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Abstract

Recently, a remarkably simple method was developed to
solve the illumination and reflectance spectra separation prob-
lem (IRSS) based on the standard low-dimensionality assumption
of reflectance. However, because this method assumes the scene
is under one uniform illumination, it can not handle scene con-
tains multiple illuminations or dominant shadows. In this paper,
we address this problem by formulating the multiple illumina-
tions and reflectance separation problem as a Conditional Ran-
dom Field (CRF) optimization task over local separations. We
then improve local illumination and reflectance separation by in-
corporating spatial information in each local patch.

1. Introduction

Spectral distributions in hyperspectral images result from the
product of the illumination spectra, surface reflection, and the ef-
fects of camera sensors’ band sensitivities. Separating illumina-
tion and reflectance signals from an observed hyperspectral image
has been a longstanding problem in computer vision [3, 4, 7].

In fact the human visual system is capable of separating out
the surface reflectance when observing a scene — a psychophys-
ical phenomenon denoted color constancy. The analogous goal
in computer science is often to estimate illumination spectra as a
first step and then recover the reflectance spectra.

In general, two main streams have been used in solving this
problem. The first is the use of hyperspectral image statistics in-
formation to estimate illumination and then separate reflectance
information from the image. Another stream is to separate illu-
mination and reflectance directly from the observed hyperspectral
signal. This process is under-constrained, since the goal consists
of twice the number variables as observations. A typical way to
resolve this issue is by introducing a low dimensional subspace for
reflectance or illumination or both. Remarkably, [17] addresses a
more general scenario where surface reflectance is assumed to fall
into a low dimensional subspace while no constraint is placed on
illumination.

In [17], the separation problem is modelled as a low-
rank matrix factorization, with disentangled illumination and re-
flectance found by solving a small convex quadratic program.
Their method is robust even when the scene is under general, non-
smooth, illumination. However, nevertheless it can if their exist
dominant shadows or multiple illuminations in the scene.

In this paper we re-examine Zheng’s method [17] with a view
to developing extensions which we find further improve the sep-
aration. Moreover, we introduce a CRF (Conditional Random
Field) model over the results of separations from method [17]
to handle scenes containing multiple illuminations or dominant
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shadows.

The paper is organized as follows. In sections 2 we dis-
cuss prior research that forms the foundation of the current work.
In section 3 reviewed Zheng’s method [17] for illumination and
reflectance separation. In section 4 we propose extensions that
improve separation for illumination and reflectance. As well,
we introduced a CRF model for segmenting different illuminated
patches. In section 5, we show results for the method [17] along-
side our separation results, when contending with multiple illumi-
nations in the scene. At final section, we concluded this paper.

2. Related Work
2.1 Illumination and Reflectance Spectra Separation

Most works on illumination and reflectance spectra separa-
tion can be summarized into two categories, either separating a
single hyperspectral image into illumination and reflectance im-
age, or with an eye to the colour constancy task of estimating
illumination for RGB images.

Classically, for this signal separation task, Ho et al. [7] first
made use of the low dimension model for both illumination and
reflectance. To improve accuracy of the separation, Chang et al.
[3] enforced more constraints on illumination and reflectance. In
the work [4], Drew and Finlayson successfully improved the bi-
linear computation’s efficiency by moving to logarithmic space.

The colour constancy problem mostly consists of estimating
the illumination, or at least the chromaticity of the light in the ob-
served scene. In [13], Robles-Kelly et al. generalized the assump-
tions and methods in colour constancy specifically for the IRSS
problem. In principle, many colour constancy methods, such as
[2,9, 15], could be carried out in a multispectral domain, provided
their underlying assumptions were still satisfied.

2.2 Conditional Random Field

Using a CRF model to incorporate the spatial information in
a scene has been used in several works. Lu and Drew [10] applied
a Markov Random Field (MRF) for shadow region segmentation.
Their method first generated an illumination invariant image by
using a model guided by the assumption of Planckian illumina-
tion. They formulated a pairwise potential which allowed them to
label shadows smoothly. In [1], Beigpour and Riess et al. fused
multiple physical and statistical based colour constancy methods
into a CRF model which produced pixel-wise labels for shadows.
However, their method relied on many complex colour constancy
methods to generate accurate estimations for the CRF model, and
this is time consuming process.
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3. Low Rank Matrix Factorization

Here we briefly recapitulate the method [17], pointing out
its innovative part that arrives at an excellent method. Firstly, for
a pixel at spectral band i in a hyperspectral image, its value d;
is proportional to the product of the illumination /; and surface
reflectance r;; that is,

di=lir;, 1 <i<m, (D

Here, m denotes the number of spectral bands (which is 57 in all
our experiments), and a vector accounting for camera gains has
been omitted. As well, spectral sensitivity has been pre-corrected
to be unity for all spectral bands i = 1..m.

For a hyperspectral image with n pixels under spatially uni-
form illumination, the intensity d;; of the j-th pixel for the i-th
spectral band is

diJ‘:lirij,lSiSm,lSan, (2)
In matrix form this reads

dy - dig L Lot T
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The above system is underconstrained, since the observation ma-
trix D has mn constraints but with m(n + 1) variables in the di-
agonal illumination matrix L and the reflectance matrix R taken
together. In order to solve this equation, more constraints must be
added to illumination and reflectance.

Reflectance spectra can easily be shown to usually lie in a
low dimensional linear subspace. Therefore, eq. (3) could be writ-
ten in the form

Dyyxn = LinxmBmxn :memBmeCsxm 4)

where B and C denote the spectral bases and coefficients respec-
tively, and s is the subspace dimensionality. In addition to the
above physically meaningful factorization, it could also be factor-
ized using partial singular value decomposition (SVD) as follows

Dinsen = UmxsSsxsVis =UQQ'SVT = (U Q) (0 'svT), (5)

Here, Q is an arbitrary s X s invertible matrix. Comparing eqs. 4
with 5, the IRSS problem comes down finding a proper matrix Q
such that

UQ=LB ©)

Recall that B is the reflectance basis matrix learned via principal
component analysis of a spectra dataset [11, 12]. So based on
eq. 6, the illumination spectrum L can be solved for by minimizing
the following equation:

min||{UQ — LB|[%, s.t.[; > maxd;;, I; < maxd;; @)
LQ J Ljo

in which /; > maxd;;,1 < j < n,1 <i < m form constraints that
R

each illumination factor should be greater than or equal to its cor-
responding observed signal, given eq. (2), since the reflectance r
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should be less than or equal to one. And /; < maxd;; where zis the
irj
row index of the maximum value maxd;;: it restricts the illumi-
irj
nation’s absolute scale. Since eq. (7) is a simple convex quadratic

program (QP), L and Q can be solved for by iteratively updating
L and Q.

After obtaining L, the accuracy of separation can be further
improved by minimizing the following cost functions on the orig-
inal low rank model equation, eq. (4):

in||D — LBC||%,
min|| 173 .
S.t.OS(BC)ijS l,liZmaxd[j,lzgmaxd[j ®
J iJ

After optimizing this equation, the illumination L is well resolved
and reflectance spectra values R are equal to BC.

4. Improved Local Separation and lllumina-
tion Patch Segmentation
4.1 Improved local separation

The previous work [17] can be understood as incorporating
surface reflectance basis coherence into the separation problem;
in other words, the low dimension property for surface reflectance
helps to separate illumination and reflectance. In this paper, we
are trying to implement the method [17] for individual patches in
an image. We found in fact that separation accuracy for differ-
ent patches varies a good deal. When the patch contains many
colours, the separation of illumination and reflectance is reason-
able good; but when colour diversity is small accuracy is dimin-
ished. This observation is consistent with the experiments in [17],
in which separation accuracy increases with more colours.

After carefully reexamining the method [17], we understood
that this problem is caused by eq. (5). In that equation, D is de-
composed into U, S,V via SVD. So U is heavily dependent on D
and could be noisy if D only contains small variation. For exam-
ple we typically assume the reflectance subspace dimension s is 8
(chosen as the good tradeoff between expressive power and noise
resistance), while on a small patch D could be well modelled only
using only a 3-dimensional subspace; then U is noisy for the 5-D
orthogonal subspace from SVD factorization.

Once the decomposed U is noisy, the next equations (7,8)
would result in very poor separation. In order to resolve this is-
sue of poor separation on local patches, we propose incorporating
local spatial information into the final optimization equation (8).
Our novel suggestion is to change (8) in the following way:

min| D — LBC| [} + A[|CG3,

5.t.0 < (BC);; < 1, I; > maxd;;, I; < maxd;; ©
J LJ
c11 Cln : : : :
CG= . 8nl 8nu &nr Enb
el Com . . . .
Cinxn

Guxan

Here G is a n x 4n sparse matrix; g is a n-by-1 column vector such
as [---,1,—1,---]7; A is an empirical parameter which we chose



as 0.05 in all our experiments. Thus CG represents the difference
between the patch n and its neighbouring patch (left, up, right or
bottom patch). Of course, here we considered the fact that bor-
der patches will not have all four neighbouring patches, and we
set these differences to zero. By adding the latter loss term in
equation (9), we are forcing the local patches to change smoothly.
Hence we can alleviate the influence of a noisy U. In Table 1,
we show a Peak Signal to Noise Ratio (PSNR) comparison be-
tween our method and method [17]. The PSNR is computed from
the separated reflectance image and the ground truth original re-
flectance image.

Table 1. Improved local separation

Experiments PSNR | RMS
Original 24.832 | 0.0573
Improved?=0-05 | 26476 | 0.0474

4.2 Local illumination search

The main idea of our method is to divide images into patches,
compute local estimations for each patch, and then unify patches
into different illuminated regions using CRF. Then finally, we run
again the local estimation method on regions to get a global esti-
mation for different regions. This pipeline allows us to incorpo-
rate spatial information into the segmentation for different illumi-
nated regions.

In order to test our algorithm, we synthesized test images
by multiplying reflectance image with daylight illumination. The
reflectance image data comes from dataset [8], which contains
22 multispectral reflectance images. We chose the bands from
420nm to 700nm and interpolated at an interval of Snm.

For the illumination, we synthesized spectra using Judd’s
spectral power distribution (SPD) function S(A) = Sp(4) +
M;S1(A) +MS>(A) to generate 56 daylight illuminations rang-
ing from colour temperature 4000k to 25000k (4000:100:8500,
9000:500:10000, 11000:1000:15000, 20000, 25000). All day-
light bands are the same for the multispectral reflectance image
data, again ranging from 420nm to 700 with a interval of Snm.
There are in total 57 bands for each spectrum.

Crucially, as our method is aimed at estimating multiple il-
luminations in one image, we illuminated the image using two
different illuminations, as depicted in Fig. (1b).

The first consideration for our method is to divide an image
into patches. There are many options to segment images for this
purpose. The most straightforward method is to uniformly divide
each image into fixed-size patches. Another method is to use the
superpixels segmentation method, which tends to segment at ob-
ject boundaries and significant illumination changes. According
to [5, 16, 6], these two methods result in almost the same accu-
racy much of the time. Hence, here we chose to use the uniform
division method. One other reason for this choice is that the lo-
cal estimation method [17] performs better when there are more
colour variations. And uniformly dividing provides more diverse
colour in each patch and we expect this to persist upon segmenta-
tion.

After dividing image into patches, we used the method de-
scribed in sec. (4.1) to estimate illuminations for each patch. Here
we add a small modification to this method. Instead of first fac-
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torizing the observed image using eq. (5), and then solving for
illumination L using eq. (7), and finally optimizing illumination
L and reflectance R via eq. (9). Here we simply loop through the
possible illuminations from 4000k to 25000k, and find C for each
illumination that will minimize equation (9). The illumination
that has the minimum loss for eq. (9) is chosen as the estimated
illumination for that patch. Fig. (1d) is the local estimation result
for Fig. (1a), and we are showing the illuminations’ indexes in
Fig. (1d).

4.3 Different illumination regions segmentation
via CRF

As can be seen from Fig. (1d), intuitively a pattern to seg-
ment between left and right appears apart from that based on the
illumination. While if simply use a threshhold (e.g. 30 in our ex-
periment) to classify the (1d) illumination map, we will obtain
the result in (1e). Though (1d) looks like it contains two parts,
the segmentation map is very coarse. The reason in this scene is
that if we only use the threshhold to control segmentation then
actually we only use the local information for this task. And as
we already seen, the local estimation could be very noisy when a
patch contains little colour information. Next, we consider using
global spatial information for our task.

In addition to assigning each patch label (illumination 1, illu-
mination 2) based on the estimated illumination, the labels should
vary smoothly in the same illuminated region, while changes
should appear at boundaries for different illuminated regions. The
fact that a patch’s label depends on the labels of its neighbouring
patches allows us to model this optimizing problem as a CRF. The
CRF based segmentation model is defined by meaningful spatial
relationship between patches.

Here, the CRF model formulation is similar to other segmen-
tation tasks. Here, we only consider the first order random field,
which means only the neighbouring edges between patches are
considered. Again, we denotes the multispectral image patches
set as P, the edges set as N, and each patch takes a label [, from
L=1{1,2}, with {1,2} denoting illumination 1 and illumination 2.

Now we use the graph cut model in the Undirected Graphi-
cal Models (UGM) toolbox [14] to formulate our CRF problem,
and solve for the best labels for each patch. In order to fit our
model into UGM toolbox formulation, we wrote the equation in
the following form:

Potential(l) = ZU[J(lp)+ Z B(lp,1g), (10)
peP (P,q)EN

where U, denotes the unary potentials to assign patch p to illumi-
nation 1 or illumination 2; larger values of U denote higher con-
fidence that p belongs to that illumination. And B(I),l;) denotes
the binary potentials for assigning patch p and g to individual il-
lumination (they could be the same or not). This binary potential
represents the confidence with which we believe p and ¢ should
be assigned the same label or not.

In our method, we did not see a clear cue to indicate the
likelihood for assigning each patch to illumination 1 or 2. So we
assign equal potentials to U, = exp"e™« (Weopstany = 0.015 in
our experiment), and therefore we actually do not use the first
term in the equation (10).

Now the task is to find the graph cut model for illumination 1
and illumination 2 that maximizes the potential in eq. (10). The
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binary potential function B({,,1,) is defined as:

| if 1, #1,
expwl+wz*(\ldx,,71dxq|/K) if lp = lq

B(lp,lg) = { (11)

where K = max (|ldx, —Idxy|) and Idx,, Idx, are the esti-
payeN

mated illumination indexes from method sec. (4.1) . Intuitively,
when p and ¢ are illuminated in the same region, B should be
larger when assigning [, = I, than for [, # I;. In general, if
neighbouring patches’ local estimation results are similar, then
they would have high probability to be illuminated in the same
region, and thus we should assign high potentials to B(I,, 1) for
labeling them the same, and vice versa.

Throughout our experiments, we chose w; = 2.8 and wy =
—1.9. And this model satisfied our analysis above very well, since
when Idx, and Idx, are similar, then the potential for B is larger
when their labels are the same. Also when Idx, and Idx, are
different, B is larger when their labels are different.

Finally finding the best labels is finding maximum potentials
for eq. (10) in this model. Here, the reader is referred the the tool-
box [14] for more details about UGM modelling for the graph-cut
algorithm. Using the graph-cut decoding algorithm from [14], we
segmented the image into different illuminated regions, as shown
in Fig. (11).

5. lllumination and Reflectance Separation

Once the illumination region is segmented, we again run our
method described in sec. (4.2) on each region to find the best illu-
mination candidate. As we have then solved for the illumination
for each region, the reflectance can this be solved for by using the
observed image dividing the illumination. In Fig. (2), we show
the separation result of [17] and of our method.

As can be seen from Fig. (2d), method [17] almost get the
illumination totally wrong. We firstly expect the result would be
the average of two illuminations, while as the result is only trying
minimizing equation 7, there is no cue for how to balance between
these two illuminations. And from Fig. (2b), we can see the re-
covered reflectance differs from the original reflectance image, as
well as there are two obvious region in the image (which supposed
to be uniform like the original reflectance image).

For our method, since we assumed there are two illumina-
tions in the scene, then we can see the recovered two illuminations
in Fig. (2e) fits the true illumination quite well. And more sur-
prisingly, the recovered reflectance image in Fig. (2¢) looks quite
uniform and close to the original reflectance image. Of course,
we note that the wrongly segmented patches in Fig. (1f) are the
noisy part in our final recovered reflectance image.

6. Conclusion

From the experiments given, we have demonstrated that di-
viding the image into patches helps for multi-illumination esti-
mation, and using a CRF model greatly alleviates the noise intro-
duced by local estimation.

Note that our model is not restricted to two illuminations
conditions. In eq. (10), the labels state could be larger than 2. By
simply changing the potential functions eq. (11) for more states,
our model could handle more illumination conditions. However,
of course this extension would definitely introduce more noise
into the segmentations.
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(a) Reflectance Image (b) 2 illuminations (c) Uniformly divided (d) Local estimation (e) Simple classify (f) Graph cut result

Figure 1: All the displaying image are hyperspectral images, we convert them to RGB image for better display. (a) is the original reflectance
image, (b) is the reflectance image illuminated by 4000K daylight on the left half and 8000K daylight on the right half, (c) is the way
we divide image into patches, each patch size is 32-by-32, (d) is showing the illumination’s index ranging from 1 to 56, (e) is the binary
classification result when use index 30 as threshhold to segment the image, (f) is the segmented different illuminated regions using graph
cut based on local estimation

1.2
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(a) Reflectance Image (b) [17] recovered (c) Ours recovered (d) [17] recovered (e) Ours recovered

Figure 2: (a) is the original reflectance image, (b) is the recovered reflectance image based on method [17] which assume one illumination
in the scene, (c) is the recovered reflectance using our method, (d) is recovered illumination using method [17], (e) is recovered illumination
using our method
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