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Abstract
Over two million people in the United States rely on the use

of a wheelchair to perform daily tasks. Joystick controls on mo-
torized wheelchairs have improved the lifestyles of so many, but
are of little value to the visually impaired or patients with re-
stricted hand mobility. Often times these wheelchair users must
rely on caretakers to assist them with their mobility, thus limit-
ing their independence. Milpet is an effective access technology
research platform centered around improving the quality of life
of those confined to wheelchairs. By expanding Milpet’s control
interface to include speech recognition, those who cannot bene-
fit from a joystick are given new freedoms. Utilizing a map of its
environment, localization is performed using LiDAR sensor scans
and a particle filtering technique. In addition to simple move-
ment commands such as “turn left”, “stop”, and “go faster”, the
speech interface along with localization and navigation modules
enable patients to navigate more complex commands. For exam-
ple, commands such as “take me to the kitchen” instruct Milpet to
autonomously drive to the specified location while avoiding walls
and other obstacles. This self-driving wheelchair is a huge leap in
improving the quality of life for the mobility impaired who cannot
benefit from a joystick.

Keywords: A*, autonomous driving, obstacle avoidance, occu-
pancy grid, omni-vision, LiDAR, localization, particle filters,
ROS, speech recognition

Introduction
Whether living at home or an assisted living facility,

wheelchair-bound patients oftentimes rely on caregivers or loved
ones to assist them with getting around. Patients with medical
conditions such as Parkinsons disease, visual impairment, brain
injury, dementia, and even old age have a hard time operating
the traditional joystick interface of most motorized wheelchairs.
These patients run the risk of hurting themselves and others due to
the possibility of collision with walls, stationary objects, and even
other people. A caregivers role includes assisting with the mobil-
ity needs of these patients. Wheelchair users who cannot properly
use a joystick need to rely on someone else for the sake of get-
ting from one location to the next. This greatly lowers the amount
of independence, and as one patient put it, her privacy. This pa-
per introduces an effective access wheelchair research platform
to investigate methods of improving the quality of life of these
disabled users.

Milpet, or the Machine Intelligence Laboratory Personal
Electronic Transporter, is an effective access wheelchair that aims
to replace traditional joystick commands with an intuitive, user
voice activated control system. Milpet is equipped with an omni-
vision camera, a single channel LiDAR, sonar sensors, encoders,
and a microphone. Milpet can be controlled wirelessly using
Bluetooth through an Android phone application. The app in-

cludes a button to switch between Bluetooth manual control and
autonomous mode. With the Bluetooth control mode, the user
or their caretaker can manually drive the wheelchair. The latter
autonomous mode gives the wheelchair user the freedom to con-
trol Milpet through human speech commands. Users can say di-
rectional commands such as “go forward” or “turn around” and
Milpet will move accordingly.

When in autonomous mode, Milpet is provided with a map
of its environment. Using the map, Milpet performs localiza-
tion using vision and LiDAR sensor scans and a particle filter-
ing technique. Given a trained localization model based on its
environment, Milpet users are able to specify a destination for au-
tonomous navigation using speech commands. The shortest path
to the end destination is calculated using the A* path planning al-
gorithm which then translates the corresponding movement com-
mands back to the wheelchairs motor controllers. As Milpet takes
the user to the specified goal location, it avoids obstacles using the
LiDAR and sonar sensors. This potentially increases the safety
for the wheelchair user. By allowing the user to simply say where
they want to go, wheelchair patients who heavily rely on their
caretakers now have an alternate and intuitive means of executing
daily tasks.

In the following sections this paper will briefly go over re-
lated works, an overview of Milpet’s system, our test setup, re-
sults, and the conclusion with future work.

Related Work
There have been many attempts at designing intelligent

wheelchairs. The Mobility Aid for Elderly and Disabled People
(MAid) [9] is a wheelchair that was designed to go through areas
with heavy crowds and foot traffic. MAid specializes in obsta-
cle avoidance through the use of laser scanners and dead reckon-
ing navigation with the use of the wheel encoders attached to the
wheelchair. The NavChair [14] assists the user by avoiding obsta-
cles, performing automatic wall following, and assisted doorway
traversal. The MIT intelligent wheelchair [16] uses sensors to
perceive the wheelchairs surroundings and has a speech interface
of its own to perform simple commands. The CoPilot [7] adds
sensors to wheelchairs to assist with doorway traversal. It de-
tects doorways and uses a sample based planner to safely traverse
in and out of rooms. The Robotics Engineering Department at
Worcester Polytechnic Institute developed a wheelchair [15] that
uses voice control, facial expressions, and a Bluetooth joystick
controller to interface with their wheelchair. Their system uses
the Robot Operating System (ROS) as the software framework.
ROS controls the user interfaces as well as navigation modules.
The onboard sensors consist of infrared, sonar and a single chan-
nel laser scanning rangefinder. Some samples of these systems
are shown in Fig. 1.

Speech recognition is a widely researched topic in the field
of Human Computer Interaction (HCI). There are many speech-
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Figure 1. Effective access wheelchairs and accessories; (top left) MAid [9];

(bottom) Navchair [14]; (top right) CoPilot [7].

based applications that inspired the Milpet speech interface.
IWASR [13] is a Vector Quantization-based isolated-word au-
tomatic speech recognition system. It aimed to help customers
call a central service center by responding in a natural man-
ner. Speech recognition systems have military applications as
well. The SCORPIO [6] is a small robot used for transporta-
tion and booby trap disposal. Operators can control the robot
using a joystick interface and speech interface. The speech in-
terface was built with a Hidden Markov Model system and uses a
small language model and dictionary for the speech recognition.
The speech recognition interface is useful for hands free operation
which allows operators to handle multiple tasks. Speech Emotion
Recognition (SER) [10] is another field in HCI that aims to en-
able natural interaction with computers by speaking. It also aims
to detect and understand subtle clues such as micro expressions to
determine emotion. This research helps to understand and tackle
the needs of patients in therapeutic centers.

The common smartphone user has incorporated the use of
speech recognition software for proprietary applications. Major
corporations such as Google, Apple, and Microsoft have research
labs dedicated to providing the end user with top of the line speech
recognition engines on their consumer platforms. Voice assistants
are widely used as means of performing normal functions on a
smartphone just by using the sound of your voice. Voice Assis-
tants such as Siri, Google Now, and Cortana grant IPhone, An-
droid, and Windows phone users, respectively, the ability to in-
teract with and use their phones to perform everyday tasks. They
allow users to make phone calls, search the web, organize calen-
dars, set alarms, and much more. In early 2016, Google publicly
released their cloud speech API. This helped to improve efforts in
boosting the Voice UI market [1]. Ruan et al. [11] reported that
voice recognition is almost 3× faster than texting.

System Overview
Milpet is a re-purposed Quickie S-11 medical wheelchair

with attached sensors as seen in Fig. 2.
The joystick interface was removed and replaced with a

custom control system and laptop. Microcontrollers connect to
the wheelchair motors for movement, and connect to the wheel
encoders for movement data collection [17]. A LiDAR sen-
sor, sonar sensors, and an omni-vision camera are connected to
the wheelchair to collect information about the wheelchair’s sur-
roundings. A microphone is also mounted on the wheelchair for
speech commands.

Hardware
The motor controllers used for Milpet are the Talon SR mo-

tor controllers (shown in Fig. 3), which are used for high perfor-
mance speed control. These controllers can provide up to 100
amps of peak current and up to 60 amps of continuous current
which is quite a bit more current than is required to move the
each motor on the wheelchair. One Talon SR controller is used
per motor for a total of two individual motor controllers. The
power distributed to these motor controllers is controlled by a re-
lay which only turns on once the control system is enabled and
the safety button is released. This prevents the wheelchair from
moving until the system is completely safe to move.

The control logic for the system comes from an Arduino Due
microcontroller, which takes in movement commands from the
Robot Operating System (ROS) and outputs a PWM signal to the
motor controller in order to control the differential motors on the
wheelchair. Sensor readings from several low cost sonar sensors
(shown in Fig. 4) mounted to the outer edge of the wheelchair are
also read. These sensors are mounted strategically to point in the
cardinal directions about the wheelchairs center without interfer-
ence from the user or chair. These sensors are used to detect ob-
stacles, both stationary and dynamic, which is sent as an interrupt
to the main controller to stop the motors or avoid the obstacle.

In order to allow the system to detect position and velocity,
two separate rotary encoders (shown in Fig. 5) were installed to
the back of each motor by removing the breaking mechanism of
the motors and inserting the encoders directly onto the motors’
geared axles. These encoders interface with an Arduino Due to
record information of how far and how quickly each wheel of the
wheelchair has moved in order to give the overall system a better
idea of its speed and position over time.

A Hokuyo light detection and ranging (LiDAR) sensor,
shown in Fig. 6, was mounted to the wheelchair in order to aid
ROS in the creation of maps of the areas that the wheelchair trav-
els in, as well as, to detect obstacles. The LiDAR itself provides
a one-dimensional slice of the depth of its environment within a
270◦ field of view. The particular sensor provides millimeter ac-
curacy up to a distance of 30 meters. The maps that are created
using this sensor ultimately aid the wheelchairs autonomy in lo-

Figure 2. Machine Intelligence Laboratory Personal Electronic Transporter

(Milpet).
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Figure 3. Talon SR Motor Controller

Figure 4. Low cost sonar sensor

calizing its current position in order to allow it to navigate to a
destination of interest for its user.

To power the chair and the multitude of components on it,
a power board was created. This power board takes in 24V from
the wheelchairs battery supply and converts it into 5V and 3.3V
supplies using on board linear regulators, a 12V supply using an
external isolated power converter, and a variable power supply.
The 5V and 3.3V power lines are used to power the Arduino and
any other small voltage, low current devices, such as the encoders.
The 12V supply is used to power the under glow LED lights, car
horn, and LiDAR. The variable supply is used to power a lap-
top running ROS and Pocketsphinx with an attached USB micro-
phone.

Localization
Localization on Milpet is achieved using data from either the

vision or LiDAR sensors. This data is fed into an adapted particle
filter algorithm, similar to [18]. The localization algorithm uses
the known map and outputs an (x,y) coordinate that represents
the wheelchair’s location on the map. The algorithm utilizes a
Support Vector Machine (SVM) that must first be trained within
the environment where it will deployed. The training process con-
sists of dividing the map into ground truth locations, or waypoints.
These waypoints are evenly spaced throughout the entire map and
represent a series of classes that can be predicted by a classifier.
The wheelchair must then be driven to each of these predefined

Figure 5. Encoders used for velocity/position detection

Figure 6. Hokuyo Scanning Laser Range Finder (LiDAR

waypoints to gather ground truth data from the sensors. The data
must then undergo a series of pre-processing steps and is then
used to train a linear, multi-class SVM to predict the waypoint
based on the sensor input. The model is trained outside of the
wheelchair, in MATLAB, using LibSVM and later transferred to
the wheelchair for run-time use.

Once the model has been trained, an iteration of the adapted
particle filter algorithm is run whenever there is new data from the
sensor. The algorithm starts by randomly initializing X particles
randomly throughout the valid spaces in the map. Then, given
new sensor data, the data is read in, the same pre-processing that
was applied during training is applied, and the data is passed to the
pre-trained SVM. The multi-class SVM is able to return a prob-
ability for each waypoint which is used to calculate a weight for
each particle. The particle weights are calculated with (1).

Wi =
k

∑
i=1

(
1− di

D

)
∗Pi; for k nearest waypoints (1)

Equation (1) shows the weight of each particle Wi is calcu-
lated by selecting the k nearest neighboring waypoints, calculat-
ing their Euclidean distance di from the particle, and weighting
the probability of that waypoint. The probability of the waypoints
are predicted by the SVM as the distance di over the total dis-
tance, D, to all k classes. These weighted probabilities are then
summed to set the weight for each particle. After the weights are
calculated, a new batch of particles is sampled with replacement
based on the new weights. Ninety-five percent of the particles
are drawn in this way, however, the remaining 5% of particles are
drawn from the original, random batch of particles. This is done
to prevent the location estimate from converging to an inaccurate
location. Using data from the encoders, the resampled particles
are updated based on movement of the wheelchair since the last
iteration. Finally, the location is estimated by creating a 2D mesh
of the top 75% of particles and selecting the peak value of the
mesh.

This algorithm was tested using data from two different sen-
sors. Data from the omni-vision camera was tested in a MAT-
LAB simulation and data from the LiDAR sensor was used for
testing on the wheelchair. Both sensors had a different set of pre-
processing steps, but the algorithm remained the same for each.

Omni-vision Camera Data
The omni-vision camera that Milpet is equipped with con-

sists of a low-cost USB camera pointing upwards into a small
360◦ mirror. This is a much cheaper solution than a full 360◦

camera but results in a crude image that requires some extra pre-
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processing. Fig. 7 shows the raw image from the camera as well
as the resulting images after the first few pre-processing steps.

Figure 7. Pre-processing steps of the omni-vision camera. Top left is the

raw image, top right is the result of centering the image, and bottom is the

unwarped image.

An example of the raw images from the omni-vision camera
is shown in the top left of Fig. 7. The first pre-processing step
was to center the useful part of the image and crop out the re-
maining parts. This was done using a manual crop in MATLAB.
Since the camera did not ever shift, the same crop could be ap-
plied to every image. The next step was to unwarp the image to
achieve images like the example in the bottom of Fig. 7. Finally,
the images were converted to grayscale and underwent histogram
equalization to help mitigate differences in light levels. For di-
mensionality reduction, Locality Preserving Projections [5] was
used. This algorithm was chosen because it is a semi-supervised
learned algorithm that allows for the same reduction to be applied
to both testing training images. The reduced images are used to
train the SVM to be utilized in the particle filter algorithm.

LiDAR Data
A LiDAR scan consisted of a 1081 length vector of range

values that covered 270◦ in front of the wheelchair. At each
ground truth location three scans were taken: one facing forward,
one facing slightly to the right, and one facing slightly to the left.
These scans also required some pre-processing before passing
them through the SVM. Each scan contained a few spikes where
the sensor did not get a reading. These spikes were removed and
replaced with an adjacent valid scan value. In addition, the mean
value of each scan was subtracted from the entire scan. Gaussian
noise (µ = 0, σ = 0.01) was added to each scan to create five ad-
ditional scans to expand the training data set. Fig. 8 shows the
LiDAR scan before and after the pre-processing stage.

Navigation
The A* algorithm is a very common algorithm often used

in navigation of autonomous robots and even other domains like
networking to find the best route between two stations. It is a

Figure 8. LiDAR scans before (left) and after (right) pre-processing.

corollary of the famous Dijkstra’s algorithm. One of the famous
applications of A* can be seen in the navigation planning of the
Google smart car using Google maps with a lot of other sensor
data incorporated inside the algorithm. In this paper, the algo-
rithm has been modified and implemented in a similar essence of
the Google self-driving car. Given a known map, the algorithm is
used to determine the path from the wheelchair’s current location
to the coordinates corresponding to the users desired destination.
Different locations on a map can be represented as graph nodes.
The A* implementation uses a best-first search and finds the least
cost path to get from a starting location to an ending destination.
A* proceeds through the least cost path while keeping a sorted
priority queue of different path segments. The A* cost function is
shown in (2).

f (x) = g(x)+h(x) (2)

The algorithm uses a knowledge-plus-heuristic cost function
of node x (usually denoted by f (x)) to determine the order in
which the search visits nodes in the tree. The cost function is
a sum of two functions:

• The past path-cost function, which is the known distance
from the starting node to the current node x (usually denoted
by g(x)).

• A future path-cost function, which is an admissible heuristic
estimate of the distance from x to the goal (usually denoted
by h(x)). The heuristic function used in this paper is the
Manhattan distance.

Joshi et. al [3] made a revision to the A* algorithm to in-
clude keeping track of the steps taken to get to the initial node.
By having each node keep track of its previous node, the steps
taken to get to the final destination can be obtained by backtrack-
ing from the destination after executing the full algorithm.

This algorithm was modified for the use of navigating a mo-
bile robot and was adopted for use in Milpet. The major change to
the algorithm was limiting the possible directions Milpet could go
to while traversing through nodes. In Joshi et al.s study, the robot
was able to travel in four directions: forward, backward, left, and
right. However, in this paper backwards movement was elimi-
nated due to the risk factor associated with a wheelchair moving
in reverse. Hence the cost function was created as [2, 1, 1] corre-
sponding to left, forward and right turn. The weight correspond-
ing to turning turning left was given a higher value following the
US system, where vehicles travel on the right side of the road,
thereby making the right turn easier compared to the left turn.
Based on this fact, the wheelchair should always try to calculate
its path keeping the cost minimum and always choosing a right
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turn over a left turn whenever possible. The algorithm was also
expanded to take 3D input to consider the wheelchair pose along
with the x and y coordinates of its location. These limits and modi-
fications were made while keeping the goal of obtaining a shortest
path to any end destination while keeping the path at a minimum
cost.

Several trials were conducted both for the mapping and the
navigation. In most of the cases the obstacles were mapped cor-
rectly on the 2D map. The wheelchair was also able to reach the
end goal on the grid based on both user defined positions and pre-
defined goal positions on the map in such cases. A simple 2D grid
map is shown in Fig 9, where 0s represent free space for naviga-
tion and 1s are grid cells occupied by obstacles. The calculated
path from the algorithm has also been shown in Fig 10.

Figure 9. 5x6 2D binary grid map

Figure 10. Calculated path by the A* algorithm on the 2D map in Fig. 9

showing the move directions from the (1,1) grid cell as the initial position to

the goal position *.

Mapping
Milpet uses a two dimensional occupancy grid to localize it-

self. In an occupancy grid, the world (area to be navigated) is
represented as an array where each cell of the array is a possi-
ble position. Generally, white spaces show free space where the
robot can travel whereas black spaces show obstacles i.e. where
the robot cannot go. Since homes, malls, etc have blueprint im-
ages readily available, Milpet makes use of these instead of build-
ing its own map as in Simultaneous Localization and Mapping
(SLAM). By providing a bitmap to the map node, two occupancy
grids are created by it: one for localization and one for path plan-
ning. The localization map is used by the localization-node and
the path planning map is used by the navigator-node.

Since a blueprint image is basically a 2-D array with a birds-
eye view of the world, it is easily related to an occupancy grid.
In the map node, the bitmap is first filtered with a threshold at
100, so that all the pixels are either black (0) or white (255). The
input resolution of the image is set such that the value of one pixel
represents w×w sq. distance in the physical world. The required
output resolution y×z sq. distance is set as well. If the input
resolution is finer than the output resolution the map shrinks and
vice versa. Before changing resolutions we must make sure that
each cell can be y×z, i.e. mod(y,w) and mod(z,w) should be zero,

if it is not, the array is padded with zeros (black) to make it valid
before being sent for conversion. The formulas (3-6) are used for
calculation of the required padding and the updated input array.

h = (−1∗mod(iC,oRes)+oRes (3)

inputPadMat = hCat(inputMat,zeros(iR,h)) (4)

v = (−1∗mod(iR,oRes)+oRes (5)

inputPadMat = vCat(inputMat,zeros(iC,v)) (6)

where,
h = amount of padding needed horizontally
v = amount of padding needed vertically
iC= number of columns in input array
iR = number of rows in input array
oRes= resolution of output array
zeros(w,y) = matrix of w by y dimensions
mod(x,y) = returns remainder of x / y
hCat(n,m) = horizontal concatenation of n, m arrays
vCat(n,m) = vertical concatenation of n, m arrays
inputMat = input array without padding
inputPadMat = input array after padding

Figure 11. Occupancy grids at various scales.

For localization with particle filters, a resolution of 4 inches
is needed, so the output resolution for the localization map was
1 pixel (px) corresponding to 4×4 sq inches. Meanwhile, the
navigator-node makes use of the A* algorithm, where each cell
represents a position of the robot. Thus, one cell should be the
size of the robot. Milpet measures to approximately 36×36 sq.
inches. Consequently, 36×36 is the output resolution for the nav-
igation map. In Fig. 11, the original map with input scale 1,
localization map with scale 4, and navigation map with scale 36
is shown, where the term scale means 1px = y×y sq. inches. As
the scale increases the black area increases; small obstacles get
bloated up as the scale is increased.

Speech Recognition
Automatic Speech Recognition (ASR) is a method by which

people can communicate with computers using their voice. ASR
transforms speech into text for computers to parse and react de-
pending on what phrase was said. There are two kinds of speech
recognition approaches: Isolated-word and continuous. Isolated-
word speech recognition systems operate on single words at a
time, requiring a pause between each word. Continuous speech
recognition systems operate on speech segments where words are
connected together, i.e. not separated by pauses. Continuous sys-
tems are typically more difficult to implement because there is a
bigger challenge in finding the start and end points of words, but
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are ideal for interacting with robots in a natural manner. The rate
at which the user is speaking also has a great effect on recognition
accuracy for continuous systems

Milpet has an offline speech requirement to remove the in-
ternet connection dependency. There is currently a wide vari-
ety of open source options that tackle the problem of offline
speech recognition [8] [4] [2] [12]. Pocketsphinx [2] is a continu-
ous speech recognizer developed by Carnegie Mellon University.
Pocketsphinx can interpret files with continuous voice audio as
well as perform real-time recognition when using a microphone
input. To operate, Pocketsphinx requires a language model and a
dictionary which can be generated using CMUs Sphinx Knowl-
edge Base Tool. The tool requires a corpus of all the words your
robot should be able to interpret. Pocketsphinx is installed in the
Milpet system and uses a custom made dictionary and language
model to perform directional and navigation speech commands.

Goal Interpretation
There are three main types of speech commands that Milpet

can understand and act on: directional, speed, and location.

1. Directional commands are used to perform simple immedi-
ate actions on the wheelchair. These commands consist of
the words “move”, “go”, “turn”, and “face” partnered with
a corresponding direction.

2. Speed commands on Milpet are used to either stop, slow
down, or speed up the wheelchair’s movement speed. Users
can either specify a speed to set the wheelchair too (fast,
mid, or slow), or say “speed up”, “slow down”, and “stop”
to perform each command.

3. Location commands require a known destination on the map
for navigation purposes. By saying a location command
such as “take me to the kitchen” or “go to the bedroom”,
Milpet extracts the goal location from the sentence, then
proceeds to find the most efficient path to get from its cur-
rent location to the end goal.

Robot Operating System
Robot Operating System (ROS) is an open source operating

system for robots and is the means by which the different com-
ponents on Milpet can communicate with each other. Each main
system component has a ROS node, or executable program, asso-
ciated with it as shown in Fig 12.

Figure 12. Milpet ROS Architecture.

These nodes can publish data, collect data that other nodes
publish, and execute certain actions based on the state of the sys-
tem. ROS topics are the channels for the data to be published
or received between nodes. The data is transformed in the form
of ROS messages that contain the relevant data. The major ROS
nodes for the Milpet system are as follows:

• Recognizer node - Starts Pocketsphinx and listens for in-
coming commands from the microphone to interpret. Once
interpreted, the sentence is converted into a character array
and is published as a string on the “speech output” topic.
The process is then repeated for new utterances in the mi-
crophone.

• Voice cmd node - Searches the command string for valid
commands that Milpet can use to move. The node then cre-
ates a simplified set of commands that are published to the
“voice cmd” topic in an array of string commands.

• Encoder node - Publishes “ticks” counted from motor en-
coders. There are 20,000 ticks per wheel revolution. An
Arduino Due microcontroller is connected to both the en-
coders and the wheelchair’s laptop system. It transmits tick
count information via serial connection.

• Serial node - Establishes the serial connection with the en-
coder Arduino Due and the laptop computer on board. This
allows the tick information gathered from the encoders to be
published on the “ticks” topic.

• Odom node - Calculates the linear and angular displacement
of the wheelchair based on the information published on the
“ticks” topic. To calculate these values which are published
on the “odom” topic (7)-(10) are used. Where ∆s is the over-
all change in displacement of the wheelchair, ∆sr and ∆sl
are the distance traveled by right and left wheels, ∆θ is the
change in wheelchair pose, b is the width of the wheelchair,
and ∆x and ∆y are the position change in global coordinates.

∆s =
∆sr −∆sr

2
(7)

∆θ =
∆sr −∆sr

b
(8)

∆x = ∆s∗ cos(θ +
∆θ

2
) (9)

∆y = ∆s∗ sin(θ +
∆θ

2
) (10)

• Urg node - Interfaces with the LiDAR sensor. This node
publishes LaserScan messages to the “scan” topic. The mes-
sages contain start and end angles of the LiDAR scan, the
angular distance between measurements, the time increment
between measurements, the minimum and maximum range
values, and a vector of intensities.

• Localization node - Uses the published LaserScan and
Odometry messages along with the localization approach
mentioned in the System Overview Localization section to
determine the wheelchair’s location. Once localized, this
node publishes the x coordinate, y coordinate, and pose on
the “loc info” topic. The regions of detection for the LiDAR
are shown in Fig. 13.

• Map node - Subscribes to the “loc topic” and visualizes the
wheelchair’s current location on a displayed map of the area.
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• Obstacle node - Reads the “scan” topic and determines if
an obstacle enters a 2-foot radius surrounding the edge of
the wheelchair. The corresponding direction, as shown in
Fig. 13, is published as a string on the “obstacleDetected”
topic.

• Navigator node - The main node used to determine what the
wheelchair should be dong at any given point in time. This
node listens on the voice commands, localization info, and
obstacle directions to successfully execute the voice com-
mands without bumping into walls or other people. This
node is in charge of sending the motor commands neces-
sary to reach the users end destination. Linear and angular
movement values are published using twist messages to the
“cmd vel” topic.

• Motor node - Reads the “cmd vel” commands sent from the
navigator and interfaces with an Arduino Due microcon-
troller to move the motors on the wheelchair.

Figure 13. Obstacle detection zones.

Testing and Results
Test Setup

To verify the wheelchairs functionality, a mock home envi-
ronment of 18’ by 18’ was set up and the wheelchair was placed
randomly in the enclosed space. Fig. 14 shows a scaled down ver-
sion of the test area with three labeled destinations. Destinations
1-3 were assigned the labels “Kitchen”, “Bedroom”, and “Bath-
room” respectively. The white spaces on the test map are valid
locations for the wheelchair to be in, while the black areas are in-
valid and blocked off by walls. Cardboard boxes were placed as
obstacles in various locations around the mock home. This was
done to ensure that each location on the map had a unique LiDAR
signature and to observe the wheelchairs reaction to sensed obsta-
cles while navigating. The red boxes in Fig. 15 correspond to the
locations of the cardboard boxes in the mock home setup.

The multi-class SVM in the localizer node was trained on
42 location-pose combinations whose LiDAR scans were taken
at various spots within the map. The trained model included up
to four poses per class location depending on the most probable
locations the wheelchair could face at the given spot. The par-
ticle filter algorithm was initialized to 500 particles in its initial
pool and set to a 5% resampling rate. A series of directional and
navigation speech commands were given to Milpet to verify its
functionality.

Navigation Results Goal
Kitchen Bedroom Bathroom

Start

Kitchen 3/3 = 100% 3/3 = 100% 3/3 = 100%
Bedroom 2/3 = 67% 3/3 = 100% 3/3 = 100%
Bathroom 2/3 = 67% 3/3 = 100% 2/3 = 67%
Center 3/3 = 100% 3/3 = 100% 3/3 = 100%

Results
Overall, the system worked well when using the speech com-

mands. When saying simple directional speech commands, the
wheelchair acted accordingly. As the wheelchair moved forward,
it steered clear of any obstacles blocking its path. If an obstacle
was detected dead center of the front of the wheelchair, and there
wasnt time to move in another direction to avoid it, the wheelchair
stopped itself. This feature is very useful in case a moving object
or person moves in front of the wheelchair.

Navigating from one destination to another was also success-
ful. Milpet was able to compute the shortest path from its own
location to the specified end goal. Once the path was determined,
the wheelchair proceeded to move towards the goal while avoid-
ing obstacles. Table 1 shows a subset of the navigation tests and
results.

Although the system worked well overall, there were still a
few navigation failures during test runs. One failure happened
when going from the bedroom to the kitchen. The cardboard box
representing obstacle 1 in Fig. 15 was hit when the wheelchair was
attempting to avoid it. This was due to the wheelchair’s turning
radius being too small. Another problem occurred when trying to
navigate from the bathroom to the kitchen. Obstacle 1 was also
hit during this instance because the wheelchair started swerving
to the left as it approached the end of the hall. Without some form
of PID control, the wheelchair often finds itself off center of its
path. Usually the wheelchair is still able to make it to it’s goal
destination while avoiding obstacles, but in some cases, the off

Figure 14. Test map for Milpet navigation.

Figure 15. Test map for Milpet navigation with detonated box locations.
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center wheelchair placement hurts the wheelchair’s overall ability
to navigate without hitting any obstacles.

Conclusions and Future Work
Autonomous wheelchairs are becoming more popular as re-

search is done to improve the lives of those with disabilities. Au-
tonomous wheelchairs are extremely beneficial for those confined
to wheelchairs because they help to bring back independence
to those who usually rely on caregivers to assist with mobility.
The new framework implemented on Milpet ties multiple input
sensors (encoders, LiDAR, and Omni-vision), localization (par-
ticle filters), path planning (A*), and output motor movement to
demonstrate that autonomous wheelchair navigation is possible.

This paper is a small step towards giving independence and
privacy back to wheelchair users. Future iterations of Milpet in-
clude increasing the set of commands that are used to control
Milpet through its speech recognition interface, switching to an
incremental speech model to account for broken speech patterns,
tuning the speech model to handle a variety of accents, automat-
ing the process of acquiring maps for new areas, and updating
existing maps if new obstacles or structures are found using the
on board sensors.

References
[1] Huw Geddes. Voice ui market boosted by googles decision to go

public ..., Apr 2016.
[2] David Huggins-Daines, Mohit Kumar, Arthur Chan, Alan W Black,

Mosur Ravishankar, and Alexander I Rudnicky. Pocketsphinx:
A free, real-time continuous speech recognition system for hand-
held devices. In 2006 IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings, volume 1, pages I–I.
IEEE, 2006.

[3] Heramb Nandkishor Joshi and JP Shinde. An image based path
planning using a–star algorithm.

[4] Akinobu Lee, Tatsuya Kawahara, and Kiyohiro Shikano. Julius—an
open source real-time large vocabulary recognition engine. 2001.

[5] X Niyogi. Locality preserving projections. In Neural information
processing systems, volume 16, page 153. MIT, 2004.

[6] Stanislav Ondas, Jozef Juhar, Matus Pleva, Anton Cizmar, and
Roland Holcer. Service robot scorpio with robust speech interface.
International Journal of Advanced Robotic Systems, 10, 2013.

[7] Tom Panzarella, Dylan Schwesinger, and John Spletzer. Copi-
lot: Autonomous doorway detection and traversal for electric pow-
ered wheelchairs. In Field and Service Robotics, pages 233–248.
Springer, 2016.

[8] Daniel Povey, Mirko Hannemann, Gilles Boulianne, Lukáš Burget,
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