
A Sense and Avoid Algorithm using Surround Stereo Vision for
Drones
G. M. Dilshan P. Godaliyadda 1,2, Do-Kyoung Kwon 2, Darnell Moore 2 and Victor Cheng 3;
1 School of ECE, Purdue University, West Lafayette, IN, USA; 2 Perception and Analytics Lab, Texas Instruments, Dallas, TX, USA;3

Automotive Processor BU, Texas Instruments, Dallas, TX, USA;

Abstract
As applications of drone proliferate, it has become in-

creasingly important to equip drones with automatic sense and
avoid (SAA) algorithms to address safety and liability concerns.
Sense and avoid algorithms can be based upon either active or
passive sensing methods. Each of them has advantages when
compared to the other but neither is sufficient by itself. Therefore,
especially for application such as autonomous navigation
where failure could be catastrophic, deploying both pas-
sive and active sensors simultaneously and utilizing inputs from
them become critical to detect and avoid objects in a reliable way.

As part of the solution, in this paper, we present an efficient SAA
algorithm based on input from multiple stereo cameras, which
can be implemented on a low-cost and low-power embedded
processor. In this algorithm, we construct an instantaneous
3D occupancy grid (OG) map at each time instance using the
disparity information from the stereo cameras. Then, we filter
noise using spacial information, and further filter noise using a
probabilistic approach based on temporal information. Using
this OG Map, we detect threats to the drone in order to determine
the best trajectory for it to reach a destination.

Introduction
Sense and avoid algorithms for drones fall in to two primary

categories — algorithms based on active sensing methods and
algorithms based on passive sensing methods. Active sensing
methods such as radar and ultrasonic sensors can provide very
accurate range information from surrounding objects and struc-
tures, but are susceptible to interference clutter, and generally
have a more limited field of view or poorer spatial discrimination.
On the other hand, passive sensors such as stereo cameras have
wider field of view and are not susceptible to interference from
other sensing sources, but they are hampered by chaotic lighting
and weather conditions and require ample computational power
to process images. A solution to this problem is having the
best of both worlds, i.e., combining both methods either as two
redundant SAA algorithms or as an SAA algorithm that utilizes
inputs from both types of sources.

In this paper, we focus on an efficient SAA algorithm for a
drone based on stereo vision, which is a passive sensing method.
In stereo vision, we image a point in space using two cameras that
are aligned with each other to find the disparity between the same
point in the two images. Then this disparity information together
with the camera’s intrinsic parameters allow us to triangulate the
exact 3D position of said point [1]. Hence, using one or more

stereo camera pairs we can construct disparity images, and from
them, a 3D point cloud of objects in the surrounding space. There
are numerous algorithms that allow us to compute a disparity
map from stereo camera inputs. In this work, we use a local
block matching method on census transformed inputs since it
provides a relatively good disparity map without excessive uses
of computation and memory.

There are SAA algorithms based on stereo vision, which
are efficient both in memory and computation. One such
algorithm is the algorithm presented by Oleynikova et al. in [2].
In this algorithm, the authors utilize a U-disparity map and a
V-disparity map to identify objects and plan a path for the drone.
Even though this algorithm is fast and memory efficient, the U
and V disparity maps only provide the horizontal positions of
objects. Another class of SAA algorithms based on stereo vision
use occupancy grid (OG) maps. OG maps were first introduced in
[3, 4]. As the name states, in this method, space surrounding the
drone is divided into grids and each grid is labeled as occupied or
as free. Then SAA algorithms plan a path along free space using
this information. In most of these algorithms, a probabilistic
global OG map is created with respect to the world frame and
kept in memory. This OG map is then updated using new point
cloud information that a drone gathers at each instance in time.
Examples of such methods include [5, 6, 7, 8, 9]. To update this
global OG map one needs to geo-reference each new point in the
point cloud. Therefore we need to estimate with a high degree of
precision the pose and position of a drone. However, it is very
difficult to estimate them accurately due to the many degrees
of freedom the drone has. Such errors in turn could result in
erroneous OG map. On the other hand, since a global OG Map
needs to be kept in memory the memory requirements are high
as well [10] and furthermore since the point cloud needs to be
geo-referenced another layer of computation will be added as
well.

In this paper, we present a stereo vision based SAA algo-
rithm in which we utilize an instantaneous non-uniform 3D OG
map to identify threats to the drone and find a safe trajectory
for it. The non-uniformity in the 3D OG map is introduced to
reduce the memory needed to store the data and to reduce the
computation complexity. We use an instantaneous OG map
so that we can avoid having to geo-reference the point cloud.
Also we can save memory since we do not need to save a large
global OG map. To mitigate the effect of erroneous detection,
we introduce a probabilistic object tracking algorithm that tracks
the displacement of objects relative to a drone. In particular, we

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 29

https://doi.org/10.2352/ISSN.2470-1173.2017.19.AVM-015
© 2017, Society for Imaging Science and Technology

find which objects in the present OG map are likely given the
previous OG map by computing the probability of the relative
displacements that could have resulted in said objects. The
parameters of the relative displacement distribution are updated
on the fly in order to ensure it describes the typical behavior of
objects.

Once threats are identified in the safety bubble, which is
the region around a drone where no object should exist, an avoid
command is generated so that the drone can move to unoccupied
space. When finding the best location for the drone to move to,
we consider the locations of all detected objects in a region of
interest (ROI) surrounding the drone as well as the direction of
travel. Experimental results show that the proposed algorithm
can detect real threats very accurately while tolerating noisy data.
The proposed algorithm is also appropriate for implementation
on an embedded processor because of efficient use of memory
and computation.

Object Sensing Algorithm
In this section, we describe our algorithm for object sensing.

We use stereo image pairs to compute a disparity map, which we
in turn convert to a 3D point cloud.

To generate the disparity map, we use a local block match-
ing method on rectified and census transformed left and right
images. In our implementation we first apply the census trans-
form [11] on both input images with a census window of size
nc×nc. Then, for every pixel in the base image (e.g. left image),
we find the corresponding pixel on the same line of the reference
image (e.g. right image) by identifying the pixel that results in
lowest Hamming distance within an nh× nh window centered at
the pixel of interest. The output disparity map is post-processed
through left-right check and texture based cleaning, etc. to get
higher fidelity disparity map. From the disparity map, d, the
depth Z can be calculated for every pixel by

Z =
f ·b
d

, (1)

where f is a focal length of cameras and b is the baseline distance
between left and right camera centers. Then the X and Y positions
in 3D space of each pixel (x, y) can be calculated by

X =
1
f
· (x−dx) ·Z and Y =

1
f
· (y−dy) ·Z, (2)

where (dx, dy) is a image distortion center. It should be noted that
3D positions are with respect to the base (e.g. left) camera center.

We use this 3D point cloud to generate a 3D OG map.
Then using information from one or more OG maps from
previous time instances we find which occupied grids in the OG
map are in fact probable and which ones are improbable. Then
we use this clean OG Map to determine if there are any objects in
the safety bubble of the drone. In the proceeding sections we will
explain in detail the steps of the sensing algorithm.

Constructing a 3D Non-Uniform Occupancy Grid
Since all computations need to be performed on an embed-

ded processor mounted atop a drone, we have limited memory

and computational power. Therefore, instead of a uniformly
spaced OG map, we construct a non-uniform OG map in
which the fineness of the grid spacing depends on the relative
importance of the space. In this implementation we give more
precision (finer grid spacing) to the immediate vicinity of the
drone and relatively less precision (coarser grid spacing) to the
space farther away from the drone. For the remainder of the
paper, we will refer to the area with higher uniform precision
where we perform tracking as the region of interest (ROI).

To construct the 3D OG Map, we place all the 3D points
within the OG map and count the number of points in each
grid. If the number of points within a given grid exceeds a user
selected (or empirically determined) threshold, we consider that
grid to be occupied. For the remainder of this paper we will refer
to an occupied grid as an object.

The next step is to filter out noise in the OG map. In our
implementation, we only focus on noise filtering within the ROI
so as to minimize computation. We remove noise by using a
connected component analysis based thresholding method. In
particular, we first perform connected component analysis in the
ROI and then filter out connected components that are smaller
than a user selected threshold. For example, if the threshold
is n, each connected component that has fewer grids than n is
considered noise and hence removed. By performing this step,
we can remove isolated objects that are deemed too small. It
should be noted that n is determined based on the grid size.

Our next task is to identify which objects in this filtered
3D OG map are in fact probable given OG map of a previous
frame. In essence we want to further clean up the OG map, but
using temporal information as well.

Filtering Noise in Instantaneous 3D OG Map using
Temporal Information

In this section we describe how we further clean up the
OG Map using a probabilistic approach based on temporal
information. For this purpose, we consider each occupied grid
as an independent object and then use the instantaneous OG
map constructed in the previous time instance to identify if each
object is probable. The reason we consider each occupied grid
as independent objects instead of considering clustered grids as
objects is because the number of grids an object occupies can
change depending on its position in space. For example, an object
that occupied one grid at a certain time instance can move to the
boundary of 4 grids and can result in 4 occupied grids in the next
time instance. Now we explain in detail the steps involved in the
temporal filtering process.

Let us start by denoting the present time as n. Assume
that we have constructed a 3D OG map as described previ-
ously for time n. Also assume there are Nn different objects{

O1,n,O2,n, . . . , ONn,n
}

in the ROI of this 3D OG map, i.e.
Nn grids are classified as occupied. Out task is to identify the
probable objects among these Nn objects.

For this purpose, for an object Oi,n, where i ∈ {1,2, . . . , Nn−1},
we look at the previous time instance (n−1) to identify if any

30
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

of the objects in the previous OG map could have been object
Oi,n. That is, we find if any object in (n−1) could have moved
to where Oi,n is in n.

Suppose that the object which could have resulted in Oi,n
is Oi j ,n−1, where Oi j ,n−1 is the object in the previous frame that is
closest to Oi,n when the OG map at n is overlaid on the OG map
at (n−1). Therefore, Oi j ,n−1 was what resulted in object Oi,n if
d
(
Oi,n,Oi j ,n−1

)
≤ d

(
Oi,n,Ok,n−1

)
∀ k ∈ {1,2, . . . , Nn−1}, where

d(·, ·) is the displacement of an object relative to the drone from
one frame to the next. Figure 1 shows a 2D example illustrating
how we find corresponding pairs of objects across two frames.

Once we make the correspondence between Oi,n and Oi j ,n−1
we compute the likelihood of that event. In this algorithm, we
compute the probability that Oi j ,n−1 was displaced relative to the
drone by at least d

(
Oi,n,Oi j ,n−1

)
, i.e.,

p
(
d ≥ |d

(
Oi,n,Oi j ,n−1|

))
. (3)

Then we threshold this likelihood to distinguish between probable
and improbable objects, i.e., the object Oi,n is deemed probable if

p
(
d ≥ |d

(
Oi,n,Oi j ,n−1

)
|
)
≥ T. (4)

Otherwise, it is deemed improbable.

It is important to mention that when we consider objects
from the previous frame to determine which ones could have
resulted in the objects in the current frame, we consider improable
objects in the previous frame as well, i.e. objects in (n−1) that
were classified as improbable based on the objects in (n−2).
The reason is because an object that was classified improbable
might actually be probable, and by including them for the next
instance we can correct our mistake.

Modeling the Relative Displacement Distribution
In order to compute the probability in Equation 4, we need

to model the distribution of the relative displacement d. We
model d as a Gaussian random variable with zero mean and σ2

variance, which will in effect distinguish between probable and
improbable objects. Therefore, we recompute σ at every time
instance so that it reflects the typical relative displacement of
objects.

To compute σ for time n, we first consider a time instance
(n−m) in the past. For each object in frame (n−m), i.e., for
O1,n−m,O2,n−m, . . . , and ONn−m,n−m, we find the objects in time
(n−m−1) that are closest in the sense of relative displacement.
In other words, we find for each object Oi,n−m in frame (n−m)
object Oi j ,n−m−1 in frame (n−m−1) that corresponds to the
minimum relative displacement. Then from this set we find the
maximum value dmax

n−m, i.e.,

dmax
n−m = max

i∈{1,2,...Nn−m}

{
d
(
Oi,n−m,Oi j ,n−m−1

)}
. (5)

The value of σ for n is computed by

σ =
1
L

L

∑
m=1

max
{

dmax
n−m,Dgrid

}
, (6)

where Dgrid is the grid spacing in the uniformly spaced ROI.

Now we can identify if there are objects in the safety bub-
ble that threaten the drone. Our next task is to find how the drone
can best avoid these objects while staying on-course towards a
destination.

Object Avoidance Algorithm
The primary objective of our work is to preserve the integrity

of the safety bubble surrounding the drone. Therefore, out of
the locations that have sufficient free space to fit a safety bubble,
we find the location that is closest to a destination or to a known
way-point toward a destination.

To formulate the problem, suppose that in the present frame we
have objects Oi,n for i ∈ {1,2, . . . , Nn}. Note that all coordinates
in this section are with respect to the drone center. Then the
problem of finding locations that can fit a safety bubble without
hitting any objects can be written as finding a location V̂n+1 for
the drone to move to so that

D
(
V̂n+1,Oi,n

)
> s2, ∀i ∈ {1,2, . . . , Nn} , (7)

where s is the radius of the safety bubble and D(·, ·) is an
operator that computes the euclidean distance between two points
in space. It is important to note that D(·, ·) is not the same as
d (·, ·).

This problem might have no solution or it might have more
than one solution. So we need to design two solutions for the
two different cases. It is also important to note that we do not
consider the possible displacements of objects when finding V̂n+1.
However, given enough computing capacity, one can extend this
algorithm to include possible displacements of objects.

Case 1: More than one candidate location to move to
In the case that there is more than one solution to the above

equation, we select the one which is closest to the way-point Wn
the drone is trying to reach. Figure 2(c) shows an example for a
2D OG map.

With the way-point in mind, the solution we seek is the
position V̂n+1 that satisfies

V̂n+1 = arg min
(Vn+1∈S)

{D(Wn,Vn+1)}

s.t. D
(
V̂n+1,Oi,n

)
> s2, ∀i ∈ {1, . . . , Nn} ,

where S is the search space for V̂n+1.

Case 2: No candidate location to move to
In the case that there is no such a location, we temporarily

reduce the radius of the safety bubble to the distance between the
drone and the closest object i.e.

s̃← min
i∈{1,2,...,Nn}

{
D
(
Vn,Oi,n

)}
(8)

where Vn is the current location of the drone. Then we repeat the
process described in Case 1 to find the best solution. So in essence
we reduce the size of the safety bubble temporarily so that we can

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 31

Figure 1: Illustrations that show how we compute the relative displacement that corresponds to each object in the present 3D OG map,
i.e. for each Oi,n how we compute d

(
Oi,n,Oi j ,n−1

)
, where d

(
Oi,n,Oi j ,n−1

)
≤ d

(
Oi,n,Ok,n−1

)
∀ k ∈ {1,2, . . . , Nn−1}.

find a location for the drone to move to. The reduction can be
done in steps as well, i.e. halve the size of the safety bubble in
each step.

Search Space for Candidate Location

Now the next question is what is the appropriate search
space S for V̂n+1? In our implementation, we search for solutions
within the safety bubble only. Figure 2(a) shows the candidate
search locations for a 2D example. Another problem we might
encounter is that when traveling from Vn to V̂n+1 on a straight
line, the drone might come across an object. However, by limiting
the search radius to s, we automatically avoid this problem.

Pseudo-Code of Sense and Avoid Algorithm

The whole sense and avoid algorithm that we have proposed
with multiple stereo camera pairs is described in Algorithm 1. We
used up to 3 stereo camera pairs for surrounding front, left and
right views.

Experimental Results
To evaluate our algorithm, we conducted experiments using

a DJI Matrice 100 drone. Specifically we gathered streams of
frames from the stereo cameras already mounted on the drone
and used those image pairs to experiment with. Input frame
resolution was QVGA, i.e. 360× 240, and we set census window
and hamming distance window to 9 ×9 and 11× 11, respectively,
to compute disparity map. Once the stereo pairs were acquired,
we performed simulations on a PC.

The primary purpose of these experiments were to deter-
mine if the proposed algorithm was able to distinguish between
erroneous objects and actual objects. The errors could result from
time synchronization problems between stereo cameras, from
sensor noise or from errors that resulted from the stereo vision
algorithm. Secondly, the experiments were also used to evaluate
our avoid algorithm. From the experiments that were preformed,
we show some selected illustrative examples in this paper. For
clarity, in the first two experiments, we only show the input from
the front facing stereo cameras. Then, in the final experiment, we
show an example when 3 stereo camera pairs are used as inputs.

Algorithm 1 Proposed Sense and Avoid Algorithm

Inputs:
· OGn−1: OG Map from time (n−1)
· σ2: variance of relative displacement
· In,(j,k): ith image from jth stereo pair from present time
· dmax

n−1,d
max
n−2 . . .d

max
n−L−1: max displacement from previous L−

1 instances
· s: radius of safety bubble

Outputs:
· OGn: OG Map from time n
· σ2: variance of relative displacement
· dmax

n : max displacement from time n
————————————————————————————

1: Compute 3D point cloud using In,(1,1), In,(1,2), . . . , In,(N,2)
2: Compute OGn and filter noise using connected components

based thresholding (optional)

3: for (i = 1, i++, i≤ Nn) do
4: For Oi,n, find corresponding Oi j ,n−1 such that

d
(
Oi,n,Oi j ,n−1

)
≤ d

(
Oi,n,Ok,n−1

)
∀ k ∈ {1,2, . . . , Nn−1}.

5: if p
(
d ≥ |d

(
Oi,n,Oi j ,n−1

)
|
)
≥ T then

6: Oi,n is probable
7: else
8: Oi,n is improbable

9: Create Õi,n: OG Map (with probable objects only)

10: if Probable object in Safety Bubble (SB) then
11:

V̂n+1 = arg min
(Vn+1∈S)

{D(Wn,Vn+1)}

s.t. D
(
V̂n+1,Oi,n

)
> s2, ∀i ∈ {1, . . . , Nn.}

and r ∈ S i f D(Vn,r)≤ s2

12: if Solution exists then
13: Move drone towards V̂n+1
14: else
15: s̃←mini∈{1,2,...,Nn}

{
D
(
Vn,Oi,n

)}
.

16: Repeat Step 11 with s̃ instead of s
17: Move towards V̂n+1
18: else
19: Continue on previous trajectory

20: Compute dmax
n = maxi∈{1,2,...,Nn}

{
d
(
Oi,t−n,Oi j ,t−n−1

)}
.

21: Compute σ = 1
L

L
∑

m=1
max

{
dmax

n−m,Dgrid
}

.
32

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017

Figure 2: 2D example of the candidate search locations, the distance from a candidate location to all objects in the ROI and the distance
from a candidate location to the desired location. Notice that for this illustration we use D(·, ·) instead of d(·, ·) since we are now
computing the absolute distances.

Example 1
In Figure 3, we show three consecutive frames as the drone

approaches a tree. In frame 340 we can see that there is a signifi-
cant amount of noise when compared to the other frames. As can
be seen in the bottom figure in frame 340, just by thresholding
the 3D point cloud (by 20) and using the connected components
based noise filtering we remove a significant chunk of the noise.
Then, the temporal object tracking part of the algorithm is able to
tag the remaining noise as improbable objects (black). In this ex-
periment, we set the Threshold T in Equation 4 to 0.01 and Dgrid ,
the grid spacing in the ROI, to 50cm.

Example 2
In Figure 4, we show another three consecutive frames for

the case when a box is thrown in to the safety bubble. We can
see that in frame 1011 there is some noise, but this time inside the
safety bubble. The algorithm is able to recognize which objects
are improbable ones. Furthermore, in this experiment, since there
are objects in the safety bubble we see that a location is prescribed
for the drone to move to in the direction of the way-point, which
we set for experiments at 10 meter away from the current drone’s
location. It is important to state that the drone is not controlled
according to detected objects. We merely show instantaneous de-
cisions at each frame. Also, we do not show the location to move
to if an object is not found in the safety bubble since we do not
want to alter the direction of the drone in that case.

Example 3
We show in Figure 5 an illustrative example of when 3 stereo

camera pairs were used. We show one frame in which there is an
object inside the safety bubble in one of the three views.

Conclusions and Future Work
In this work, we presented an efficient sense and avoid

algorithm for a drone. From the results we have shown that our
algorithm is able to detect and remove noise quite well and then
prescribe a new location to move to in order to avoid objects that
may threaten the drone. As future work, we plan to integrate
point cloud uncertainty as well as spacial information when
computing the probability of an object and also the probable
movements of objects when finding the new trajectory for the
drone.

References
[1] Richard I Hartley and Peter Sturm. Triangulation. Computer vision

and image understanding, 68(2):146–157, 1997.
[2] Helen Oleynikova, Dominik Honegger, and Marc Pollefeys. Re-

active avoidance using embedded stereo vision for mav flight. In
2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 50–56. IEEE, 2015.

[3] Alberto Elfes. Sonar-based real-world mapping and navigation.
IEEE Journal on Robotics and Automation, 3(3):249–265, 1987.

[4] Alberto Elfes. Occupancy grids: A probabilistic framework for
robot perception and navigation. 1989.

[5] Friedrich Fraundorfer, Lionel Heng, Dominik Honegger, Gim Hee
Lee, Lorenz Meier, Petri Tanskanen, and Marc Pollefeys. Vision-
based autonomous mapping and exploration using a quadrotor mav.
In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4557–4564. IEEE, 2012.

[6] Hernán Badino, Uwe Franke, and Rudolf Mester. Free space compu-
tation using stochastic occupancy grids and dynamic programming.
In Workshop on Dynamical Vision, ICCV, Rio de Janeiro, Brazil,
volume 20, 2007.

[7] Maia Rosiery Souza, Anderson A. S. and Luiz M. G. Gonalves. 3d
probabilistic occupancy grid to robotic mapping with stereo vision.
INTECH Science, Technology and Medicine open access publisher.

[8] Stefan Hrabar. 3d path planning and stereo-based obstacle avoidance
for rotorcraft uavs. In 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 807–814. IEEE, 2008.

[9] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization
and mapping: part i. IEEE robotics & automation magazine,
13(2):99–110, 2006.

[10] Yuval Roth-Tabak and Ramesh Jain. Building an environment model
using depth information. Computer, 22(6):85–90, 1989.

[11] Ramin Zabih and John Woodfill. A non-parametric approach to vi-
sual correspondence. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1996.

Author Biography
G.M. Dilshan P. Godaliyadda is a PhD candidate from the Electrical
and Computer Engineering (ECE) Department at Purdue University.
Originally from Sri Lanka, Dilshan completed his Bachelor’s degree in
Electrical Engineering from the University of Maryland with Summa
Cum Laude honors and his Master’s degree from Purdue University.
During the time this work was done he was employed as an Intern at the
Perception and Analytics Lab at Texas Instruments.

IS&T International Symposium on Electronic Imaging 2017
Autonomous Vehicles and Machines 2017 33

Figure 3: 3 consecutive 3D OG maps constructed using our algorithm to illustrate how well it removes noise.

Figure 4: 3 consecutive 3D OG maps constructed using our algorithm to illustrate how well it removes noise and also to illustrate how
our avoid algorithm works when an object is found in the safety bubble.

Figure 5: An example when 3 pairs of stereo camera inputs are
used for sense and avoid.

Do-Kyoung Kwon received the Ph.D degree from the University of
Southern California in Electrical Engineering in 2006. Since 2007, he
has been worked in various fields at Texas Instruments, such as video
compressing algorithms development on TI embedded processors, HEVC
video standardization, medical image denosing, automotive vision, etc.

Darnell Moore is a Senior Member of Technical Staff and Man-
ager of Texas Instruments Perception and Analytics Laboratory (PAL).
PAL develops autonomous capabilities for vehicles, drones, and robots
using advanced sensor fusion and environmental modeling. Darnell has
led the development of stereo camera technology for self-driving cars,
unsupervised robots, pilotless drones, and surveillance cameras. He
was the software architect for the worlds first integrated smart-camera
chip used by surveillance cameras to automatically count people and
cars. Darnell joined TI after completing a Masters and Doctorate from
Georgia Tech and a Bachelors from Northwestern University, all in
electrical engineering. He is one of the co-chairs of Electronic Imagings
Autonomous Vehicles and Machines.

Victor Cheng graduated from Texas A& M in 2000 with a MS in
Electrical Engineering. Since then, he has been working at Texas
Instruments as a software engineer. Throughout his career, he has
implemented various imaging and vision algorithms on TI embedded
processors for consumers and for automotive industries.

34
IS&T International Symposium on Electronic Imaging 2017

Autonomous Vehicles and Machines 2017

