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Abstract 
With cars driving autonomously on roads, functional safety 

assumes critical importance to avoid hazardous situations for 

humans in the car and on the road. ISO 26262 defines Automotive 

Safety Integration Level (ASIL) with level QM (Least) to ASIL-D 

(Highest) based on severity and probability of defect causing harm 

to human life. This paper explores functional safety requirements 

and solutions for software systems in autonomous cars in four 

broad aspects. The first aspect covers usage of redundancy at 

various levels to ensure the failure of one system does not affect 

the overall operation of the car. It explores the usage of 

redundancy via multiple sensors and diverse processing of data to 

arrive at functionally safe results. Based on the redundancy 

requirements, in the second aspect, an HW (SoC) and SW 

architecture is proposed which can help meet these requirements. 

It explores the definition of SW framework, task scheduling, and 

tools usage to ensure systematic faults are prevented at the 

development stage. Autonomous driving systems will be complex 

and expecting all software modules comply with the highest 

functional safety level may not be feasible. The third aspect 

explores the usage of freedom from interference (FFI) via HW and 

SW mechanisms like Firewalls, MMU to allow safe and non-safe 

sub-systems to co-exist and operate according to their 

specification. The final aspect covers usage of SW and HW 

diagnostics to monitor, detect, and correct random faults found at 

run-time in HW modules. It explores the usage of diagnostics 

features like ECC, CRC, and BIST to help detect and avoid run-

time failures. 

Introduction 
 
With increased focus on autonomous cars, the question of 

autonomous cars being a reality has shifted from "if" to "when". In 

the rush to get autonomous cars on the roads one must not forget 

functional safety aspects of the HW/SW systems so that humans, 

in the car and outside the car, are not put into hazardous situations 

due to the operation of the car. In this paper, we explore various 

aspects that need to be covered by software systems to ensure an 

autonomous car is safe on the road. 

 

We first argue the need for redundancy in sensors and processing 

in order to make autonomous driving decisions. We then explore 

HW and SW architectures to implement these redundancies. SW 

best practices to follow in order to avoid systematic faults and 

frameworks to use for these are explored. Software system in 

autonomous cars can get very complex. The cost for making a 

software sub-system compliant to ASIL specification is huge. 

Hence it is not feasible to make all sub-systems to adhere to the 

highest ASIL level. Freedom from interference concept is explored 

to allow safe and non-safe tasks to co-exist within the same 

system. Finally, even with all the logic to implement redundancies, 

reduce systematic faults, isolate safety-critical systems, it 

important to ensure that all systems are operational and working as 

expected at run-time. The last section explores the run-time 

monitoring and diagnostics that can be done for this. 

System Redundancy via Multi-Sensor Fusion 
 
In order to let a car run autonomously, first it has to sense the 

external environment/surroundings; process the data and act by 

making meaningful decisions. In this sense, process and act chain, 

the sensing part of the external environment is taken care by 

sensors like camera, radar, LIDAR and referred as surround 

sensors in rest of the paper. Apart from surround sensors, other 

sensors like vehicle odometry sensors and actuators are also 

important to feed the information to decision-making block. For 

example, the steering wheel angle and wheel speed is important 

data for a car to make the right decision along with surrounding 

information. So broadly we would divide sensors in be below three 

categories  

• Surround sensors: These are mounted on the 

external/internal surface of the car and useful to provide 

surrounding information. Example: Camera, radar, Lidar, 

ultrasonic, infrared camera, IMU, GPS and digital map etc. 

• Vehicle odometry sensors: These sensors capture the 

information about vehicle motion. Example: wheel speed, 

acceleration, yaw rate, steering wheel angle etc. 

• Actuators: These are the sensors which translate the 

human/machine actions. Example: Break Torque, Engine 

Torque, restraint actuators, wheel spring etc.  

 

In this paper, we will discuss more on surround-view sensors and 

importance of multi-sensor fusion for an autonomous car. Car 

makers have been using different sensors mainly Lidar, radar, 

camera and ultrasonic for safety features like ACC (Automatic 

Cruise Control), LKA (Lane Keep Assist), blind spot detections, 

forward collision warning, and very recently for active safety 

features like AEB (Auto-Emergency Brake) as well. In recent past, 

industry has seen the usage of more sensor/information like 

satellite information, vehicle and infrastructure (V2V and V2x) 

and Lidar to improve the robustness of these safety features. There 

is significant overlap of the information provided by these sensors. 

At the same time, their degree of reliability varies. For example, 

radar and camera both can identify the distance of an object but the 

reliability of information from a radar sensor is higher as compared 

to a camera. Autonomous driving systems need to provide the 

highest degree of reliability and would require a good overlap of 

information from different sensors to make a confident decision. 
 

Table 1 provides a good comparison of these sensors by listing 

their pros and cons and their applicability to different ADAS 

features which are critical for autonomous driving. In areas where 

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 35

https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-017
© 2017, Society for Imaging Science and Technology



 

 

a sensor lacks, an alternative sensor name is mentioned in square 

bracket []. For example, a vision sensor is bad for speed detection 

whereas Radar/LIDAR can help there. 

 

 
Table 1 Different surround sensors their Pros/Cons   

 

It is quite evident from this table that there is no single sensor 

which can handle all cases. Therefore, for autonomous driving 

systems, sensor fusion is a must. Most of the existing work in this 

field have highlighted this fact. The first urban autonomous vehicle 

demonstration in DARPA 2007 had 18 sensors (9 Lidar, 5 Radar, 2 

vision and 2 GPS/IMU) having redundant information for vehicle 

path planning [1]. Puthon, A.S. et al highlighted the importance of 

sensor fusion of vision and GPS for speed sign recognition [2]. 

With redundant information measurement precision can be 

enhanced and in addition, the fault tolerance of the overall system 

increases, as the failure of one sensor does not necessarily result in 

the failure of the system as a whole [3].  

 

Consider a scenario when ACC detects that the distance to a car in 

front is too small. Here, ACC decides to reduce the speed. 

However, this decision will not be valid in the case where the 

driver intends to overtake the car in front. In fact, the decision to 

slow down increases the probability of a rear-end collision [4]. So 

such situations require more holistic knowledge of environment 

using multiple sensors 

 

Figure 1, provides a pictorial view of how multiple sensors can 

help to cover different fields of view and basic functions for 

autonomous driving [4]. 

 
Figure 1 Surround Sensors, coverage area and applications  

Multiple sensor fusion architectures are described [5] and are 

shown in below Figure 2. High-Level fusion architecture seems to 

be more practical from a safety point of view as it avoids single 

point failure as well more viable with more and more new sensors 

being added to existing systems.  

 

 
Figure 2 Different architectures of fusion systems 

Irrespective of sensor fusion architecture, the importance of 

multiple sensors having redundancy remains high to allow a better 

decision from a fusion algorithm.  

HW and SW Architectures 
 
Based on Figure 2, different HW architectures are possible. Low-

level fusion, Figure 2(a), implies a more centralized HW 

processing based system. Figure 2(b), Figure 2(c), implies a 

distributed HW processing based system. 

From a safety point of view, the fusion SoCs shown in Figure 3 

and Figure 4 represent a single point of failure and redundancy at 

fusion SoC would be required for functional safety. The amount of 

processing done in fusion SoC for centralized HW architecture 

would be large and redundancy of fusion SoC, in this case, would 

be expensive. In distributed HW architecture, the processing is 

Sensor Pros Cons Suitability to Features

Accurate distance and 

speed detection

No environmental knowledge of the 

scene, eg: during turn the object is not 

in line of sight [Vision]

Can detect objects at very 

short range with good range 

resolution

Non-metallic objects, such 

rocks/pedestrians produce no/weaker 

reflections so poor detection [Vision, 

Lidar]

Aesthetically good, as it 

can hide behind bumpers

Poor spatial localization in absense of 

many antennas [Vision, Lidar]

Can detect objects at very 

long range detection

Cannot detect visual information’s - 

traffic light, traffic signs, lane 

markings, debris on road [Vision]

Agnostic to light and 

weather condition

Beam blockage

Only suitable sensor for 

visual appearance based 

object detections - traffic 

light, traffic signs, lane 

markings, debris on road

Complex processing elements for 

data processing and significant 

software development cost

Good detection of road 

users (ped, bicyclist, 

vehicles, animals)

Bad (or costly using stereo camera) 

distance deetction

Easy retrieval of angular 

information of objects

Sensitive to weather conditions such 

as rain, fog [Radar, Lidar]

Provides good 

environmental information 

for heuristic based complex 

decisions

Sensitive to lighting conditions 

mainly unreliable in low light during 

night [Radar, Infrared Camera]

Small sizes Bad speed detection [Radar, Lidar]

Can detect very small 

obstacles

Cannot detect visual information’s - 

traffic light, traffic signs, lane 

markings, debris on road [Vision]

Accurate distance/speed 

detection

Insufficient angular resolution at long 

ranges [Radar]

Good obstacle detection Commercially not viable yet because 

of big size, higher cost

Can provide surrounded 

environment model

Bad vehicle, pedestrian detection 

[Vision]

Smaller range than Radar

Very Short range detection 

(< 3 meter)

Easily distorted by reflections of the 

road [Vision]

High angular range No angular position [Vision]

Low cost (both hardware & 

software development)

No echo cancellation

Infrared 

Camera

Usable under night 

conditions

Traffic signs show very poor contrast Night Vision

GPS / 

Digital 

Map

Good contextual 

information about routes, 

traffic situations, road 

guidelines (eg. speed limit)

use of outdated databases particularly 

in urban environment, which changes 

often, or in roadwork [Vision]

Path planning, Curve 

and Speed Limit 

information

Ultrasoni

c

Park Assist during 

back maneuvers

Radar Adaptive Cruise 

Control (ACC), Blind 

spot Detection (BSD), 

Lane Change Assist, 

Park Assist,  

Forward/Rear 

Collision Warning

Vision Adaptive Light 

Control, Adaptive 

Cruise control, 

Automated emergency 

braking, Forward/Rear 

Collision Warning, 

Lane Keep support, 

road user or obstacle 

(pedestrian, vehicles, 

animals, motorist, 

bicyclist, debris) 

detections, Traffic sign 

and Traffic Light 

detection, Park Assist, 

Free space detection

LIDAR Adaptive Cruise 

Control (ACC), Blind 

spot Detection (BSD), 

Lane Change Assist, 

Park Assist,  

Forward/Rear 

Collision Warning, 

Free space detection 

and path planning
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spread across multiple SoC so the processing requirements at 

fusion SoC would be modest and thus implementing redundancy 

would be relatively inexpensive.  

 

 
 
Figure 3: Centralized HW architecture 

 

 
 
Figure 4: Distributed HW architecture 

 Whether centralized or distributed HW architecture is used, the 

processing or compute elements within a SoC would typically be 

heterogeneous in nature. One example of such a heterogeneous 

processing element SoC is the TDA2x SoC [6] shown in figure 5. 

It includes 

• Dual-core ARM® Cortex®-A15 running at 750MHz 

• Up to two dual-core ARM® Cortex®-M4 subsystems running 

at 212MHz 

• Two cores of latest generation of fixed/floating C66x DSPs 

running up to 750MHz 

• Up to four cores of Embedded Vision Engine (EVE) for 

vector processing.  

It also integrates hardware for camera capture and Display 

subsystem resulting in better video quality at lower power. The 

TDA2x SoC also includes TI’s IVA-HD technology which enables 

full HD video encode and decode, as well as dual SGX544 3D 

graphic cores capable of rendering 170 Mpoly/s at 500 MHz. It 

contains large on-chip RAM, rich set of input/output (I/O) 

peripherals for connectivity, and safety mechanism for the 

automotive market and offers lower system cost. 

 
Figure 5: Block Diagram of TDA2x SoC 

 

From a SW architecture point of view, two possible data flows are 

possible. Figure 6 shows centralized SW data processing. Here a 

“master” CPU submits work to worker “threads” on same or 

different CPUs. Characteristics of this approach include more finer 

control on data flow at master CPU, more dynamic data flow, more 

complex SW logic at the master CPU. Such a SW architecture is 

suited for fusion like processing where a fixed data flow is 

typically not followed and interactions between CPUs could be 

different depending on different sensor inputs and results at a given 

moment. 

Figure 7 shows distributed SW data processing. Here different 

threads on same on different CPUs communicate directly with 

each other to make a data flow. Characteristics of this approach, 

lower SW overhead at a given core, reduced latency, simplified 

SW design, relatively static or fixed data flows. This is suited for 

an individual sensor processing data flow where the sequence of 

steps is typically well known for given sensor modality (Figure 4). 

HWA below refers to HW accelerator or similar module on a SoC.  

 

 
Figure 6: Centralized SW data processing 
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Figure 7: Distributed SW data processing 

In autonomous driving, SW architecture would involve both 

centralized and distributed data flows. In this paper, we propose 

usage of OpenVX framework for the realization of system level 

SW data flows. OpenVX provides a graph-based definition of a 

data flow. Distributed SW data flows can be represented as graphs 

with multiple nodes. Nodes are connected to each other via data 

objects. Centralized data flows can be implemented by having the 

master CPU submit works as single node graphs to “worker” 

CPUs. 

Further, OpenVX allows users to operate at a higher level of 

abstraction by hiding the lower level SoC details, this would allow 

the SW to scale to different SoC types and system configurations. 

From a safety perspective, additional requirements need to be met 

by the software architecture. Static predictable systems are desired 

from a safety point of view, ex, no dynamic resource allocation, 

predictable control flow. In OpenVX, the data flow graph and 

required resources can be specified upfront during system 

initialization. Any system level parameter verification, scheduling 

choices can be done during graph verify stage. This allows 

optimization for a given SoC. At the same time, it makes the 

resource allocation static and execution predictable on the given 

SoC. Future specifications of OpenVX will support graph 

“import”, “export” capabilities which will allow this verification 

step to be done offline instead of during system initialization in the 

final system. Unit level SW testing and verification is an important 

aspect towards achieving safe SW systems. Test harness can be 

developed around the graph API of OpenVX in order to test 

OpenVX nodes at a unit level before they are integrated at a 

system level. SW/HW in loop mechanisms can be used to ensure 

correctness of data processing nodes. 

Freedom from Interference 
 
Automotive software needs to be qualified as per ISO 26262 

“Road Vehicles - Functional Safety” standard. This standard 

provides processes to identify and assess safety hazards in a system 

and establish, manage and track safety requirements to reduce risks 

to acceptable levels. ISO 26262 defines Automotive Safety 

Integrity Level (ASIL) - a risk classification system. It defines four 

ASILs – ASIL A through ASIL D - in increasing order of safety 

requirements. It also provides a classification level called QM 

(Quality Managed) for modules whose safety requirements are not 

critical. 

In contemporary solutions, a single ECU is responsible for a 

variety of operations. A mix of software modules – a minority of 

which will be safety-critical – co-exist on a system. A majority of 

modules will be classified as QM. Such a co-existence is a major 

risk in a safety-critical system. A naïve solution is to make all 

software comply with the highest safety standard required by the 

system. However, this is not practical due to the very high 

complexity and large development costs. To address this, ISO 

26262 allows a system with mixed criticality as long as it ensures 

"Freedom from Interference (FFI)" between different software 

modules so that errors in one module do not propagate into other 

modules. ISO-26262 requires a system to address three types of 

interference 

• Memory usage 

• Timing and execution order 

• Exchange of information 

A typical solution for interference on timing and execution order 

involves the use of task monitors and watchdog timer. Interference 

on information exchange is typically handled in software by using 

redundancies in messaging and using features like checksums to 

ensure the integrity of a communication channel. However, the 

problem of ensuring freedom from interference on memory usage 

does not have a simple solution on a heterogeneous multi-core 

SoCs. Solutions available in market rely mainly on MMUs and 

CPU modes and don’t address interference across different cores in 

a system. In this section using TDAx shown in figure 5 as a case 

study we show how FFI can be implemented. 

Consider a system that consists of a mix of QM and ASIL tasks. 

These tasks can exist on one or multiple cores. They share 

common memories. Memory space can be divided into two regions 

– QM and ASIL. ASIL tasks typically have read-write permissions 

to all memories. QM tasks will have write permissions to QM 

memories only. QM tasks will have read-only permissions for 

ASIL memories. Thus, the problem of preventing interference 

across tasks can be solved by providing means of defining a 

combination of read-only and read-write memory sections. 

 
Figure 8: Typical TDAx SoC 

 
Figure 9: Summary of HW modules in TDAx for FFI 
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Figure 10: CPUs and HW modules used for FFI 

The TDAx platforms provide three classes of hardware modules to 

control memory accesses: 

• MMU (Memory Management Units) and XMC (Extended 

Memory Controller) for external memory accesses from a 

CPU subsystem 

• MPU (Memory Protection Units) for internal memory 

accesses within a CPU subsystem 

• Firewalls to limit accesses to memories to only a list of 

specified initiators 

MMU and MPU 
Cortex A15 and Cortex A8 provide a powerful MMU designed for 

High-Level Operating System (HLOS). This gives a 

straightforward solution for FFI by providing the ability to define 

read-only memory sections. It also provides a feature called 

Address Space Identifier (ASID) which allows different tasks to 

use different memory mappings and, therefore, allow seamless task 

switching. 

DSP MPUs can provide isolation between QM and ASIL tasks for 

the internal memories based CPU mode (user vs. supervisor). DSP 

XMC provides the same protection mechanism for external 

memory accesses. 

The M4 subsystem can use the CPU mode (user vs. supervisor) in 

conjunction with MMU and Firewalls to enable FFI. 

Firewalls 

Firewalls are a key means to support FFI on a heterogeneous 

multi-core system. They provide an ability to restrict access to 

memory regions based on master identification. This is a common 

use-case for non-compute HW units like DMA, Video Capture, 

and Ethernet in the SoC which may not use MMU. 

EVE cores do not provide task identification via CPU mode (user 

vs. supervisor). Therefore, firewalls are used to enable FFI on EVE 

cores.  

Run Time Application Monitoring 
 
The ISO26262 functional safety standard [7] defines requirements 

which try to avoid or reduce the risk caused by malfunction of a 

Safety System. As the level of SW complexity increases, the 

standard emphasizes on test and verification of application SW 

components throughout the product lifecycle, including 

deployment in the field. Multiple techniques [8] have been 

proposed to catch systematic SW faults during development. But 

without a mechanism to monitor and report the state of the 

application, even when the application crashes or malfunctions, it 

is impossible to guarantee a fail-safe system.  

In this section we describe a SW framework for Autonomous 

Driving applications using heterogeneous multi-core complex 

SoCs with the aim to provide: 

• A centralized application SW monitoring framework 

• A fail-safe mechanism to communicate monitored results 

from different CPUs to the central monitor 

• A consolidated view of the overall system workload and data 

bandwidth by extending the scope of CPU specific libraries 

which provide information local to a given processing core. 

• Support multiple different monitors to achieve higher 

confidence for SW and hardware fault detection. 

• Application state like processing time, latency, number of 

frames processed/dropped, CPU low power time, etc. from 

multiple CPUs and HWAs.  

 

 
Figure 11: Framework support and flow for monitoring different system 

statistics 

Centralized Monitoring of Multi-Processor ADAS SoCs 
In order to describe the scheme for centralized monitoring, we 

consider a Multi-processor System on Chip (MPSoC) consisting of 

a host processor which acts as the application master, general 

purpose processors (GPP) and signal processing (SP) cores with 

associated vision/radar/compute accelerators. The overall SW 

infrastructure used to monitor system and CPU level statistics, key 

components, data and control flow between different monitoring 

tasks and functions executing on multiple CPUs is highlighted in 

Figure 11. Measurements include thread level statistics, CPU 

workload percentage, memory and heap status, DRAM bandwidth, 

CPU utilization and low power time, hardware errors like CRC, 

ECC failures. 

A centralized statistics monitor task (MCentral) is created on the host 

processor. Individual statistic monitor probes, Mx
i, running locally 

on CPUx register with MCentral. Depending on the kind of 

measurement made, Mx
i update data in their local buffers based on 

an application defined sampling interval (e.g. CPU workload, 

bandwidth measurement) or occurrence of an event (e.g. heap 

alloc/de-alloc, new frame received). In order to limit the amount of 

data transferred between local monitor tasks and MCentral, 

individual Mx
i pre-process the captured data by performing 

statistical operations like mean, maximum, variance and so on. 

Based on the application defined logging interval, data is collected 

from different Mx
i sources and is collated on the host processor 

MCentral task to forward the data to console output logger or the 

diagnostics framework on MCU side via CAN for further analysis. 

Fail-Safe Communication of Monitored Results 
Due to real time constraints placed on Autonomous applications, 

inter-CPU communication is often established using hardware 

assisted lowest latency interrupt based Inter-Processor 

Communication (IPC). Application crashes and hangs can often 
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cause this low latency communication channel to be out of service 

to send out state information for failure analysis. We recommend 

using a non-locking shared memory region queue for transferring 

commands and data between different monitor tasks.  

The advantage of this approach is that the communication between 

monitor tasks (to detect and report errors) remains active even 

when the application runs slow or becomes dead. The non-locking 

nature of the communication ensures that MCentral does not hang 

while trying to pull data from a monitor running on a crashed or 

hung CPU. Shared memory region based IPC also ensures minimal 

CPU overheads. The shared memory should be preferably 

allocated such that it does not share the same interconnect access 

path as the application data memories. For example, the developer 

can place the monitor IPC shared memory in internal SRAM while 

the application uses DRAM. This allows the monitor statistics to 

be reported to the MCU even in the case of a catastrophic hardware 

interconnect hang. 

Conclusion 
 
Autonomous cars are coming and they need to be safe in order for 

wide acceptance of this technology. There is no one solution which 

will make autonomous cars safe. Multi-sensor fusion and 

distributed HW architectures can make sure there is no single point 

of failure which causes hazardous situations for humans. SW 

architectures using frameworks like OpenVX can help implement 

multi-sensor fusion on distributed HW architectures. Since it’s 

infeasible to make all the SW systems adhere to highest ASIL 

level, mixed ASIL systems need to be implemented using Freedom 

from interference techniques using HW units like MMUs, 

firewalls. Finally, real-time HW/SW monitoring and diagnostics 

need to be deployed to make sure the system behaves according to 

specification.   
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