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Abstract 
 

Convolution Neural Networks (CNN) are rapidly deployed in 

ADAS and Autonomous driving for object detection, recognition, 

and semantic segmentation.  The prior art of supporting CNN (HW 

IP or multi-core SW) doesn't address efficient implementation for 

the first layer, YUV color space, and output stride support. The 

given paper proposes a new pre-processing technique to enhance 

CNN based HW IP or multi-core SW solution.  The pre-processor 

enables new features namely (1) Higher parallelism for the first 

layer with boosting of first layer (2) Efficient YUV color space (3) 

Efficient output stride support.   The pre-processor uses novel 

phase-split method to enable supporting above features.  The 

proposed solution splits input to multiple phases based on spatial 

location e.g.  2 phases for YUV 4:2:0 format, 4 phases for output 

strides 2 etc. The proposed solution is a unified solution that 

enables utilization (>90%) for the first layer and reduction of 

bandwidth of 2-4x for output stride of 2. For YUV color space, this 

reduces the computation by factor 2 along saving of ~0.1 mm2 of 

silicon area with negligible loss in accuracy.    

Introduction  
 

Traditional camera based systems with computer vision 

processing are used in various markets e.g. Automotive, Robotics, 

Industrial, Wearable computing, and Mobile [1][2].  In the past, 

these systems used hand-crafted features (e.g. SIFT, HOG, Haar) 

[3] followed by a pre-trained classifier (e.g. SVM, AdaBoost) [3] 

to classify objects of interests in the images. Modern day systems 

implement Deep learning techniques such as Convolution Neural 

Network (CNN) for image classification, thanks to rapid advances 

in computation power along with wide-spread usage of the low-

cost camera providing big data.  

Typical Convolution Neural Network (CNN) structure is 

illustrated as shown in Fig. 1.  Input feature vectors are convolved 

with a set of pre-trained receptive field weights followed by a non-

linear activation function. Max-pooling enables translation 

invariance and reduces the output feature vector size. The learned 

output feature vector is fed to the fully connected neural network 

for classification, with Softmax layer normalizes the results. There 

are multiple network topologies e.g. LeNet5[4], AlexNet[5] etc.  

These networks have multiple convolution layers and fully 

connected layers, which results in huge compute complexity going 

in hundreds of Giga or Tera Multiply and Add operations (GOPS 

or TOPS).   

Typical front camera systems will comprise of a CMOS 

sensor, which captures real world image in raw Bayer format. The 

raw format is converted to either RGB or YUV formats on using 

image signal processor (ISP) [6][7][8]. YUV 4:2:0 and/or 4:2:2 

formats are most preferred in embedded systems as it reduces the 

memory footprint and data bandwidth between external and on-

chip memory.  

 

 

 

 

 
Figure 1. A typical Convolution Neural Network with two convolution 
layers and fully connected layer followed by softmax 

Pretty much every known state of art CNN accepts input in 

RGB 8-bit format. This format is also in line with the basic 

network architecture where each layer accepts a set of N input 

channels of same width and height and produces M output 

channels of same or different dimensions. Although some ISPs can 

produce both RGB and YUV outputs, a resource constraint 

embedded system would prefer to work with just one format for 

obvious reasons due to the huge task of optimizations [9][10].  A 

YUV 4:2:0 or 4:2:2 inputs requires some preprocessing especially 

with chroma channels such as de-interleaving, up-sampling and 

bit-depth conversions from 12-bit to 8-bit and finally a YUV to 

RGB conversion which can then be fed to the network as shown in 

Figure 2.  

Deeper networks with multiple layers work with many input 

channels (e.g. 16, 32, 64, 128, 512 …) in the later stages but the 

first layer will have just a 3 channel RGB input. Modern day 

embedded solutions will be designed to optimally handle input 

channels in a quantum of 8 or 16 channels both from data feed and 

compute aspects. This will result in a typical underflow for the first 

layer with just 3 channels. Although the compute contribution of 

the initial layer is less compared to the later stages, a hardware 

designer would find it difficult to handle this imbalance and end up 

spending extra gates to handle these corner cases.    

Typical classification networks begin by accepting a fairly 

sized image, (e.g. 64x64, 128x128, 224x224…) and end up 

downsizing the image as the network progress. The initial 

convolution layers will have an output stride of 2 or 4. This means 

to produce an X by Y output, the hardware should fetch 2X by 2Y 

or 4X by 4Y input with sufficient padding for the convolution. 

This requires the hardware designer to implement wider data bus, 

add more local data registers etc. just to handle the first layer 

efficiently.  

 

In this paper, we present novel techniques to handle these 

challenges. We propose the "phase-split" technique which 

 

50
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-020
© 2017, Society for Imaging Science and Technology



 

 

encourages the use of embedded friendly YUV 4:2:0 formats.  The 

paper also presents the impact of training the network directly in 

YUV 4:2:0 and 4:4:4 color formats with acceptable classification 

accuracy for the CIFAR-10 network.  

 

 

 

 
 
Figure 2. Prior Art 

Proposed Solution 
  

 In most state-of-art CNN the first layer will accept RGB 

channels with a fixed width X and height Y. The number of input 

channels for the first layer is 3 and number of output channels is N 

(e.g. 16, 32, 64, 128 …). Hence the number of convolution kernels 

will be 3 * k * k * N, where k is the kernel size (e.g. 3, 5, 7 …). 

Networks accepting larger input such as 224x224 as in AlexNet[5] 

will have a larger kernel size in the first layer such as 5x5 along 

with a stride of 2 or 4 in both horizontal and vertical direction. This 

is mainly to reduce the input size as the network progress. Each 

input channel is convolved with its respective kernel and the result 

is summed up. This summed up the result is passed through a 

nonlinear activation function such as ‘ReLU’, ‘tanh’, ‘sigmoid’ to 

produce output. It is important to note that after convolution of 

input channels the result is summed up point wise. This requires 

the width and height of all the input channels to be same. 

 In YUV color space, the 4:4:4 format maintains the 

dimensions of the input in both luma (Y) and chroma (UV) spaces. 

Embedded friendly formats such as 4:2:0 and 4:2:2 will have the 

chroma channels in reduced dimensions compared to luma. YUV 

4:2:0 format will have the UV dimensions as half of Y dimensions 

in both horizontal and vertical direction. YUV 4:2:2 format will 

have the UV dimensions as half of luma in the horizontal direction 

and same as luma in the vertical direction. This poses a problem 

when supplying YUV 4:2:0 or 4:2:2 directly as an input to the 

network. One way of solving this problem is to convert the chroma 

4:2:0 or 4:2:2 space to 4:4:4. There are several techniques to 

perform this conversion ranging from simple pixel replicate to 

complex interpolating techniques using poly-phase filters. In this 

paper, we propose a "phase-split" technique which enables us to 

feed YUV 4:2:0 input with minor modification to the network 

structure as shown in Figure 3.  

 

 
 
Figure 3. Proposed Solution 

For a YUV 4:2:0 input, the luma channel is split into 4 

phases.  Each luma phase has the dimensions as W/2, H/2 with an 

input stride of 2 as shown in Figure 4. This reshapes the luma 

channel and brings the dimension same as the chroma channel. 

Hence we now have 4 channels of luma and 2 channels of chroma 

at a quarter of the original resolution. For a YUV 4:2:2 input, along 

with phase split of luma channel, we can split the 2 chroma 

channels to 4 as shown in figure 5. Hence for a 4:2:2 input we have 

4 luma channels and 4 chroma channels again at a quarter of the 

original resolution.  

 

 

  Figure 4. Luma phase split produces 4 channels 

 This proposal of input skip is complementary to the approach 

of output skip that happens in typical CNN layers. Convolution 

layers with large kernel size (e.g. k = 5, 7, 9 …) will typically have 

an output stride of 2 or 4 in the horizontal and vertical direction. 

Also, most of the state-of-art networks will have a pooling layer 

with output stride of 2 to reduce the feature size every layer.  
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Figure 4a. Chroma phase split of 4:2:0 format produces 2 channels 

 

 

 
 

 
Figure 4b. Chroma phase split of 4:2:2 format produces 4 channels 

 

  Standard networks can be reconfigured to accept this multi-

phase YUV input by reducing the output stride in the convolution 

layers by a factor of 2 in both horizontal and vertical direction or 

by removing the pooling layer right after the first convolution 

layer. By using transfer learning techniques the network can be 

made to learn the newly connected input which will help train the 

network faster.   

 

CNN Network Details and Simulations 
  

The CIFAR-10 dataset comprises of 60,000 images and 10 

classes. These 60,000 images are divided into 5 batches of 10,000 

images for training and the remaining 10,000 images are set aside 

for testing. Images are 8-bit RGB of size 32x32. The inputs are 

distorted and randomly cropped at the center with an active 

dimension of 24x24. Additionally, inputs are randomly flipped 

horizontally, image contrast and brightness is varied randomly and 

image mean is subtracted and divided by the variance of the pixels, 

The data set is shuffled to have good mixing properties. This 

creates 100,000 images for training. For a batch size of 256 

images, it takes two epochs to completely cover 50,000 unique 

images twice. The initial learning rate is set at 0.1 which was 

exponentially decayed after every 30,000 iterations.  Hence for a 

total of 100,000 iterations, the learning rate is changed 3 times. For 

testing only image resizing and mean subtraction is done on the 

input.  

 

 
 

Google’s Tensorflow deep learning framework was used for 

simulations. The network used for training is described in Table I. 

The network comprises of two convolution layers, two max-

pooling layers, two normalization layers, two fully connected 

layers and a softmax layer at the end. Dropout was implemented in 

the last fully connected layer before the softmax layer with dropout 

probability set at 50%. Notice that the first convolution layer has 

5x5 kernels with a stride of 1 and the second max pool layer has 

3x3 kernels at a stride of 2. The input reduces from a spatial 

resolution of 24x24 to 12x12 after the first two layers. We take 

advantage of this in the phase-split method. The input is reshaped 

from 24x24x3 to 12x12x6 before feeding to the network. Now to 

keep the rest of the parameters the same, we remove the max 

pooling layer with a stride of 2. The modified network structure is 

shown in Table II.   
 

 
With these two network structures we ran 4 simulations, 

direct RGB input, RGB to YUV 4:4:4 which used the same 

network structure. RGB to YUV 4:2:0 which uses the phase-split 

method and modified network structure and YUV 4:2:0 to YUV 

4:4:4 by replicating chroma pixels. The test accuracy results are as 

shown in Table III. It is observed that given a network structure for 

RGB input, the accuracy does not vary much when we provide 

YUV 4:4:4 input or even with the YUV 4:2:0 replicated to YUV 

4:4:4. The phase-split method observes a loss of 5% largely due to 

reduced input spatial resolution. The results are expected to 

improve with the much smaller loss for larger input resolution.   

 The proposed solution is designed to run up-to 600 MHz in a low 

power 28nm CMOS process.  For accurate estimation, an RTL 

design for the core data-path (i.e MAC) coded and synthesized. 

The top level control HW area & cycles are estimated based on 

previous similar designs. The proposed solution is the unified 
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TABLE I 

NETWORK STRUCTURE FOR CIFAR-10 RGB AND YUV 4:4:4 INPUT 

Layer Type 
Input 

size 

Input 

Ch 

Kernel 

size 

Output 

Ch 

Output 

size 

Convolution 24x24 3 5x5 64 24x24 

Max pool 24x24 64 3x3 64 12x12 

Norm 12x12 64 - 64 12x12 

Convolution 12x12 64 5x5 64 12x12 

Norm 12x12 64 - 64 12x12 

Max pool 12x12 64 3x3 64 6x6 

Reshape 6x6 64 - 1 384 

FC 384 1 384x192 1 192 

Softmax 192 1 192x10 1 10 

FC = fully connected layer, Ch - channels 

TABLE II 

NETWORK STRUCTURE FOR CIFAR-10 YUV 4:2:0 INPUT 

Layer Type 
Input 

size 

Input 

Ch 

Kernel 

size 

Output 

Ch 

Output 

size 

Convolution 12x12 6 5x5 64 12x12 

Norm 12x12 64 - 64 12x12 

Convolution 12x12 64 5x5 64 12x12 

Norm 12x12 64 - 64 12x12 

Max pool 12x12 64 3x3 64 6x6 

Reshape 6x6 64 - 1 384 

FC 384 1 384x192 1 192 

Softmax 192 1 192x10 1 10 

FC = fully connected layer, Ch - channels 
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solution for both color and output skip processing.   The proposed 

solution enables utilization (>90%) for the first layer and reduction 

of bandwidth of 2-4x for output stride of 2. For YUV color space, 

this reduces the computation by factor 2 along saving of ~0.1 mm2 

of silicon area with negligible loss in accuracy.  The proposed 

solution is generic and can be realized in HW IP for silicon or SW 

algorithm for a multi-core solution.  

 

Conclusion 
 

The paper introduces challenges of working directly with 

YUV domain image from ISP. The paper proposed the novel 

solution of "phase-split" technique which encourages the use of 

embedded friendly YUV 4:2:0 formats with future research to 

work directly Bayer domain.  The paper provides the quantitative 

impact of training the network directly in YUV 4:2:0 and 4:4:4 

color formats with acceptable classification accuracy for the 

CIFAR-10 network.  
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TABLE III 

TRAINING AND TESTING ACCURACY FOR VARIOUS COLOR 

FORMATS USING CIFAR-10 DATASET  

Input 
Training 

Accuracy % 

Testing 

Accuracy % 

RGB input 99.8 86.1 

RGB to YUV 4:4:4 99.7 85.6 

RGB to YUV 4:2:0 99.4 80.5 

YUV 4:2:0 to YUV 4:4:4 99.7 85.3 

 

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 53


