

Efficient Pre-Processor for CNN

Mihir Mody, Manu Mathew, Shyam Jagannathan;

Email: {mihir, mathew.manu, shyam.jagannathan}@ti.com

Automotive Processor, Texas Instruments Incorporated, Bangalore, INDIA

Abstract

Convolution Neural Networks (CNN) are rapidly deployed in

ADAS and Autonomous driving for object detection, recognition,

and semantic segmentation. The prior art of supporting CNN (HW

IP or multi-core SW) doesn't address efficient implementation for

the first layer, YUV color space, and output stride support. The

given paper proposes a new pre-processing technique to enhance

CNN based HW IP or multi-core SW solution. The pre-processor

enables new features namely (1) Higher parallelism for the first

layer with boosting of first layer (2) Efficient YUV color space (3)

Efficient output stride support. The pre-processor uses novel

phase-split method to enable supporting above features. The

proposed solution splits input to multiple phases based on spatial

location e.g. 2 phases for YUV 4:2:0 format, 4 phases for output

strides 2 etc. The proposed solution is a unified solution that

enables utilization (>90%) for the first layer and reduction of

bandwidth of 2-4x for output stride of 2. For YUV color space, this

reduces the computation by factor 2 along saving of ~0.1 mm2 of

silicon area with negligible loss in accuracy.

Introduction

Traditional camera based systems with computer vision

processing are used in various markets e.g. Automotive, Robotics,

Industrial, Wearable computing, and Mobile [1][2]. In the past,

these systems used hand-crafted features (e.g. SIFT, HOG, Haar)

[3] followed by a pre-trained classifier (e.g. SVM, AdaBoost) [3]

to classify objects of interests in the images. Modern day systems

implement Deep learning techniques such as Convolution Neural

Network (CNN) for image classification, thanks to rapid advances

in computation power along with wide-spread usage of the low-

cost camera providing big data.

Typical Convolution Neural Network (CNN) structure is

illustrated as shown in Fig. 1. Input feature vectors are convolved

with a set of pre-trained receptive field weights followed by a non-

linear activation function. Max-pooling enables translation

invariance and reduces the output feature vector size. The learned

output feature vector is fed to the fully connected neural network

for classification, with Softmax layer normalizes the results. There

are multiple network topologies e.g. LeNet5[4], AlexNet[5] etc.

These networks have multiple convolution layers and fully

connected layers, which results in huge compute complexity going

in hundreds of Giga or Tera Multiply and Add operations (GOPS

or TOPS).

Typical front camera systems will comprise of a CMOS

sensor, which captures real world image in raw Bayer format. The

raw format is converted to either RGB or YUV formats on using

image signal processor (ISP) [6][7][8]. YUV 4:2:0 and/or 4:2:2

formats are most preferred in embedded systems as it reduces the

memory footprint and data bandwidth between external and on-

chip memory.

Figure 1. A typical Convolution Neural Network with two convolution
layers and fully connected layer followed by softmax

Pretty much every known state of art CNN accepts input in

RGB 8-bit format. This format is also in line with the basic

network architecture where each layer accepts a set of N input

channels of same width and height and produces M output

channels of same or different dimensions. Although some ISPs can

produce both RGB and YUV outputs, a resource constraint

embedded system would prefer to work with just one format for

obvious reasons due to the huge task of optimizations [9][10]. A

YUV 4:2:0 or 4:2:2 inputs requires some preprocessing especially

with chroma channels such as de-interleaving, up-sampling and

bit-depth conversions from 12-bit to 8-bit and finally a YUV to

RGB conversion which can then be fed to the network as shown in

Figure 2.

Deeper networks with multiple layers work with many input

channels (e.g. 16, 32, 64, 128, 512 …) in the later stages but the

first layer will have just a 3 channel RGB input. Modern day

embedded solutions will be designed to optimally handle input

channels in a quantum of 8 or 16 channels both from data feed and

compute aspects. This will result in a typical underflow for the first

layer with just 3 channels. Although the compute contribution of

the initial layer is less compared to the later stages, a hardware

designer would find it difficult to handle this imbalance and end up

spending extra gates to handle these corner cases.

Typical classification networks begin by accepting a fairly

sized image, (e.g. 64x64, 128x128, 224x224…) and end up

downsizing the image as the network progress. The initial

convolution layers will have an output stride of 2 or 4. This means

to produce an X by Y output, the hardware should fetch 2X by 2Y

or 4X by 4Y input with sufficient padding for the convolution.

This requires the hardware designer to implement wider data bus,

add more local data registers etc. just to handle the first layer

efficiently.

In this paper, we present novel techniques to handle these

challenges. We propose the "phase-split" technique which

50
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-020
© 2017, Society for Imaging Science and Technology

encourages the use of embedded friendly YUV 4:2:0 formats. The

paper also presents the impact of training the network directly in

YUV 4:2:0 and 4:4:4 color formats with acceptable classification

accuracy for the CIFAR-10 network.

Figure 2. Prior Art

Proposed Solution

 In most state-of-art CNN the first layer will accept RGB

channels with a fixed width X and height Y. The number of input

channels for the first layer is 3 and number of output channels is N

(e.g. 16, 32, 64, 128 …). Hence the number of convolution kernels

will be 3 * k * k * N, where k is the kernel size (e.g. 3, 5, 7 …).

Networks accepting larger input such as 224x224 as in AlexNet[5]

will have a larger kernel size in the first layer such as 5x5 along

with a stride of 2 or 4 in both horizontal and vertical direction. This

is mainly to reduce the input size as the network progress. Each

input channel is convolved with its respective kernel and the result

is summed up. This summed up the result is passed through a

nonlinear activation function such as ‘ReLU’, ‘tanh’, ‘sigmoid’ to

produce output. It is important to note that after convolution of

input channels the result is summed up point wise. This requires

the width and height of all the input channels to be same.

 In YUV color space, the 4:4:4 format maintains the

dimensions of the input in both luma (Y) and chroma (UV) spaces.

Embedded friendly formats such as 4:2:0 and 4:2:2 will have the

chroma channels in reduced dimensions compared to luma. YUV

4:2:0 format will have the UV dimensions as half of Y dimensions

in both horizontal and vertical direction. YUV 4:2:2 format will

have the UV dimensions as half of luma in the horizontal direction

and same as luma in the vertical direction. This poses a problem

when supplying YUV 4:2:0 or 4:2:2 directly as an input to the

network. One way of solving this problem is to convert the chroma

4:2:0 or 4:2:2 space to 4:4:4. There are several techniques to

perform this conversion ranging from simple pixel replicate to

complex interpolating techniques using poly-phase filters. In this

paper, we propose a "phase-split" technique which enables us to

feed YUV 4:2:0 input with minor modification to the network

structure as shown in Figure 3.

Figure 3. Proposed Solution

For a YUV 4:2:0 input, the luma channel is split into 4

phases. Each luma phase has the dimensions as W/2, H/2 with an

input stride of 2 as shown in Figure 4. This reshapes the luma

channel and brings the dimension same as the chroma channel.

Hence we now have 4 channels of luma and 2 channels of chroma

at a quarter of the original resolution. For a YUV 4:2:2 input, along

with phase split of luma channel, we can split the 2 chroma

channels to 4 as shown in figure 5. Hence for a 4:2:2 input we have

4 luma channels and 4 chroma channels again at a quarter of the

original resolution.

 Figure 4. Luma phase split produces 4 channels

 This proposal of input skip is complementary to the approach

of output skip that happens in typical CNN layers. Convolution

layers with large kernel size (e.g. k = 5, 7, 9 …) will typically have

an output stride of 2 or 4 in the horizontal and vertical direction.

Also, most of the state-of-art networks will have a pooling layer

with output stride of 2 to reduce the feature size every layer.

Phase 1

Phase 2

Phase 3

Phase 4

W

H

H/2

W/2

H/2

H/2

H/2

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 51

Figure 4a. Chroma phase split of 4:2:0 format produces 2 channels

Figure 4b. Chroma phase split of 4:2:2 format produces 4 channels

 Standard networks can be reconfigured to accept this multi-

phase YUV input by reducing the output stride in the convolution

layers by a factor of 2 in both horizontal and vertical direction or

by removing the pooling layer right after the first convolution

layer. By using transfer learning techniques the network can be

made to learn the newly connected input which will help train the

network faster.

CNN Network Details and Simulations

The CIFAR-10 dataset comprises of 60,000 images and 10

classes. These 60,000 images are divided into 5 batches of 10,000

images for training and the remaining 10,000 images are set aside

for testing. Images are 8-bit RGB of size 32x32. The inputs are

distorted and randomly cropped at the center with an active

dimension of 24x24. Additionally, inputs are randomly flipped

horizontally, image contrast and brightness is varied randomly and

image mean is subtracted and divided by the variance of the pixels,

The data set is shuffled to have good mixing properties. This

creates 100,000 images for training. For a batch size of 256

images, it takes two epochs to completely cover 50,000 unique

images twice. The initial learning rate is set at 0.1 which was

exponentially decayed after every 30,000 iterations. Hence for a

total of 100,000 iterations, the learning rate is changed 3 times. For

testing only image resizing and mean subtraction is done on the

input.

Google’s Tensorflow deep learning framework was used for

simulations. The network used for training is described in Table I.

The network comprises of two convolution layers, two max-

pooling layers, two normalization layers, two fully connected

layers and a softmax layer at the end. Dropout was implemented in

the last fully connected layer before the softmax layer with dropout

probability set at 50%. Notice that the first convolution layer has

5x5 kernels with a stride of 1 and the second max pool layer has

3x3 kernels at a stride of 2. The input reduces from a spatial

resolution of 24x24 to 12x12 after the first two layers. We take

advantage of this in the phase-split method. The input is reshaped

from 24x24x3 to 12x12x6 before feeding to the network. Now to

keep the rest of the parameters the same, we remove the max

pooling layer with a stride of 2. The modified network structure is

shown in Table II.

With these two network structures we ran 4 simulations,

direct RGB input, RGB to YUV 4:4:4 which used the same

network structure. RGB to YUV 4:2:0 which uses the phase-split

method and modified network structure and YUV 4:2:0 to YUV

4:4:4 by replicating chroma pixels. The test accuracy results are as

shown in Table III. It is observed that given a network structure for

RGB input, the accuracy does not vary much when we provide

YUV 4:4:4 input or even with the YUV 4:2:0 replicated to YUV

4:4:4. The phase-split method observes a loss of 5% largely due to

reduced input spatial resolution. The results are expected to

improve with the much smaller loss for larger input resolution.

 The proposed solution is designed to run up-to 600 MHz in a low

power 28nm CMOS process. For accurate estimation, an RTL

design for the core data-path (i.e MAC) coded and synthesized.

The top level control HW area & cycles are estimated based on

previous similar designs. The proposed solution is the unified

Phase 1W

H/2

W/2

H/2

H/2
Phase 2

Phase 1

Phase 4

W

H

W/2

H/2

Phase 2
H/2

H/2

H/2

Phase 3

TABLE I

NETWORK STRUCTURE FOR CIFAR-10 RGB AND YUV 4:4:4 INPUT

Layer Type
Input

size

Input

Ch

Kernel

size

Output

Ch

Output

size

Convolution 24x24 3 5x5 64 24x24

Max pool 24x24 64 3x3 64 12x12

Norm 12x12 64 - 64 12x12

Convolution 12x12 64 5x5 64 12x12

Norm 12x12 64 - 64 12x12

Max pool 12x12 64 3x3 64 6x6

Reshape 6x6 64 - 1 384

FC 384 1 384x192 1 192

Softmax 192 1 192x10 1 10

FC = fully connected layer, Ch - channels

TABLE II

NETWORK STRUCTURE FOR CIFAR-10 YUV 4:2:0 INPUT

Layer Type
Input

size

Input

Ch

Kernel

size

Output

Ch

Output

size

Convolution 12x12 6 5x5 64 12x12

Norm 12x12 64 - 64 12x12

Convolution 12x12 64 5x5 64 12x12

Norm 12x12 64 - 64 12x12

Max pool 12x12 64 3x3 64 6x6

Reshape 6x6 64 - 1 384

FC 384 1 384x192 1 192

Softmax 192 1 192x10 1 10

FC = fully connected layer, Ch - channels

52
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

solution for both color and output skip processing. The proposed

solution enables utilization (>90%) for the first layer and reduction

of bandwidth of 2-4x for output stride of 2. For YUV color space,

this reduces the computation by factor 2 along saving of ~0.1 mm2

of silicon area with negligible loss in accuracy. The proposed

solution is generic and can be realized in HW IP for silicon or SW

algorithm for a multi-core solution.

Conclusion

The paper introduces challenges of working directly with

YUV domain image from ISP. The paper proposed the novel

solution of "phase-split" technique which encourages the use of

embedded friendly YUV 4:2:0 formats with future research to

work directly Bayer domain. The paper provides the quantitative

impact of training the network directly in YUV 4:2:0 and 4:4:4

color formats with acceptable classification accuracy for the

CIFAR-10 network.

References

[1] P. Vishwanath, K. Chitnis, P. Swami et. al, “A Diverse Low Cost

High Performance Platform for Advanced Driver Assistance System

(ADAS) Application”, Computer Vision and Pattern Recognition

(CVPR), 2016

[2] S. Dabral, M. Mody, S. Kamath, B. Zhang, V. Appia and U. Batur,

"Trends in camera based Automotive Driver Assistance Systems

(ADAS)," Circuits and Systems (MWSCAS), 2014 IEEE 57th

International Midwest Symposium on, pp.1110-1115, 3-6 Aug. 2014.

[3] Richard Szeliski, " Computer Vision: Algorithms and Applications",

Springer Book, 2010

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition”, Proceeding of IEEE,

1988

[5] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Network”, NIPS

(2012)

[6] M. Mody, H. Sanghvi, N. Nandan, , et. al., "High performance and

flexible imaging Sub-system," Advances in Computing,

Communications and Informatics (ICACCI), IEEE Conference, Sept.

2014

[7] M. Mody, N. Nandan, S, Dabral, et. al. “Image Signal Processing for

Front Camera based Automated Driver Assistance System”,

Consumer Electronics (ICCE) Berlin, 2015, IEEE Conference, Sep.

2015.

[8] M. Mody, P. Swami, K. Chitnis et.al, “High Performance Front

Camera ADAS Applications on TI’s TDA3X Platform”, High

Performance Computing (HiPc), 2015, IEEE Conference, Dec. 2015.

[9] Shyam J., Mihir Mody and Manu Mathew, " Optimizing

convolutional neural network on DSP", Consumer Electronics,

ICCE, 2016

[10] Mihir Mody, Shyam J., and Manu Mathew et. al. " Efficient Mapping

of 2D Convolution on DSP for Convolution Neural Network",

Consumer Electronics, Asia ICCE-Asia, 2016

Author Biography

Mihir Mody is Senior Principal Architect for Automotive business at Texas

Instruments (TI) Incorporated. His domain of interest are video coding,

image processing, computer vision & machine/deep learning algorithms

with focus on embedded HW & SW solution. He holds Master of

Engineering (ME) degree from Indian Institute of Science (IISc) in 2000

and Bachelor of Engineering (BE) from GCOEP in 1998.

Manu Mathew is a Principal Engineer for Automotive business at Texas

Instruments (TI) Incorporated. His areas of interest include computer

vision, machine learning and video compression algorithms for real-time

embedded systems. He holds a master’s degree (ME) from Indian Institute

of Science (IISc), Bangalore in 2000 and a Bachelor of Technology

(B.Tech) from Regional Engineering College (currently National Institute

of Technology), Calicut in 1997.

Shyam Jagannathan is Senior Technical Lead for Automotive business at

Texas Instruments (TI) Incorporated. His areas of interest are video

compression, image processing, computer vision and machine learning

with expertise is real time embedded systems. He holds a master’s degree

(MS) from Illinois Institute of Technology, Chicago in 2014 and Bachelor

of Engineering (BE) from R.V. Engineering College, Bangalore in 2005

TABLE III

TRAINING AND TESTING ACCURACY FOR VARIOUS COLOR

FORMATS USING CIFAR-10 DATASET

Input
Training

Accuracy %

Testing

Accuracy %

RGB input 99.8 86.1

RGB to YUV 4:4:4 99.7 85.6

RGB to YUV 4:2:0 99.4 80.5

YUV 4:2:0 to YUV 4:4:4 99.7 85.3

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 53

