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Abstract

Modern day vehicles and especially driver assisted cars rely
heavily on advanced sensors for navigation, localization and ob-
stacle detection. Two of the most important sensors are the Iner-
tial Measurement Unit and the Global Positioning System devices.
The former is subject to wheel slippage and rough terrain, while
the latter can be noisy and dependent on good satellite signals.
The addition of camera sensors enables the usage of visual data
for navigation tasks such as lane tracking and obstacle avoid-
ance, localization tasks such as motion and pose estimation, and
for general mapping and path planning. The proposed approach
in this paper allows camera systems to work in conjunction with
or replace both Inertial Measurement Unit and the Global Posi-
tioning System sensors. The proposed visual odometry and deep
learning localization algorithms improve navigation and local-
ization capabilities over current state-of-the-art methods. These
algorithms can be used directly in today’s advanced driver assis-
tance systems, and take us one step closer towards full autonomy.

Introduction

According to the Department of Transportation, US acci-
dents in 2014 caused 32,000 fatalities and 2.31 million injuries.
These accidents cost the US economy $1 trillion. Self-driving
cars are predicted to reduce these accidents dramatically. Re-
search at the University of Berkeley indicates autonomous cars
will increase fuel efficiency by 21%, allow more cars to fit on the
same road, and make more efficient use of limited parking space.
Commuter times will be reduced, our air will be cleaner, and our
quality of life will improve. While raw Inertial Measurement Unit
(IMU) and Global Positioning System (GPS) sensory informa-
tion is very helpful, it is not sufficient for self-driving cars. The
Google smart car uses a complex path planning algorithm, whose
heuristic function is dependent on LIDAR/camera information as
well as GPS and IMU sensors. The proposed computer vision
and deep learning approach can augment or even eliminate much
of the need for GPS and IMU sensors.

One of the challenging tasks for smart cars is to track incre-
mental motion in real-time and to analyze surroundings for accu-
rate localization. This crucial information is used by internal sys-
tems such as active suspension control, autonomous steering, and
lane change assist. Visual Odometry (VO) is the measurement of
incremental change in pose or perspective using only visual infor-
mation. VO provides incremental motion at shorter time intervals
by tracking the motion of static background, but this solution is
susceptible to drift over longer time intervals. To compensate for
drift, typical systems re-position a vehicle at frequent intervals.
Localization, the process of determining a vehicles position and
pose on a static map, provides a global view of where the smart
car is with respect to the environment.

Localization typically involves multiple sensors feeding
complex algorithms. Even if a car has a high resolution static
map of the world, perhaps from Google maps or other satellite
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generated maps, it isnt enough for navigating, as real world envi-
ronments are dynamic. To adapt to these changes, a vehicle often
creates a local map of its own and integrates this map with the
global static map to identify its exact location. This local map is
created by the various sensors present in the car such as a high
dimensional LIDAR, a radar, and multiple cameras. After getting
a sense of its local environment, the car can continue executing its
navigation algorithm to reach its destination point. [1].

A*is a popular path planning algorithm used by autonomous
vehicles. This algorithm has been improvised over the years
with modifications such as dynamic planning, control parameters,
stochastic solutions, and path smoothing. Localization and rout-
ing based on inaccurate GPS coordinates is difficult. The average
root mean square GPS precision of a typical Google maps is 2-
10 meters. This precision is sufficient for a human to drive and
plan her next move but its not precise enough for a self-driving
car. To achieve higher localization accuracy, smart vehicles uti-
lize an ensemble of sensors. A typical smart car may use satellite
maps for path planning, street view imagery for learning maps,
and various sensors for lane marking, corner detection, and obsta-
cle detection. To correct for sensor limitations and noise, various
algorithms such as Monte Carlo and Kalman filters are used.

Related Work

Motion estimation using visual odometry and localization
have typically been separate algorithms in smart cars, however
recent success of efficient visual odometry algorithms and deep
learning have motivated this research to consider merging the two
algorithms into a single, unified approach. This paper presents an
entirely vision based approach to provide a system with localiza-
tion and path planning abilities. There have been many attempts
in designing efficient algorithms for visual odometry and local-
ization. While visual odometry has wide applications in advanced
driver assistance systems (ADAS), localization is one of the basic
requirements in path planning and simultaneous localization and
mapping (SLAM) in the world of robotics.

Motion Estimation

Visual odometry is a concept derived from a problem com-
monly known as Structure From Motion (SFM) [33]. SFM is a
problem of recovering relative camera pose and estimating its 3D
structure from a set of cameras, which can either be calibrated or
non-calibrated (epipolar plane). The concept of visual odometry
was coined in 2004 in [13] , which used dense stereo matching
along with optical flow to estimate motion. In [14] and [15] con-
cepts related to 3D projections, camera calibration, and baseline
optimization were introduced.

Harris and Pike [14] put forth the idea of position integration
from consecutive frames to find out the end position with respect
to the origin. SFM [27] covers a wide set of applications such
as 3D reconstruction, but still needs visual odometry to track the
position at which different image sets are taken. These image

IS&T Infernational Symposium on Electronic Imaging 201
Autonomous Vehicles and Machines 201

0.2352/ISSN.2470-1173.2017.19.AVM-022
17, Society for Imaging Science and Technology

7
7



sets may be consecutive or in random order, and hence are usu-
ally processed offline. The resultant structure and the pose of the
cameras with which the images were captured are processed using
offline optimization’s like bundle adjustment [16]. Bundle adjust-
ment can be used to refine the local estimate of the trajectory.
While bundle adjustment [16] works on image sets that are cap-
tured non-consecutively, VO processes image sets taken sequen-
tially to track incremental changes that help in building a resultant
motion map.

Visual odometry needs to processes large sets of indepen-
dent image frames in real time. In the early 1980s, Moravec [17]
started solving the problem of a vehicle’s egomotion from visual
input alone. Much of the early research following Moravec [19]
was aimed at precise visual odometry for planetary rovers and it
gained more interest from NASA’s Mar’s exploration program. It
was during this period when a lot of advantages and drawbacks
of using a visual-only method for tracking a vehicle’s egomotion
were discovered. These outcomes inspired this paper’s research
into visual odometry.

The Mars rover’s needs necessitated 6-degree-of-freedom
(DoF) for rover’s motion to overcome difficult issues such as
wheel slippage in rough terrains. Lacroix et al. [18] described
the importance of the key points in his implementation of stereo
visual odometry for planetary exploration rovers. They used a
dense stereo matching approach to cluster regions with similar
depth and to track the motion of this region. The idea behind this
approach was that the background could be classified into regions
like buildings and trees and then tracking these regions would re-
sult in better accuracy. The dense features were selected by using
a correlation function in the neighborhood of the pixel to cluster
pixels into regions of similar depth.

Localization

Localization can be performed using various sensor plat-
forms such as global positioning systems (GPS), LIDAR, monoc-
ular and stereo vision, omnivision, RADAR, wheel encoders, etc.
The precise localization of self driving cars is not based on the
feedback of one particular sensor but rather an intelligent combi-
nation of the output of multiple systems. Some of the techniques
as well as historical methods will be discussed below.

One of the primary challenges in localization is to adjust the
car’s local position in a dynamic map with respect to a global map.
One of the relatively simple but popular methods is known as Su-
per Cruise. Super Cruise uses an array of sensors, lasers, RADAR,
cameras, and GPS technology to analyze a car’s surroundings. Su-
per Cruise is a combination of two technologies. The first is the
increasingly common adaptive cruise control, which uses a long-
range radar (more than 100 meters) in the vehicle grille to keep the
car a uniform distance behind another vehicle while maintaining a
set speed. The second, lane-centering, uses multiple cameras with
machine-vision software to detect road lines and objects. This in-
formation is sent to a computer that processes the data and adjusts
the electrically assisted steering to keep the vehicle centered in the
lane. [2] proposes a unique method of using the vision feedback
in a map which has been learnt by LIDAR scans. This technique
of using one of the sensors for lane tracking while using another
for a much broader localization is how many modern autonomous
vehicles perform localization and mapping.

[5] used traditional computer vision methods like Scale In-
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variant Features (SIFT) [31] and Random Sample Consensus
(RANSAC) [28] as interest points for place recognition. [6] used
a dataset of 100,000 GPS location tagged images from the Google
Street View along with hand crafted vision features to classify and
predict the location, from both a single query image as well as a
group of neighboring images using a hierarchical model. In [22],
the Monte Carlo localization method has been used in a Visual
SLAM (Simultaneous Localization and Mapping) environment
which has been an active area of research. VO has been deter-
mined to be an effective mode of localization and mapping in dif-
ferent topological conditions such as underwater using essentially
the same basic principles [23]. In recent times, VO has reached
new heights in localization as we have seen in the Mars Rover
[24] and autonomous vehicles [25]. A broader view of mapping
and localization of smart cars can be understood from [26].

In recent years deep learning has revolutionized the world
of machine learning, pattern recognition, computer vision, and
robotics. In many of these cases, it has been found that deep learn-
ing has been able to produce better detection ability than humans
when given specific tasks. Convolution Neural Networks (CNN’s)
are feed-forward artificial neural networks where banks of filtered
images are constructed in a hierarchical fashion, forming layers
of increased abstraction. CNNs have proved to yield better results
than traditional techniques which use hand-crafted features for de-
tection [3]. In 2015, Lin et al. [4] presented a method that used
CNNs s for ground to areal geolocalization. The primary advantage
in using CNN:ss in vision based localization is its ability to prepro-
cess images through its layers. CNNs have proved to be more ef-
fective in matching images or identifying objects in recent years
and may one day make traditional feature detection techniques
obsolete. One of the major advantages of the CNN architecture
is its co-learning of features with classifier, giving it an advan-
tage over hand crafted features pared with independently learned
classifiers. The disadvantage of CNN lies in its requirement of
huge training datasets making it computationally expensive dur-
ing training. However, despite arduous training time, processing
test frames is extremely efficient making it suitable for real time
applications. Deep learning frameworks have addressed the need
for large training sets and lengthy training times by using trans-
fer learning and utilizing parallel threads on Graphical Processing
Units (GPUs) respectively.

Challenges
Lack of identification of proper objects

Despite using state-of-the-art object recognition algorithms,
most autonomous cars lack the ability to identify what we may
consider to be simple objects. For example they may fail to dif-
ferentiate between pedestrians and police officers. It is difficult to
differentiate between puddles and potholes, as well as recognizing
people’s actions such as a police signaling the car to stop. Despite
being able to parallel park in controlled situations, it is still dif-
ficult to train a vehicle to go park itself in an arbitrary parking
lot. Although these might seem relatively easy compared to what
has already been achieved, they are actually difficult and require
sophisticated machine learning.

Weather/Climate/Time of day
The capability of most sensors change drastically under dif-
ferent weather conditions and different times of day. For example
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a LIDAR performs very well in clear conditions but its perfor-
mance drops significantly in rainy or snowy conditions. A lot of
research and improvement needs to be done on this front so that
the autonomous cars become globally acceptable in every coun-
try and in every state, besides performing with the same precision
throughout the day. Examples of synthetically added rain and
snow on a selected image out of our datasets have been shown
in Figure 1. Experiments are being conducted to use these images
in an effort to make detection systems weather invariant.

Figure 1. (a) Original image; (b) Synthetically added rain; and (c) Syntheti-
cally added snow.

Loop closure detection in SLAM

One of the challenges associated with SLAM is to solve the
loop closure problem using visual information in real-world situ-
ations. The term loop closure detection is primarily defined as the
computers ability to detect whether it is in the same place or not
after traveling a certain distance. The difficulty of this task is in
the strong appearance changes that a place suffers due to dynamic
elements, illumination, weather or seasons. This area of SLAM
hasnt been perfected yet, but vision based localization plays a key
role here. Previous approaches to this problem include FAB-MAP
[71, which is a topological appearance based SLAM which has
been regarded as one of the most reliable and stable approaches.

Since change in illumination and weather affects place
recognition, [8] has proposed a different approach called Seq-
SLAM to acknowledge this problem. Seq-SLAM removes the
need of a global matching performance by calculating the best
candidate matching location within every local navigation se-
quence instead of calculating the single location most likely given
a current image. [9] reviews other methods to address scene
recognition. Another very interesting problem is bidirectional
loop closure detection [10], which tests the autonomous cars abil-
ity to detect its location irrespective of its direction of approach.

Method

Our proposed approach for Visual sensing for automobiles
can be divided into three major parts motion estimation using
visual odometry, localization using deep learning, and the combi-
nation of the two to make a robust system.

Motion estimation using visual odometry

A stereo camera setup was placed on top of an autonomous
golf cart for data collection, as shown in Figure 4. The setup
consists of two identical cameras attached to the roof 11.5 cm
apart. The sensors lie on the same plane and small setup errors
were corrected using stereo camera calibration. Figure 3 shows
two different configurations that can be made in order to capture
stereo images. The setup used in our approach is the parallel
sensor configuration to cover a larger area of the environment
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and to focus on more objects. This setup was used for real-time
ego-motion estimation and path correction using deep learning
localization. The setup outputs 640x480 images with a 60 degree
field of view at 18 fps.

Figure 2. Feature points from stereo images.

The stereo image sets were rectified to satisfy epipolar ge-
ometry and the images were converted to gray scale for faster pro-
cessing. Since the feature detection is only intensity level based,
gray scale images provide sufficient information.

1. If the stereo image set is the first in its sequence, then the
image is only used to generate a 3D feature set. The ini-
tial feature generation stage is also performed if the tracking
information is lost. At this stage features from accelerated
segment test are used with bucketing approach to generate a
steady flow of features.

2. The image is first divided into segments by windowing the
image.

3. Each window will have an initial Fast Threshold value,
which will be adaptively updated based on the number of
features generated in that window. Using the Adaptive Fast
Threshold value, fast features are generated in each window
separately.

4. These features are matched from the left image (L;) to the
right image (R;) in the image stereo set to get feature corre-
spondence and to generate the feature depth using equations
1-4. Their location is made precise by using sub pixel inter-
polation. With the features’ location and depth information,
it becomes a three dimensional feature set.

disparity= Xleft'Xright (1
Xrealworld= % *T 2)
y—cy
Yreatworld= disparity *T ©)]
— [« T
Z= p  disparity “)
where,

disparity = depth of features in Z direction.

Cy = X axis variation of the image plane

Cy =Y axis variation of the image plane

f =focal length of both the cameras

T = distance between the cameras

p = distance between pixels inside the camera sensors.

5. If the stereo image set is not the first in its sequence then,

6. The three dimensional features from the previous image set
(L;_1 and R,;_ ) are tracked to the current stereo sets, left
image(L,;) using LucasKanade optical flow technique [30].

7. Follow step 1c to find feature correspondence between the
left (L;) and the right(R;) images of the stereo image sets.
Only features that are tracked from the previous results to
the current frame are considered.

8. At this point two sets of three dimensional features cor-
responding to two consecutive frames have been obtained.
Now the problem is to find the orientation and translational
changes between the three dimensional feature set. At first
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Figure 3. Parallel vs Toed-in Configuration

Figure 4. Hikvision stereo camera setup

we divide the three dimensional features into subsets and
perform RANSAC [28] using Horns Method [29] to find out
the weighted closed form solutions for absolute orientation.
The band of results are considered to find the median pose.

9. After the Motion estimation step using Horns method [29],
the features are weighted based on their contribution to-
wards the final result.

10. The result is further corrected by using pose results of pre-
vious frames.

11. The features’ variance in motion from¢t —2tot—1 and r —
1 to ¢ frames is recorded and used to predict if a feature
is a good feature or not. Features that are consistent in all
the previous frames (L;_4L;_3L,_»L, 1L;) are assumed to
be robust and to provide more information. The features’
predicted motion is a continuation of its motion from the
previous frames. The variance from its predicted motion to
the actual motion being tracked in the current frame is used
to weigh features. A weight of 0, is assigned to features
that have huge variances in motion and such features are
removed later.

Bucketing is the term used for dividing the image into mul-
tiple ROIs, each of which is used for generating interest points.
This approach assumes each segment of the image is a completely
independent image and generates FAST features [32] with a score
depicting the strength of the interest point. The strength of the
interest points are computed using the difference in the intensities
between the surround pixels and the center pixel. This approach is
very fast and effective as it can be easily parallelized with features
generated across the image. Using bucketing with adaptive FAST
thresholds help to a maintain robust and steady feature count. The
thresholds are adjusted adaptively to acquire a similar number of
features from each of the segments of the image. By adjusting the

IS&T Infernational Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017

FAST threshold for each segment independently, features from
different contrast backgrounds can be generated. For example, in
a bright sunny day, the features on a tree or on a building wall
facing the opposite direction of the sunlight would be masked by
the sunlight. Using Adaptive FAST thresholding with bucketing,
a robust set of features from both the bright and dim regions can
be generated.

The motion estimation approach provides inter frame pose
estimation and correction with robust FAST features [32]. The
use of adaptive featuring helps in generating features across dif-
ferent regions of images with varying brightness, and helps detect
robust features. The process of using a pyramidal approach aids
in creating better depth resolution for each feature and hence pre-
cise motion along the Z axis. Feature weighting helps in remov-
ing outliers which induce more error in the estimation process.
Over time, the small errors for each pose prediction accumulates
and drifts away from the actual position and hence a correction
mechanism is required. Use of deep learning to predict the global
position helps to recover the drift as described in the next section.

Localization using deep learning

Outdoor localization based on vision is a challenging prob-
lem but due to the recent advancements in deep learning, these
challenges are being overcome. Given a sufficient set of imagery,
deep learning models are shown to be quite good at predicting
precise location. Moreover, the learned models can predict the
location in real time. Transfer learning and data augmentation
can also be used to make these datasets more robust. Our ap-
proach to this problem builds a dataset with classes corresponding
to unique pairs of latitudes and longitudes. By augmenting the im-
ages for different fields of view, heading and pitch, we obtain the
same location images from different viewpoints. The following
approaches have been used to create datasets:

e Google Street View - Datasets were created from the
Google Street View images of the university campus, where
each class corresponds to a bunch of images from different
viewpoints at a unique pair of latitude and longitude. The
unique waypoints (green and red markers) were selected as
landmark locations in the campus (Figure 5).
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Figure 5. Paths between waypoints.

Using the Google Maps API, a set of coordinates were
obtained from the connected paths between these waypoints
in a way such that the viewpoints were non-redundant
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(Figure 6). Building the dataset in this format helped
in eliminating redundant images for close latitudes and
longitudes. A few examples have been shown in Figure 7
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Figure 7. Google Street View images from different classes.

e Dataset created manually - Following the map created
out of Figure 6 as closely as possible and covering as
many similar points, a dataset was created by driving an
autonomous golf cart (Figure 8) around the campus. A pair
of Hikvision Bullet cameras were used for acquiring the
images Figure 4.

Figure 8. Autonomous golf cart.

e C(lassifier - Inspired by the recent success of CNNs in clas-
sification, the popular AlexNet [11] was used for classifying
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the datasets. AlexNet was the one of the first revolution-
ary deep learning architectures which successfully classified
ImageNet [12] with a top-1 accuracy of 57% and a top-5 ac-
curacy of 80.3%. The original architecture had five convo-
lutional layers connected with two fully-connected layers in
the end. The architecture used in this paper is a modified
version of the original AlexNet architecture with batch nor-
malization included between the convolutional layers. One
single block of this architecture consists of convolutional
layer — batch normalization — ReLU activation layer —
Max Pooling layer. The code-base for the classifier was
used from the popular imagenet-multiGPU code developed
by Mr. Soumith Chintala under the Torch framework. [34]

Max
puoling

Figure 9. Original AlexNet architecture [11].

Motion estimation combined with localization

CNN deep learning models are trained on manually col-
lected images, Google Street View images as well as manually
collected images augmented with Google Street View. Each
image corresponds to a unique pair of latitude and longitude
positions. During test time, given an unforeseen image, the
CNN estimates the initial vehicle position in the world followed
by incremental motion being estimated over time by VO. To
combat error propagation produced by VO, CNN localization
is continuously interleaved with VO motion estimation. The
CNN prediction ensures the vehicle stays on track, nullifying the
possibility of a large pose estimation error. The architecture has
been shown in (Figure 10). The value of n was selected to be *10’
in this paper i.e. - the motion estimation module would receive
the ground truth after processing every 10th frame in a sequence
from the localization module trained on the same set of images.

([ image | ([ Image )
Load model | |
|_sequence (t-1) / sequence (t]
Test ] \ B Feature [ Feature
mage |__Detection tracking )
— sequence
after n frames i ~ i
I - Feature Matching Feature Matching
[ Ground ) between image pairs between image pairs
truth U E—
Load model
Initial Position : Iterative Closest Points (ICP)
Test
PR S Motion Estimation
Ground )
truth
("Groundtruth | = New Position (o ) [ Previous Motion |
" * Motion correction f« - N
{_Accumulator - L Results.

Localization Motion estimation

Figure 10. Flow chart of the entire process.
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Results
There were broadly two different datasets created for exper-
imentation. They are described below -

Google Street View Dataset

Using the Google Maps API, 26 important waypoints were
selected out of the entire university campus. Permutations of route
segments were taken between these waypoints. All the GPS co-
ordinates were collected from each of these route segments. This
dataset was rich, because many of the unnecessary GPS coordi-
nates were neglected. The final points primarily consisted of coor-
dinates from the paths inside campus, where a golf cart would be
able to travel (Figure 6). A similar technique can also be applied
outside campus for normal cars on public roadways.

e Total number of images - 36K approximately
Total number of classes - 166
Parameters -
1) Field of View (range 0, 120)
2) Heading (range 0, 360)
3) Pitch (range -90, 90)
Images per class - 216
Model - AlexNet with batch normalization
Best validation accuracy - 75.4%

Dataset from the golf cart

The golf cart dataset was created by driving the golf cart
around the university campus. The ground truth was obtained
from the network using a MacBook pro which gets the GPS co-
ordinate using the laptops location. The different precision of the
GPS sensors unfortunately meant the ground truth differed in this
dataset compared to the ones created out of Google Street View.
This highlights the importance of sensor robustness, whereas a
vision based system would be much more robust. In both the
datasets, the GPS coordinates were acquired with up to six float-
ing point precision wherever available. Ideally a six floating point
corresponds to approximately 2-10 cm precision. However since
this is not the root mean square precision, such accurate precision
is not available throughout, and our proposed method would help
the system. Some examples have been shown in Figure 11. The
ground truth vs. predicted class are shown in Figure 12. A total of
714 points are shown in the map. The correct predicted points are
marked as red, and the incorrect ones as green. It can be observed
here, that even the few incorrectly predicted points are close to
the ground truth.

e Total number of images - 7120 approximately
Total number of classes - 89
Images per class - Not constant
Model - AlexNet with batch normalization
Best validation accuracy - 97.2%

Cross testing

The dataset collected driving the golf cart around was tested
using the model learned from the Google Street View images. The
ground truth vs. predicted classes are shown in Figure 13. It
should be noted here that although the red markers are quite dis-
tinct to the green markers, it is not necessarily a proof of incorrect
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Figure 11. Dataset created using the golf cart.

am Cimbing Gym

Figure 12. Correct vs incorrect prediction - dataset from the golf cart.

predictions as the ground truth (labels) are different in the Google
Street view dataset compared to the ground truth (labels) of the
golf cart dataset. The difference is distinct because of the differ-
ence in precision in the GPS sensors used in collecting data. The
VO model can be compared with both the predictions.

Motion estimation with localization on dataset
from the golf cart

An accurate measurement of global position using a very
precise GPS can be expensive and still suffers measurement inac-
curacies due to weather and satellite communication. In contrast,
a predictive learned model based on a single time measured global
position is very appealing due to cost, invariance to weather, and
ability to drive close to or in the shadows of large buildings. Other
approaches for post processing path corrections are either com-
plex or not real-time. The proposed approach of using deep learn-
ing to know the global location, and to correct any deviations from
the commute path can be computed in real-time and is more pre-
cise for a well learned model.

In our approach, the local motion estimation provides dis-
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Figure 13. ground truth of Google Street View vs predicted class from cross
testing.

placement in Dy and D), (Displacement along X and Y axis respec-
tively), which is later converted to GPS coordinates by updating it
with the inertial global positioning results from the deep learning
model. At regular intervals in time, the deviation produced by the
motion estimation model is rectified by taking the average of the
results from the same model and the predictive model. In Figure
14, the red markers show the ground truth GPS coordinates, the
green markers show the incorrect predicted coordinates from the
deep learning localization model, and the blue markers show the
incorrect results from the predictive model aided by the motion
estimation algorithm.

Figure 14. Motion estimation aided by the predictive model.

Conclusions and Future work

This paper presents a motion estimation and localization ap-
proach that specifically solves propagation of error from VO-only
approaches. Our deep learning predictive model pairs computer
vision with precise GPS values to localize a smart vehicle on a
large university campus with an accuracy of more than 97%. It
has been shown in Figure 12 that if a localization model is well
trained, then the motion estimation model can rectify its deviation
based on the values from the predictive model alone, instead of
having to average multiple models values (blue markers in Figure
14.

Future work includes recurrent deep methods for predicting
global position. These methods will be especially useful when the
motion estimation results change very drastically from its previ-
ous poses. More experiments can be conducted on better train-
ing the network with only structural images and not planar im-
ages where a plain field or a wall is present as they don’t pro-
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vide any information for classifying. Regression based models
will be used for predicting exact global location and motion es-
timation. Other approaches for improvements include monocular
motion estimation and localization using models trained on street
view images. This approach did not perform well in this research
due to the difference in the precision of the GPS sensors used in
Google maps and our experiments. But given similar GPS sen-
sors, we believe that the proposed method may work quite well.
A typical challenge in localization is to adapt the model to the
dynamically changing environment due to change in time of day
or weather/climate. A lot of research has been conducted to solve
this problem [20] [21]. It was observed while conducting exper-
iments, that localization is most precise when models are trained
in a hierarchical fashion on the datasets i.e - smaller models are
trained on different sections of the dataset. This idea can be ap-
plied in improving the precision of traditional GPS sensors as
well.
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