

Enabling Functional Safety ASIL Compliance for Autonomous

Driving Software Systems

Kedar Chitnis, Mihir Mody, Pramod Swami, Sivaraj R, Chaitanya Ghone, M G Biju, Badri Narayanan, Yashwant Dutt, Aish Dubey*

{kedarc, mihir, pramods, sivaraj, csghone, biju, badri, yashwant.dutt, aish}@ti.com

Automotive Processors, Texas Instruments (India and *USA)

Abstract
With cars driving autonomously on roads, functional safety

assumes critical importance to avoid hazardous situations for

humans in the car and on the road. ISO 26262 defines Automotive

Safety Integration Level (ASIL) with level QM (Least) to ASIL-D

(Highest) based on severity and probability of defect causing harm

to human life. This paper explores functional safety requirements

and solutions for software systems in autonomous cars in four

broad aspects. The first aspect covers usage of redundancy at

various levels to ensure the failure of one system does not affect

the overall operation of the car. It explores the usage of

redundancy via multiple sensors and diverse processing of data to

arrive at functionally safe results. Based on the redundancy

requirements, in the second aspect, an HW (SoC) and SW

architecture is proposed which can help meet these requirements.

It explores the definition of SW framework, task scheduling, and

tools usage to ensure systematic faults are prevented at the

development stage. Autonomous driving systems will be complex

and expecting all software modules comply with the highest

functional safety level may not be feasible. The third aspect

explores the usage of freedom from interference (FFI) via HW and

SW mechanisms like Firewalls, MMU to allow safe and non-safe

sub-systems to co-exist and operate according to their

specification. The final aspect covers usage of SW and HW

diagnostics to monitor, detect, and correct random faults found at

run-time in HW modules. It explores the usage of diagnostics

features like ECC, CRC, and BIST to help detect and avoid run-

time failures.

Introduction

With increased focus on autonomous cars, the question of

autonomous cars being a reality has shifted from "if" to "when". In

the rush to get autonomous cars on the roads one must not forget

functional safety aspects of the HW/SW systems so that humans,

in the car and outside the car, are not put into hazardous situations

due to the operation of the car. In this paper, we explore various

aspects that need to be covered by software systems to ensure an

autonomous car is safe on the road.

We first argue the need for redundancy in sensors and processing

in order to make autonomous driving decisions. We then explore

HW and SW architectures to implement these redundancies. SW

best practices to follow in order to avoid systematic faults and

frameworks to use for these are explored. Software system in

autonomous cars can get very complex. The cost for making a

software sub-system compliant to ASIL specification is huge.

Hence it is not feasible to make all sub-systems to adhere to the

highest ASIL level. Freedom from interference concept is explored

to allow safe and non-safe tasks to co-exist within the same

system. Finally, even with all the logic to implement redundancies,

reduce systematic faults, isolate safety-critical systems, it

important to ensure that all systems are operational and working as

expected at run-time. The last section explores the run-time

monitoring and diagnostics that can be done for this.

System Redundancy via Multi-Sensor Fusion

In order to let a car run autonomously, first it has to sense the

external environment/surroundings; process the data and act by

making meaningful decisions. In this sense, process and act chain,

the sensing part of the external environment is taken care by

sensors like camera, radar, LIDAR and referred as surround

sensors in rest of the paper. Apart from surround sensors, other

sensors like vehicle odometry sensors and actuators are also

important to feed the information to decision-making block. For

example, the steering wheel angle and wheel speed is important

data for a car to make the right decision along with surrounding

information. So broadly we would divide sensors in be below three

categories

• Surround sensors: These are mounted on the

external/internal surface of the car and useful to provide

surrounding information. Example: Camera, radar, Lidar,

ultrasonic, infrared camera, IMU, GPS and digital map etc.

• Vehicle odometry sensors: These sensors capture the

information about vehicle motion. Example: wheel speed,

acceleration, yaw rate, steering wheel angle etc.

• Actuators: These are the sensors which translate the

human/machine actions. Example: Break Torque, Engine

Torque, restraint actuators, wheel spring etc.

In this paper, we will discuss more on surround-view sensors and

importance of multi-sensor fusion for an autonomous car. Car

makers have been using different sensors mainly Lidar, radar,

camera and ultrasonic for safety features like ACC (Automatic

Cruise Control), LKA (Lane Keep Assist), blind spot detections,

forward collision warning, and very recently for active safety

features like AEB (Auto-Emergency Brake) as well. In recent past,

industry has seen the usage of more sensor/information like

satellite information, vehicle and infrastructure (V2V and V2x)

and Lidar to improve the robustness of these safety features. There

is significant overlap of the information provided by these sensors.

At the same time, their degree of reliability varies. For example,

radar and camera both can identify the distance of an object but the

reliability of information from a radar sensor is higher as compared

to a camera. Autonomous driving systems need to provide the

highest degree of reliability and would require a good overlap of

information from different sensors to make a confident decision.

Table 1 provides a good comparison of these sensors by listing

their pros and cons and their applicability to different ADAS

features which are critical for autonomous driving. In areas where

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 35

https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-017
© 2017, Society for Imaging Science and Technology

a sensor lacks, an alternative sensor name is mentioned in square

bracket []. For example, a vision sensor is bad for speed detection

whereas Radar/LIDAR can help there.

Table 1 Different surround sensors their Pros/Cons

It is quite evident from this table that there is no single sensor

which can handle all cases. Therefore, for autonomous driving

systems, sensor fusion is a must. Most of the existing work in this

field have highlighted this fact. The first urban autonomous vehicle

demonstration in DARPA 2007 had 18 sensors (9 Lidar, 5 Radar, 2

vision and 2 GPS/IMU) having redundant information for vehicle

path planning [1]. Puthon, A.S. et al highlighted the importance of

sensor fusion of vision and GPS for speed sign recognition [2].

With redundant information measurement precision can be

enhanced and in addition, the fault tolerance of the overall system

increases, as the failure of one sensor does not necessarily result in

the failure of the system as a whole [3].

Consider a scenario when ACC detects that the distance to a car in

front is too small. Here, ACC decides to reduce the speed.

However, this decision will not be valid in the case where the

driver intends to overtake the car in front. In fact, the decision to

slow down increases the probability of a rear-end collision [4]. So

such situations require more holistic knowledge of environment

using multiple sensors

Figure 1, provides a pictorial view of how multiple sensors can

help to cover different fields of view and basic functions for

autonomous driving [4].

Figure 1 Surround Sensors, coverage area and applications

Multiple sensor fusion architectures are described [5] and are

shown in below Figure 2. High-Level fusion architecture seems to

be more practical from a safety point of view as it avoids single

point failure as well more viable with more and more new sensors

being added to existing systems.

Figure 2 Different architectures of fusion systems

Irrespective of sensor fusion architecture, the importance of

multiple sensors having redundancy remains high to allow a better

decision from a fusion algorithm.

HW and SW Architectures

Based on Figure 2, different HW architectures are possible. Low-

level fusion, Figure 2(a), implies a more centralized HW

processing based system. Figure 2(b), Figure 2(c), implies a

distributed HW processing based system.

From a safety point of view, the fusion SoCs shown in Figure 3

and Figure 4 represent a single point of failure and redundancy at

fusion SoC would be required for functional safety. The amount of

processing done in fusion SoC for centralized HW architecture

would be large and redundancy of fusion SoC, in this case, would

be expensive. In distributed HW architecture, the processing is

Sensor Pros Cons Suitability to Features

Accurate distance and

speed detection

No environmental knowledge of the

scene, eg: during turn the object is not

in line of sight [Vision]

Can detect objects at very

short range with good range

resolution

Non-metallic objects, such

rocks/pedestrians produce no/weaker

reflections so poor detection [Vision,

Lidar]

Aesthetically good, as it

can hide behind bumpers

Poor spatial localization in absense of

many antennas [Vision, Lidar]

Can detect objects at very

long range detection

Cannot detect visual information’s -

traffic light, traffic signs, lane

markings, debris on road [Vision]

Agnostic to light and

weather condition

Beam blockage

Only suitable sensor for

visual appearance based

object detections - traffic

light, traffic signs, lane

markings, debris on road

Complex processing elements for

data processing and significant

software development cost

Good detection of road

users (ped, bicyclist,

vehicles, animals)

Bad (or costly using stereo camera)

distance deetction

Easy retrieval of angular

information of objects

Sensitive to weather conditions such

as rain, fog [Radar, Lidar]

Provides good

environmental information

for heuristic based complex

decisions

Sensitive to lighting conditions

mainly unreliable in low light during

night [Radar, Infrared Camera]

Small sizes Bad speed detection [Radar, Lidar]

Can detect very small

obstacles

Cannot detect visual information’s -

traffic light, traffic signs, lane

markings, debris on road [Vision]

Accurate distance/speed

detection

Insufficient angular resolution at long

ranges [Radar]

Good obstacle detection Commercially not viable yet because

of big size, higher cost

Can provide surrounded

environment model

Bad vehicle, pedestrian detection

[Vision]

Smaller range than Radar

Very Short range detection

(< 3 meter)

Easily distorted by reflections of the

road [Vision]

High angular range No angular position [Vision]

Low cost (both hardware &

software development)

No echo cancellation

Infrared

Camera

Usable under night

conditions

Traffic signs show very poor contrast Night Vision

GPS /

Digital

Map

Good contextual

information about routes,

traffic situations, road

guidelines (eg. speed limit)

use of outdated databases particularly

in urban environment, which changes

often, or in roadwork [Vision]

Path planning, Curve

and Speed Limit

information

Ultrasoni

c

Park Assist during

back maneuvers

Radar Adaptive Cruise

Control (ACC), Blind

spot Detection (BSD),

Lane Change Assist,

Park Assist,

Forward/Rear

Collision Warning

Vision Adaptive Light

Control, Adaptive

Cruise control,

Automated emergency

braking, Forward/Rear

Collision Warning,

Lane Keep support,

road user or obstacle

(pedestrian, vehicles,

animals, motorist,

bicyclist, debris)

detections, Traffic sign

and Traffic Light

detection, Park Assist,

Free space detection

LIDAR Adaptive Cruise

Control (ACC), Blind

spot Detection (BSD),

Lane Change Assist,

Park Assist,

Forward/Rear

Collision Warning,

Free space detection

and path planning

36
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

spread across multiple SoC so the processing requirements at

fusion SoC would be modest and thus implementing redundancy

would be relatively inexpensive.

Figure 3: Centralized HW architecture

Figure 4: Distributed HW architecture

 Whether centralized or distributed HW architecture is used, the

processing or compute elements within a SoC would typically be

heterogeneous in nature. One example of such a heterogeneous

processing element SoC is the TDA2x SoC [6] shown in figure 5.

It includes

• Dual-core ARM® Cortex®-A15 running at 750MHz

• Up to two dual-core ARM® Cortex®-M4 subsystems running

at 212MHz

• Two cores of latest generation of fixed/floating C66x DSPs

running up to 750MHz

• Up to four cores of Embedded Vision Engine (EVE) for

vector processing.

It also integrates hardware for camera capture and Display

subsystem resulting in better video quality at lower power. The

TDA2x SoC also includes TI’s IVA-HD technology which enables

full HD video encode and decode, as well as dual SGX544 3D

graphic cores capable of rendering 170 Mpoly/s at 500 MHz. It

contains large on-chip RAM, rich set of input/output (I/O)

peripherals for connectivity, and safety mechanism for the

automotive market and offers lower system cost.

Figure 5: Block Diagram of TDA2x SoC

From a SW architecture point of view, two possible data flows are

possible. Figure 6 shows centralized SW data processing. Here a

“master” CPU submits work to worker “threads” on same or

different CPUs. Characteristics of this approach include more finer

control on data flow at master CPU, more dynamic data flow, more

complex SW logic at the master CPU. Such a SW architecture is

suited for fusion like processing where a fixed data flow is

typically not followed and interactions between CPUs could be

different depending on different sensor inputs and results at a given

moment.

Figure 7 shows distributed SW data processing. Here different

threads on same on different CPUs communicate directly with

each other to make a data flow. Characteristics of this approach,

lower SW overhead at a given core, reduced latency, simplified

SW design, relatively static or fixed data flows. This is suited for

an individual sensor processing data flow where the sequence of

steps is typically well known for given sensor modality (Figure 4).

HWA below refers to HW accelerator or similar module on a SoC.

Figure 6: Centralized SW data processing

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 37

Figure 7: Distributed SW data processing

In autonomous driving, SW architecture would involve both

centralized and distributed data flows. In this paper, we propose

usage of OpenVX framework for the realization of system level

SW data flows. OpenVX provides a graph-based definition of a

data flow. Distributed SW data flows can be represented as graphs

with multiple nodes. Nodes are connected to each other via data

objects. Centralized data flows can be implemented by having the

master CPU submit works as single node graphs to “worker”

CPUs.

Further, OpenVX allows users to operate at a higher level of

abstraction by hiding the lower level SoC details, this would allow

the SW to scale to different SoC types and system configurations.

From a safety perspective, additional requirements need to be met

by the software architecture. Static predictable systems are desired

from a safety point of view, ex, no dynamic resource allocation,

predictable control flow. In OpenVX, the data flow graph and

required resources can be specified upfront during system

initialization. Any system level parameter verification, scheduling

choices can be done during graph verify stage. This allows

optimization for a given SoC. At the same time, it makes the

resource allocation static and execution predictable on the given

SoC. Future specifications of OpenVX will support graph

“import”, “export” capabilities which will allow this verification

step to be done offline instead of during system initialization in the

final system. Unit level SW testing and verification is an important

aspect towards achieving safe SW systems. Test harness can be

developed around the graph API of OpenVX in order to test

OpenVX nodes at a unit level before they are integrated at a

system level. SW/HW in loop mechanisms can be used to ensure

correctness of data processing nodes.

Freedom from Interference

Automotive software needs to be qualified as per ISO 26262

“Road Vehicles - Functional Safety” standard. This standard

provides processes to identify and assess safety hazards in a system

and establish, manage and track safety requirements to reduce risks

to acceptable levels. ISO 26262 defines Automotive Safety

Integrity Level (ASIL) - a risk classification system. It defines four

ASILs – ASIL A through ASIL D - in increasing order of safety

requirements. It also provides a classification level called QM

(Quality Managed) for modules whose safety requirements are not

critical.

In contemporary solutions, a single ECU is responsible for a

variety of operations. A mix of software modules – a minority of

which will be safety-critical – co-exist on a system. A majority of

modules will be classified as QM. Such a co-existence is a major

risk in a safety-critical system. A naïve solution is to make all

software comply with the highest safety standard required by the

system. However, this is not practical due to the very high

complexity and large development costs. To address this, ISO

26262 allows a system with mixed criticality as long as it ensures

"Freedom from Interference (FFI)" between different software

modules so that errors in one module do not propagate into other

modules. ISO-26262 requires a system to address three types of

interference

• Memory usage

• Timing and execution order

• Exchange of information

A typical solution for interference on timing and execution order

involves the use of task monitors and watchdog timer. Interference

on information exchange is typically handled in software by using

redundancies in messaging and using features like checksums to

ensure the integrity of a communication channel. However, the

problem of ensuring freedom from interference on memory usage

does not have a simple solution on a heterogeneous multi-core

SoCs. Solutions available in market rely mainly on MMUs and

CPU modes and don’t address interference across different cores in

a system. In this section using TDAx shown in figure 5 as a case

study we show how FFI can be implemented.

Consider a system that consists of a mix of QM and ASIL tasks.

These tasks can exist on one or multiple cores. They share

common memories. Memory space can be divided into two regions

– QM and ASIL. ASIL tasks typically have read-write permissions

to all memories. QM tasks will have write permissions to QM

memories only. QM tasks will have read-only permissions for

ASIL memories. Thus, the problem of preventing interference

across tasks can be solved by providing means of defining a

combination of read-only and read-write memory sections.

Figure 8: Typical TDAx SoC

Figure 9: Summary of HW modules in TDAx for FFI

38
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

Figure 10: CPUs and HW modules used for FFI

The TDAx platforms provide three classes of hardware modules to

control memory accesses:

• MMU (Memory Management Units) and XMC (Extended

Memory Controller) for external memory accesses from a

CPU subsystem

• MPU (Memory Protection Units) for internal memory

accesses within a CPU subsystem

• Firewalls to limit accesses to memories to only a list of

specified initiators

MMU and MPU
Cortex A15 and Cortex A8 provide a powerful MMU designed for

High-Level Operating System (HLOS). This gives a

straightforward solution for FFI by providing the ability to define

read-only memory sections. It also provides a feature called

Address Space Identifier (ASID) which allows different tasks to

use different memory mappings and, therefore, allow seamless task

switching.

DSP MPUs can provide isolation between QM and ASIL tasks for

the internal memories based CPU mode (user vs. supervisor). DSP

XMC provides the same protection mechanism for external

memory accesses.

The M4 subsystem can use the CPU mode (user vs. supervisor) in

conjunction with MMU and Firewalls to enable FFI.

Firewalls

Firewalls are a key means to support FFI on a heterogeneous

multi-core system. They provide an ability to restrict access to

memory regions based on master identification. This is a common

use-case for non-compute HW units like DMA, Video Capture,

and Ethernet in the SoC which may not use MMU.

EVE cores do not provide task identification via CPU mode (user

vs. supervisor). Therefore, firewalls are used to enable FFI on EVE

cores.

Run Time Application Monitoring

The ISO26262 functional safety standard [7] defines requirements

which try to avoid or reduce the risk caused by malfunction of a

Safety System. As the level of SW complexity increases, the

standard emphasizes on test and verification of application SW

components throughout the product lifecycle, including

deployment in the field. Multiple techniques [8] have been

proposed to catch systematic SW faults during development. But

without a mechanism to monitor and report the state of the

application, even when the application crashes or malfunctions, it

is impossible to guarantee a fail-safe system.

In this section we describe a SW framework for Autonomous

Driving applications using heterogeneous multi-core complex

SoCs with the aim to provide:

• A centralized application SW monitoring framework

• A fail-safe mechanism to communicate monitored results

from different CPUs to the central monitor

• A consolidated view of the overall system workload and data

bandwidth by extending the scope of CPU specific libraries

which provide information local to a given processing core.

• Support multiple different monitors to achieve higher

confidence for SW and hardware fault detection.

• Application state like processing time, latency, number of

frames processed/dropped, CPU low power time, etc. from

multiple CPUs and HWAs.

Figure 11: Framework support and flow for monitoring different system

statistics

Centralized Monitoring of Multi-Processor ADAS SoCs
In order to describe the scheme for centralized monitoring, we

consider a Multi-processor System on Chip (MPSoC) consisting of

a host processor which acts as the application master, general

purpose processors (GPP) and signal processing (SP) cores with

associated vision/radar/compute accelerators. The overall SW

infrastructure used to monitor system and CPU level statistics, key

components, data and control flow between different monitoring

tasks and functions executing on multiple CPUs is highlighted in

Figure 11. Measurements include thread level statistics, CPU

workload percentage, memory and heap status, DRAM bandwidth,

CPU utilization and low power time, hardware errors like CRC,

ECC failures.

A centralized statistics monitor task (MCentral) is created on the host

processor. Individual statistic monitor probes, Mx
i, running locally

on CPUx register with MCentral. Depending on the kind of

measurement made, Mx
i update data in their local buffers based on

an application defined sampling interval (e.g. CPU workload,

bandwidth measurement) or occurrence of an event (e.g. heap

alloc/de-alloc, new frame received). In order to limit the amount of

data transferred between local monitor tasks and MCentral,

individual Mx
i pre-process the captured data by performing

statistical operations like mean, maximum, variance and so on.

Based on the application defined logging interval, data is collected

from different Mx
i sources and is collated on the host processor

MCentral task to forward the data to console output logger or the

diagnostics framework on MCU side via CAN for further analysis.

Fail-Safe Communication of Monitored Results
Due to real time constraints placed on Autonomous applications,

inter-CPU communication is often established using hardware

assisted lowest latency interrupt based Inter-Processor

Communication (IPC). Application crashes and hangs can often

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 39

cause this low latency communication channel to be out of service

to send out state information for failure analysis. We recommend

using a non-locking shared memory region queue for transferring

commands and data between different monitor tasks.

The advantage of this approach is that the communication between

monitor tasks (to detect and report errors) remains active even

when the application runs slow or becomes dead. The non-locking

nature of the communication ensures that MCentral does not hang

while trying to pull data from a monitor running on a crashed or

hung CPU. Shared memory region based IPC also ensures minimal

CPU overheads. The shared memory should be preferably

allocated such that it does not share the same interconnect access

path as the application data memories. For example, the developer

can place the monitor IPC shared memory in internal SRAM while

the application uses DRAM. This allows the monitor statistics to

be reported to the MCU even in the case of a catastrophic hardware

interconnect hang.

Conclusion

Autonomous cars are coming and they need to be safe in order for

wide acceptance of this technology. There is no one solution which

will make autonomous cars safe. Multi-sensor fusion and

distributed HW architectures can make sure there is no single point

of failure which causes hazardous situations for humans. SW

architectures using frameworks like OpenVX can help implement

multi-sensor fusion on distributed HW architectures. Since it’s

infeasible to make all the SW systems adhere to highest ASIL

level, mixed ASIL systems need to be implemented using Freedom

from interference techniques using HW units like MMUs,

firewalls. Finally, real-time HW/SW monitoring and diagnostics

need to be deployed to make sure the system behaves according to

specification.

References

[1] C. A. J. B. D. B. C. B. R. C. M. D. J. D. D. G. T. G. C. a. G. M.

Urmson, "Autonomous driving in urban environments: Boss and the

urban challenge.," The DARPA Urban Challenge, no. Springer Berlin

Heidelberg, pp. 1-59, 2009.

[2] A. N. F. a. B. B. Puthon, "Improvement of multisensor fusion in speed

limit determination by quantifying navigation reliability," In Intelligent

Transportation Systems (ITSC), 2010 13th International IEEE

Conference, pp. 855-860, 2010, September.

[3] R. a. K. M. Luo, "Multisensor integration and fusion in intelligent

systems," IEEE Transactions on Systems, Man, and Cybernetics, vol.

19, no. 5, pp. 901-931, 1989.

[4] T. I. Inc, "Advanced Driver Assistance (ADAS) Solutions Guide,

SLYY044A," 2015.

[5] M. a. K. N. Aeberhard, "High-level sensor data fusion architecture for

vehicle surround environment perception," Proc. 8th Int. Workshop

Intell. Transp., 2011.

[6] "TI Gives Sight to Vision-Enabled Automotive Technologies," Texas

Instruments, [Online]. Available:

http://www.ti.com/lit/wp/spry250/spry250.pdf.

[7] "ISO 26262-1:2011," 2011. [Online]. Available:

http://www.iso.org/iso/catalogue_detail?csnumber=43464.

[8] R. E. V. K. P. M. M. a. S. P. Gulati, "Resolving ADAS imaging

subsystem functional safety quagmire," in IEEE International

Conference on Consumer Electronics (ICCE), 2015.

[9] A. Bolles, "A flexible framework for multisensor data fusion using data

stream management technologies," Proceedings of the 2009

EDBT/ICDT Workshops, pp. 193-200, 2009.

Authors’ Biography

Kedar Chitnis is Principal Software Architect for Automotive ADAS

business at Texas Instruments (TI) Incorporated. His domains of interest

are imaging, video, vision system software and frameworks for embedded

solutions. He received Bachelor of Engineering (BE) degree from the

University of Mumbai in 2001

Mihir Mody is Senior Principal Architect for Automotive business at Texas

Instruments (TI) Incorporated. His domains of interest are video coding,

image processing, computer vision & machine/deep learning algorithms

with a focus on embedded HW & SW solution. He received Master of

Engineering (ME) degree from Indian Institute of Science (IISc) in 2000

and Bachelor of Engineering (BE) from GCOEP in 1998.

Pramod Swami is Principal Engineer with Automotive group at Texas

Instruments (TI). His domains of interest are hardware and software

architecture, design and implementation of signal processing for video

compression and computer vision. He received Bachelor of Engineering

degree from MNIT, Jaipur.

Sivaraj Rajamonickam is Principal Engineer for Automotive ADAS

business at Texas Instruments (TI) Incorporated. His domains of interest

are video and system software for embedded solutions. He received

Bachelor of Engineering (BE) from College of Engineering Guindy,

Chennai in 2003.

Chaitanya Ghone is Software Systems Engineer for Automotive business at

Texas Instruments (TI) Incorporated. His domains of interest are imaging,

video, vision system software and frameworks for embedded solutions. He

received Bachelor of Technology (B. Tech.) degree from Indian Institute of

Technology, Bombay in 2006.

Biju MG is Senior Engineering Manager for Automotive ADAS business at

Texas Instruments (TI) Incorporated. His domains of interest are imaging,

video and vision systems. He received MS degree from BITS, Pilani and

B. Tech. from Calicut University.

Yashwant Dutt is Automotive ADAS SW Apps and AVV Manager at Texas

Instruments (TI) Incorporated. His domains of interest are imaging, video

and vision systems. He received Bachelor of Engineering degree from

BITS, Ranchi in 2000.

Aish Dubey is product manager for TI ADAS portfolio. His interest areas

are safe automotive systems and algorithms, machine vision, robust sensor

fusion and silicon architecture for real time ADAS. He received Master of

Technology degree from Indian Institute of Technology, Delhi in 2002

Badri Narayanan is Principal Engineer in Automotive ADAS in TI. His

domains of interest are real-time safety critical systems, networking and

video. He received Bachelor of Engineering (BE) degree in 2001

40
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

