-
tion. The attention models dramatically reduce the dimensionality
of the data, in addition to the number of computations (convolu-
tions) over the raw input data. To best utilize the value of attention
models, it is recommended to use the idea of action and glimpse
networks [10] rather than applying an attention filter as in [16].
The attention filter does not reduce the computations, where the
convolution kernel is applied to all the data. On the other hand,
the glimpse and action networks learn to only deploy the gaze of
the kernel to certain parts of the data, thereby reducing the com-
putations dramatically in inference time.

Recurrent temporal aggregation
The environment state is not directly accessible to the agent

or the autonomous car. Instead, sensor readings provide clues
about the true state of the environment. To decode the true envi-
ronment state, it is not sufficient to map single snapshot of sensors
readings. However, information integration over time is manda-
tory, since the state is revealed as you move. A clear example
is the famous robot localization problem. The most popular al-
gorithm to solve such a problem is the Bayes filter algorithm,
which depends on two probability density functions (pdf), usu-
ally known as the motion model and the sensor model. The Bayes
filter is derived under the MDP assumption. When the state is
discrete we have the Hidden Markov Model (HMM). Finally the
Kalman filter is adding the linear state equations assumption, in
addition to the Gaussian assumption over the two pdfs.

As discussed in the previous section, adding recurrence to
the pipeline enables handling of POMDP situations. Such situa-
tions are often encountered in the driving scenarios. Traditional
algorithms for tracking and localization, like Bayes filters, try to
handle such situations through information integration over time.
However, such algorithms are still derived under the framework
of the MDP. Moreover, traditional signal processing approaches
like Kalman filters require manual tuning of its model and param-
eters. Alternatively, Recurrent Neural Network (RNN) is able in

theory to model long term dependencies on previous states, in ad-
dition to the current observation. In practice, due to limitations of
the back propagation of gradients through time, RNN is not able
to memorize long term dependencies, hence, the LSTM networks
are proposed to solve such an issue [5]. LSTMs are able to control
which information to keep from the previous state, in addition to
which information to forget. Additionally, LSTM controls what
to add to the hidden states from the new inputs.

It is worth noting that RNNs and LSTMs follow the same
framework of Bayes filter, in terms of modeling the motion and
observation models, where RNN is modeling the same pdfs us-
ing its hidden state weights and its input weights. In addition,
all Bayes filters (and descendants like Kalman filters), RNN and
LSTM have similar controls over what to include in the next hid-
den state from the old hidden state and from the new input. The
general equation for Bayesian filtering and the comparison table
of state and state transition functions are provided below.

ht = η p(xt |ht)
∫

p(ht |ht−1)ht−1dh

Type ht p(xt |ht) p(ht |ht−1)

RNN tanh[(Whhht−1 +(Wxhxt)] Wxh Whh
Kalman Atht−1 +Ktxt Kt At
LSTM f̄tht−1 + ītxt īt f̄t
GRNN f̄tht−1 + ītxt īt f̄t

Table 1: Comparison of state functions for temporal filters

Planning
The final part of the end-end pipeline is the Reinforcement

learning planning part. This network follows the same training
procedure of the DQN, with a Q-network on the top having the
same objective function as described in DQN section. In case of
continuous actions, the DDAC network can be used as discussed
in DDAC section. The same error is back propagated through the
network structure to obtain the gradients at every network layer.

RESULTS AND DISCUSSION
We use lane keeping assist algorithm as a sample application

to simulate and test the proposed framework on The Open-source
Racing Car Simulator (Torcs), screenshot shown in Figure 5. To
be able to use simulated sensors, we use the Simulated Car Rac-
ing (SCR) add-on, which gives access to the car controls, like
steering, velocity, acceleration, brakes, and car states, like posi-
tion, velocity, acceleration, fuel level, etc. In terms of simulation
setup, the input to the network is the trackPos sensor input, which
provides the position of the track borders, in addition to the car
speed in the x-position. The output are the steering, the gear, the
acceleration and the brake values. The network is trained end-end
following the same objective of the DQN.

In order to formulate the problem as a classification prob-
lem, the actions (steer, gear, brake, acceleration) are tiled and
discretized. In another setup, the actions are taken as continu-
ous values following the policy gradient method of the DDAC.
The results show successful lane keeping function in both cases.
However, in case of DQN, removing the replay memory trick (Q-
learning) helps to have faster convergence and better performance.
In addition, the tile coding of actions in case of DQN makes the
steering actions more abrupt. On the other hand, using DDAC

74
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

continuous policy helps smooth the actions and provides better
performance.

Figure 5: TORCS screen-shot of DRL based lane keeping
Apprenticeship learning with demonstrated behavior was

also tested. The experimental setup is similar to the DQN one
described above. The demonstrated behavior is obtained from a
proportional controller that is trying to keep the lane, while at
the same time limiting the speed. The level of supervision is re-
duced gradually (the epsilon factor), so when epsilon is 0.5, it
means 50% of the time the actions are coming from the model,
and 50% from the p-controller. At epsilon=0, the model is com-
pletely in control. A regression neural network is used to fit the
demo p-controller model. The result is a successful lane keep-
ing behavior with speed limit. Youtube video links are provided
in the appendix section for sample demonstration of training and
lane keeping.

CONCLUSION
In this paper, we provided a survey of the recent advances in

the field of Deep Reinforcement Learning. We then followed by
a proposal of a framework for an end-end Deep Reinforcement
learning pipeline for autonomous driving which integrates RNNs
to account for POMDP scenarios. We integrate attention models
into the framework, making use of glimpse and action networks
to direct the CNN kernels to the regions of the input that are rele-
vant to the driving process, thereby improving the computational
complexity. The framework was tested for lane keep assist al-
gorithm and test videos with successful learning were provided.
Our future work includes deploying the proposed framework in
a simulated environment, where the sensors and actuators are ar-
tificially controlled with labeled ground truth. This can lead to
potential extension of the framework to real driving scenarios.

APPENDIX
Sample DRL training and demo sequences are provided

as supplementary material for the review process. Please visit
the following youtube links for DRL training using DQN, DRL
training using DDAC and DRL driving demo using regression
neural network.

Entering URLs explicitly in case the hyperlinks are suppressed.
DRL training using DQN - https://youtu.be/hktC8sGURJQ

DRL training using DDAC - https://youtu.be/OtuKpWew6UI
DRL driving demo using regression neural network -
https://youtu.be/RxIkdKGtzTE

ACKNOWLEDGMENT
The authors would like to thank their employer for the op-

portunity to work on fundamental research. Thanks to B Ravi Ki-
ran (INRIA France) and Catherine Enright (Valeo) for reviewing
the paper and providing feedback. Special thanks to a colleague
Matthew Carrigan for detailed review, proof-reading and editing.

References
[1] Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse

reinforcement learning. Proceedings of the twenty-first international
conference on Machine learning, (p. 1).

[2] Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). SegNet: A
Deep Convolutional Encoder-Decoder Architecture for Image Seg-
mentation. arXiv preprint arXiv:1511.00561 .

[3] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B.,
Goyal, P., et al. (2016). End to End Learning for Self-Driving Cars.
arXiv preprint arXiv:1604.07316 .

[4] Hausknecht, M., & Stone, P. (2015). Deep recurrent q-learning for
partially observable mdps. arXiv preprint arXiv:1507.06527 .

[5] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural computation , 9 (8), 1735-1780.

[6] Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayam-
pallil, J., et al. (2015). An Empirical Evaluation of Deep Learning
on Highway Driving. arXiv preprint arXiv:1504.01716 .

[7] Kendall, A., Badrinarayanan, V., & Cipolla, R. (2015). Bayesian
SegNet: Model Uncertainty in Deep Convolutional Encoder-
Decoder Architectures for Scene Understanding. arXiv preprint
arXiv:1511.02680.

[8] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, (pp. 1097-1105).

[9] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature
, 521 (7553), 436-444.

[10] Mnih, V., Heess, N., Graves, A., & others. (2014). Recurrent mod-
els of visual attention. Advances in Neural Information Processing
Systems, (pp. 2204-2212).

[11] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., et al. (2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602 .

[12] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., et al. (2015). Human-level control through deep
reinforcement learning. Nature , 518 (7540), 529-533.

[13] Ondruska, P., & Posner, I. (2016). Deep tracking: Seeing
beyond seeing using recurrent neural networks. arXiv preprint
arXiv:1602.00991.

[14] Pinheiro, P. H., & Collobert, R. (2013). Recurrent convolutional
neural networks for scene parsing. arXiv preprint arXiv:1306.2795 .

[15] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R.,
& LeCun, Y. (2013). Overfeat: Integrated recognition, localiza-
tion and detection using convolutional networks. arXiv preprint
arXiv:1312.6229 .

[16] Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., & Ignateva,
A. (2015). Deep Attention Recurrent Q-Network. arXiv preprint
arXiv:1512.01693 .

[17] Sutton, R. S. (1988). Learning to predict by the methods of temporal

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 75

https://youtu.be/hktC8sGURJQ
https://youtu.be/OtuKpWew6UI
https://youtu.be/OtuKpWew6UI
https://youtu.be/RxIkdKGtzTE
https://youtu.be/RxIkdKGtzTE

differences. Machine learning , 3 (1), 9-44.
[18] Sutton, R. S., & Barto, A. G. (2016). Reinforcement learning: An

introduction. Online Draft.
[19] Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y., & others.

(1999). Policy Gradient Methods for Reinforcement Learning with
Function Approximation. NIPS, 99, pp. 1057-1063.

[20] Watkins, C. J. (1989). Learning from delayed rewards. Ph.D. disser-
tation, University of Cambridge England.

[21] Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning ,
8 (3-4), 279-292.

[22] Williams, R. J. (1992). Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine learning ,
8 (3-4), 229-256.

[23] Xu, K., Ba, J., Kiros, R., Courville, A., Salakhutdinov, R., Zemel,
R., et al. (2015). Show, attend and tell: Neural image caption gener-
ation with visual attention. arXiv preprint arXiv:1502.03044 .

Author Biography
Ahmad El Sallab is the Chief Engineer of Deep Learning in the Driving
Active Safety unit, Valeo. Ahmad has 11 years of experience in Machine
Learning and Deep Learning, where he acquired his M.Sc. and Ph.D. on
2009 and 2013 in the field. He has worked for reputable multi-national
organization in the industry since 2005 like Intel and Valeo. He has
15 publications in Deep Learning in top IEEE and ACM journals and
conferences, with applications in speech, NLP and Robotics. He is also
a designated reviewer in a number of top conferences like EUSIPCO and
ITSC.

Mohammed Abdou is a software engineer and researcher in the Driving
Active Safety unit, systems and functions team at Valeo Cairo. He is pur-
suing his master’s degree in control systems with focus on Reinforcement
Learning.

Etienne has been a research engineer in computer vision & machine
learning at Valeo Driving Assistance Research for 4 years where he
applies Deep Learning extensively for perception and control. He focuses
on embedded development, keeping in mind constraints from low-power
devices. Etienne attended the French Engineering School of Polytech
Orleans; his final specialisation year was spent at the University of
Miami where he learned Machine Learning / Neural Networks from
Miroslav Kubat.

Senthil Yogamani is a technical lead in computer vision department at
Valeo for the past three years. He is currently focused on research and
design of the overall computer vision algorithm architecture for next gen-
eration automated parking systems. He is also a member of the internal
autonomous driving and deep learning working group. He has over 10
years of experience in computer vision and machine learning including 8
years of experience in industrial automotive systems. He is an author of
14 peer reviewed publications and technical reports. He is a recipient of
best associate editor award at IEEE ITSC 2015 and best paper award at
IEEE ITST 2012.

76
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

