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Abstract
In this paper, we propose a new method for accelerating

stereo matching in autonomous vehicles using an upright pinhole
camera model. It is motivated by that stereo videos are more re-
stricted when the camera is fixed on the vehicles driving on the
road. Assuming that the imaging plane is perpendicular to the
road and the road is generally flat, we can derive the current dis-
parity based on the previous one and the flow. The prediction is
very efficient that only requires two multiplications per pixel. In
practice, this model may not hold strictly but we still can use it
for disparity initialization. Results on real datasets demonstrate
the our method reduces the disparity search range from 128 to 61
with only slightly accuracy decreasing.

Introduction
Autonomous vehicles have been an active area of research in

the recent years, which are able to navigate without human inter-
action. In order to make a high-level driving decision, it is impor-
tant to accurately measure the detailed 3D representation of the
environment outside the vehicle in real-time. The surroundings
can be detected using a variety of techniques such as radar, li-
dar, GPS, odometry, etc. Instead of installing expensive hardware
such as LIDAR sensors on the vehicles, computer vision based
techniques using stereo matching could be a great substitution, in
which the depth of the scene can be estimated accurately using
consumer cameras. The key problem of stereo vision is to find
the corresponding pixels from different viewpoints, and then the
depth can be estimated based on these matching points.

Existing stereo algorithms can often be classified into two
groups: local or global algorithms [1]. Global algorithms often
optimize a global cost function to solve the disparity at all pix-
els. Typical methods include dynamic programming and graph
cut. In local algorithms, the computation of the disparity only
depends on the pixels within a local patch. The global methods
usually produce better results [1] but are generally too slow to be
used in autonomous vehicles. Summaries of existing stereo cor-
respondence algorithms can be found in [2, 1]. The state-of-the-
art stereo methods achieve promising results on the benchmark
dataset like KITTI [3], but they are still computationally expen-
sive or require powerful devices such as GPU that can be difficult
to be used in real-time in autonomous vehicles. One of the most
costly steps by these methods is to compute the matching cost of
each pixel over a large range of possible disparities.

In this paper, we are interested in stereo matching for videos
taken from cameras mounted on ordinary vehicles. While many
of previous works considering temporal information to improve

the results of matching, we believe that stereo can be accelerated
by using the temporal consistency between consecutive frames.
We observe that the cameras on consumer vehicles are fixed and
approximately upright to the ground if the road is generally flat.
Motivated by this observation, we propose an efficient method to
accelerate video stereo matching using such a constraint in the
pinhole camera model. Based on this model, the disparity of the
current frame can be directly derived from the disparity of the
previous frame and the optical flow between these two frames. In
practice, the optical flow can be estimated by FPGA-based real-
time systems [4, 5] and the disparity prediction can be performed
very efficiently with only two multiplications. When the optical
flow and disparity of the previous frame are accurate, our model
can faithfully predict the correct solution excepted occluded pix-
els. On real datasets like KITTI, we may have errors in both the
estimated optical flow and the disparity of previous frame. In
this case we can use such predicted disparity values as initializa-
tion to accelerate the state-of-the-art stereo matching algorithms.
We evaluate this strategy in the fast cost-volume filtering based
framework [6, 7] on the KITTI dataset. The results demonstrate
our method can reduce the disparity search range from 128 to 61
with only slightly accuracy decreasing.

Related Work on Stereo Video
There are many existing works developed to improve stereo

matching using temporal information. Zhang et al. [8] proposed
to extend a local spatial window to the spatiotemporal window
to compute the matching cost. This method does not work well
when the scene is dynamic. Jiang et al. [9] proposed to predict
the current disparity map based on the previous disparity. They
divided the scene into moving parts and static background, where
the disparity of static background is predicted by a rigid cam-
era motion model. This method is computationally expensive due
to the segmentation of motions in the scene. Jaafari et al. [10]
used dynamic programming to match edge points of stereo im-
ages, where the disparity search range can be reduced if an edge
point can be associated with the one in the previous frame. How-
ever, the edge association is very challenging when the scene is
dynamic and complex. Dobias et al. [11] proposed to transfer
the disparity of the previous frame to the current frame by esti-
mating the motion of a calibrated stereo rig. The transformation
is assumed to be linear and results in large errors on real data.
Our method is also for disparity prediction. Compared with exist-
ing methods, our proposed method does not have any assumption
about the motion of cameras as well as the moving objects in the
scene. It is more general and can be applied to complex and dy-
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namic scenes without time consuming processes such as motion
detection, edge association.

Method
For classical stereo video matching, the motion of cameras

can be arbitrary. That is why many existing methods have to
model the scene in 3D, in order to find the correspondence in two
adjacent frames. For autonomous vehicles, the stereo cameras can
always be fixed on the car and are perpendicular to the ground. We
can use such addition information for disparity prediction.
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Figure 1. (a) The upright pinhole camera model. (b) The corresponding

point and distance to y-axis on the image.

Fig. 1 illustrates the upright pinhole camera model. When
the imaging plane is perpendicular to the ground, the y-axis plane
in the image is the horizontal vanishing line. Let O be the camera
center and the focal length is f . For a point P in the scene at
time t, we denote the point as Pt and the corresponding point in
the image is pt = (x,y)T . Let (0,0) represent the principle point.
The distance of Pt to the y-axis plane is Ht and this distance in the
image is |y|. The depth of Pt is Zt . With these notations, we can
have:

Ht/|y|= Zt/ f . (1)

For the next frame, we assume the ground is flat between the
two frames, so that the cameras’ height is the same and the y-axis
plane keeps the same. This means that Ht+1 = Ht no matter what
direction the cameras move. Let pt+1 = (x+∆x,y+∆y)T be the
corresponding point in the next frame and (∆x,∆y) denotes the
flow. Similar as Eq. (1), we also have:

Ht+1/|y+∆y|= Zt+1/ f . (2)

Combining the above two equations, we can obtain:

|y|Zt = |y+∆y|Zt+1 (3)

Suppose that the baseline of the cameras is B. dt(x,y) repre-
sents the disparity map at point (x,y) of frame t. A similar nota-
tion is used for frame t +1. We have:

dt(x,y) = B f/Zt (4)

dt+1(x+∆x,y+∆y) = B f/Zt+1 (5)

Combining the above equations, we obtain:

dt+1(x+∆x,y+∆y) = |y+∆y|dt(x,y)/|y| (6)

Or we can use the backward flow:

dt+1(x,y) = dt(x−∆x,y−∆y)|y|/|y−∆y| (7)

which indicates that we can predict dt+1 at pixel (x,y) based on
the results on the previous frame. Given the flow between the two
frames, the prediction can be made with only two multiplications
and two additions for each pixel.

In practice, the optical flow can be estimated by FPGA-based
real-time systems [4, 5] and the disparity prediction can be made
very efficiently. Since our prediction is based on the optical flow
and the disparity of the previous frame, it may propagate the errors
from the previous frame. Therefore, our prediction can be used
as the disparity initialization instead of the final result. Now we
introduce how our method can be used in existing stereo matching
frameworks.

Stereo algorithms generally perform (subsets of) the follow-
ing four steps [1]: (1) matching cost computation; (2) cost ag-
gregation; (3) disparity optimization; (4) disparity refinement.
We follow the scheme of the multi-block matching (MBM) al-
gorithm [7]. In the first step, normalized cross correlation is used
to compute the matching cost volume. After that, box filtering
with multiple block shapes is used for cost aggregation, which is
followed by a winner-takes-all process. Finally, disparity errors
are removed by consistency check and refined by slanted plane
smoothing [12].

For the first step, an accurate choice of the disparity search
range is crucial. Without exploiting any prior information from
the temporal frames, this method [7] has to search a large range to
ensure the match, which is computationally expensive and may
degrade the quality of the disparity map. With our prediction
from temporal information, the search range can be significantly
decreased. More clearly, supposing that our predicted disparity
is d̃t+1 using Eq. (7), our search range can be constrained to
[ d̃t+1−N, d̃t+1 +N] while the original search range is [0, M]
without the prediction. Here M, N are scalars and M > 2N + 1.
We will show the results in the next section on synthetic and real
data.

Results
First, we evaluate our upright camera model on synthetic

stereo data [13], which provides ground-truth disparity and op-
tical flow for every frame. Given the ground-truth disparity of the
previous frame and the optical flow, our prediction is based on
Eq. (7), which does not require the actual matching with the right
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image. If our assumption holds, our method should nicely predict
the result since there is no error in the input. Fig. 2 shows our
prediction on one example of the driving stereo set. The error is
measured by the percentage of outliers for a 3-pixels tolerance.
The result demonstrates our model is very accurate that we only
have small errors for the pixels occluded by the motion of cars. It
validates the effectiveness of proposed model.

(a)

(b)

(c)

Figure 2. (a) The RGB image. (b) The predicted disparity dt+1 using the

ground-truth disparity of the previous frame and optical flow. The error is

7.3% with a 3-pixels tolerance. (c) The ground truth disparity dt+1.

The proposed method is then validated on the driving dataset
KITTI [3]. We use two flow algorithms SIFT flow [14] and
EpicFlow [15] for the flow estimation. Generally, EpicFlow is
one of the state-of-the-art flow estimation methods and outper-
forms SIFT flow in most cases. From those two methods, we
could observe how the accuracy of flow could influence our dis-
parity prediction. The baseline method for comparisons is the
same method without temporal information and flow.

One may notice that the denominator of Eq. (7) is the dis-
tance of a pixel to the y-axis plane. When the pixel is very close
to the y-axis plane, the error caused by optical flow or disparity of
the previous frame will be amplified a lot. Instead of directly ap-
plying the model, we interpolate the disparity for a few rows (e.g.

(a)

(b)

(c)

(d)

(e)

Figure 3. (a) The RGB image. (b) The disparity map using the baseline

method. The error is 3.94%. (c) The disparity map using SIFT flow in our

prediction. The error is 9.77%. (d) The disparity map using EpicFlow in our

prediction. The error is 5.11%. (e) The ground-truth disparity.

3) closest to the center. As our method can reduce the disparity
search range, the baseline method searches the full range [0,128]
while this range is reduced to [-30,30] given our prediction as the
initialization.

Our method does not require any training data and is
parameter-free. Therefore, we use the training set of the KITTI
dataset for result evaluation. It contains 200 groups of driving
scene frames. Each group has four RGB images: left and right
images of two adjacent frames. One example is shown in Fig.
3. It demonstrates that the baseline method with [0,128] has the
lowest error. Our result with EpicFlow is much better than the
one with SIFT flow, in terms of both visual appearance and the
error rate, which shows the importance of the flow estimation in
our prediction.

The quantitative results on the whole training set are shown
in Table 1. If the optical flow can be estimated properly, our
method can reduce the disparity search range by half with only
slightly accuracy decrease (1.85%). With a better flow method, it
is very possible that our result can be further improved.
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Table 1: the average error on KITTI training dataset.

Method Baseline Proposed
(SIFT flow)

Proposed
(EpicFlow)

Error 7.04% 10.71% 8.89%

Disucssion and Conclusion
In this paper, we have proposed a new stereo matching

method for autonomous vehicles. It is motivated by that the cam-
eras on autonomous vehicles can always be fixed and perpendic-
ular to the ground. Therefore the structure of the captured videos
is more restricted and can be used to infer disparity based on tem-
poral information. In practice, the proposed model may not hold
strictly for every pixel, but our method can be used as an initial-
ization to reduce the disparity search range in existing methods.
Results on the KITTI dataset demonstrate that our method can re-
duce the disparity search range from 128 to 61 with only slight
accuracy decreasing.

While the results are promissing, our work is still an initial
study in this direction and there are some limitations for the cur-
rent work. First, although the proposed method reduces the dis-
parity search range by half, it may not accelerate the whole stereo
matching by two times since there are many post-processing steps
which are not accelerated. Second, we use SIFT flow or EpicFlow
to estimate the optical flow instead of the FPGA based flow meth-
ods. The advantage of our method on real hardware platform
needs to be further investigated, which is planned as future work.
Finally, our predition is used in the MBM framework [7] that com-
putes the dense matching cost. With some sparse matched points
[16, 17], some recent methods can interpolate the whole dispar-
ity map efficiently and accurately [18]. Another future direction
would be to combine our prediction in this framework.
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