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Abstract
In this paper, we will present a model of color images that

provides insight into how the color channels are related. We will
show experimental results that illustrate the efficacy of this model.
We will then demonstrate how this model can be used to design a
simple chrominance based image denoising system.

Introduction
The image denoising problem has been widely studied. The

paradigm most commonly addressed is that of black and white
images degraded by additive white Gaussian noise, and it is not
always straightforward to extend these methods to color images.
The simplest way is to apply the method to each color chan-
nel separately, but this ignores the relationships among the color
channels, leaving room for improvement in the results. In this
paper, we will present a way to model the relationship between
the color channels and show how this model can be applied to the
problem of denoising.

In this section, we briefly review some of the techniques cur-
rently used to extend monochromatic denoising methods to color
images. We will also review color image modeling. One idea is
to treat each pixel as a three element vector. This is the approach
taken in [2], [14], [13], and [6].

A related approach is to consider the image as existing in a
higher dimensional space. This can be used to extend total varia-
tion minimization type denoising algorithms to color images. For
example, one idea, proposed in [8] and [17] and expounded on
in [10], is to treat a color image as a two-dimensional manifold
embedded in a five-dimensional space (x,y,R,G,B) and then try
to minimize the surface area in a way that is sensitive to edges.
The details of how to compute the surface area are fairly technical
and the reader is referred to [8] and [10] for a full explanation.
However, it is relevant to this discussion in that the image model
proposed in [9], though not directly incorporated into the method,
is used to make certain parameter choices. We will discuss this
model in greater detail later in the paper.

Other denoising algorithms first transform the RGB image to
the YUV (or similar) domain. The less noisy luminance compo-
nent can then be used to estimate model parameters, or the dis-
tance between pixel values can be computed based on some per-
ceptual criteria. This approach is taken in [18], [19], [3], and [5].

Another technique is given in [16]. Here, the authors pro-
pose a wavelet shrinkage denoising algorithm. The wavelet coef-
ficients are attenuated proportionally to the probability that they
are “insignificant” in a precise sense defined in the paper. In com-
puting that probability, the authors take into account the values of
the corresponding coefficients in other color bands, the expecta-
tion being that if a particular coefficient is significant in one color
band, it will be significant in the others also.

Some recent methods are based more explicitly on modeling.

For example, in [15], the authors observe that the histograms of
color images are well described by lines in RGB space. This ob-
servation is used for denoising in [20]. This model focuses on the
relationship between the colors of neighboring pixels, rather than
on the relationship between the color channels of a given pixel.
However, it does suggest a locally affine relationship between the
color channels. As another example, an affine model is also pro-
posed in [21].

In the image denoising literature, we have found very little in
the way of theory to explain spectral correlations in images. The
relationship between color channels within an image has been ex-
plored more thoroughly in the demosaicking literature. A linear
relationship between color channels was proposed in [1] and ex-
plained more precisely in [9]. We shall address this model in the
next section.

The general observation that the color content is correlated
at high frequencies has been used in many more recent systems.
For example, in [7], the authors design a demosaicking system
based on the idea that the difference between the red and green,
and the blue and green color channels will consist of primarily
low-frequency components, having eliminated the correlated high
frequencies. The values of the differences can be extracted by a
proper wavelet decomposition. In [22], the authors use this same
idea to propose a method of compressing mosaicked images.

The rest of this paper is organized as follows. In the next
section, we will take the simple model proposed by Kimmel in [9]
and adjust it to denoising applications. Though Kimmel used it to
choose the parameters of a denoising system in [10], our discus-
sion will be more general and will use a more direct application of
the model. We will then present results showing that this model
is good in practice, and we will demonstrate how this model can
be used to create a simple denoising system that often achieves
nearly theoretically optimal performance, given that it does no
spatial domain processing. Finally, we will conclude with some
suggestions for future work.

Model
In [9], Kimmel proposes the following image model, assum-

ing the camera is measuring the scene irradiance and the object
being imaged reflects light diffusely.

R(x) = ρR(x)〈~N(x),~l〉 (1)

G(x) = ρG(x)〈~N(x),~l〉 (2)

B(x) = ρB(x)〈~N(x),~l〉 (3)

where R(x), G(x), and B(x) are the values of a pixel at location
x, ~N(x) is the surface normal of the object being imaged,~l is the
light source, and ρi(x) is the albedo of the object being imaged.
The albedo is a function that captures the characteristics of how an
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object reflects light and is different for each wavelength. Note that
ρi(x) is a function of wavelength, as indicated by the subscript,
and ~N(x) and~l are vectors.

In Eqs. (1)- (3), it is assumed that the light is constant and
white throughout the scene. Additionally, let us assume that in a
small local area W , we are imaging a single object. Within the
object, the albedo is approximately constant, and we can compute
the local average of a pixel value for each color channel. For
example, Ravg(x) is defined as follows

Ravg(x) =
1
|W | ∑

k∈W
ρR(x+ k)〈~N(x+ k),~l〉 (4)

≈ 1
|W |

ρR(x)∑
k
〈~N(x+ k),~l〉 (5)

If we then compute q(x) = R(x)
Ravg(x)

, we find from Eqs. (1) and (5)
that

q(x) =
R(x)

Ravg(x)
(6)

≈ ρR(x)〈~N(x),~l〉
1
|W |ρR(x)∑k〈~N(x+ k),~l〉

(7)

=
|W |〈~N(x),~l〉

∑k〈~N(x+ k),~l〉
(8)

Notice that q(x) is not a function of wavelength. In fact, it is
straightforward to show that this is true even if the light is not
white, as long as it is constant. Therefore, at any pixel, we can
write the RGB values as

R(x) = q(x)Ravg(x) (9)

G(x) = q(x)Gavg(x) (10)

B(x) = q(x)Bavg(x) (11)

That is, we can write the R, G, and B values as the product of
the color dependent local mean and a color independent residual.
We will refer to this as the multiplicative model. This is actually
a special case of the model suggested by Zachevsky and Zeevi
in [21], but it is simpler because it says the color channels are
strictly proportional to each other, without an additive term. It
also provides a clear physical interpretation of the model and a
straightforward way to compute the model parameters.

Since the human visual system responds approximately log-
arithmically to changes in intensity [11], it can be useful to con-
sider logarithmic domain processing [1]. In this case, the model
becomes additive. Specifically,

log(R(x)) = log(q(x))+ log(Ravg(x)) (12)

log(G(x)) = log(q(x))+ log(Gavg(x)) (13)

log(B(x)) = log(q(x))+ log(Bavg(x)) (14)

For notational simplicity, we will define

f ′(x) = log( f (x)) (15)

With this notation, Eqs. (12)- (14) can be expressed as

R′(x) = q′(x)+R′avg(x) (16)

G′(x) = q′(x)+G′avg(x) (17)

B′(x) = q′(x)+B′avg(x) (18)
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Figure 1: Camera calibration functions for the Sigma DP1.

Experimental Results
To test the efficacy of this model on real images, where a

local patch may contain more than one object and there may be
specular as well as diffuse reflection, we collected a database of
53 images taken with a Sigma DP1 camera. This camera uses a
Foveon X3 sensor, so it actually measures red, green, and blue
values at each pixel. There is no demosaicking [12]. Therefore, if
the model works with these images, it is because the model is ac-
curate, not because it correctly mimics the demosaicking process.
The database was designed to include images with a wide variety
of characteristics, with an emphasis on capturing many kinds of
textures. A few examples will be shown later in the paper.

Since our model describes image irradiance, we used the
camera calibration method proposed in [4] to determine how to
map the values reported by the camera to scene irradiance mea-
surements. This method uses several images of the same scene
taken at different exposures and a user selected smoothing param-
eter to solve for the the camera calibration function, which is a
mapping from z, the image value, to g(z), a function which is
equal to the logarithm of the scene irradiance up to an additive
constant term that depends on the exposure value. For a more
detailed discussion, see [4].

Our results are shown in Fig. 1. The colored lines are the
calibration functions for the red, green, and blue channels, respec-
tively. We used the same smoothing parameter in each channel,
and chose it so that it was just high enough to ensure monotonicity
of the resulting calibration functions.

From Fig. 1, we see that the values reported by the camera
are very nearly proportional to g(z). Note that we are not con-
cerned with the constant of proportionality nor the arbitrary con-
stant relating g(z) to the log irradiance value, as both of these are
uniform throughout the image and will simply be absorbed into
the local average. The key point is that the image values are lin-
early related to the log irradiance, and so we are well justified in
using the additive model of Eqs. (16)-(18) in the following exper-
iments.

For computational reasons, we estimated the average R′avg(x)
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Figure 2: Modeling error for the images in our database.

as the average of the image values. That is, we computed

R′avg(x)≈
1
|W | ∑

k∈W
R′(x+ k) (19)

Though this is not exactly correct, if the pixel values being aver-
aged are close to each other it will be approximately true, and we
found that it did give good results.

To test the model, we computed an estimate of the resid-
ual by solving Eqs. (16)- (18) for q′(x). For W , we used a 7x7
pixel square window centered at the pixel under consideration. In
theory, the q′(x) estimated from the three channels should be the
same. In practice, however, they are not identical. To get a single
value, we averaged them, as shown in Eq. (20).

q̂′(x) =
1
3
(R′(x)−R′avg(x)+G′(x)−G′avg(x)+B′(x)−B′avg(x))

(20)

We used q̂′(x) to estimate the color channels as

R̂′(x) = q̂′(x)+R′avg(x) (21)

and so forth. We then computed the error between the modeled
image and the original image. Results are plotted as the green
line of Fig. 2. The x-axis of the figure is the number of the image
in our database. These numbers are arbitrarily assigned and the
order does not matter. Interpolation between non-integer values
along the x-axis is not meaningful and is done only to make the
figure visually cleaner. The y-axis gives the peak signal to noise
ratio (psnr) of the modeled image, measured in dB.

For reference, the psnr of the local average is shown as the
blue line in Fig. 2. That this is so much lower than the psnr of the
modeled image demonstrates that the model does correctly add
back high frequency information. The meaning of the red and
black lines will be explained later in this section.

As can be seen in the figure, the model performs quite well
in the psnr sense, the results dropping below 35dB in only the
worst cases. The mean is about 44dB. Artifacts consist primarily

of “bleeding” around places in the image where the color abruptly
changes, which we will refer to as “chromatic edges” and are due
to the model resting on the incorrect assumption that there is only
one object in the region over which the local mean is computed.

Since psnr does not necessarily reflect the subjective visual
quality of an image, we provide a few examples in Fig. 3- 5. Fig. 3
is a fairly flat image with no object edges and little texture. This is
a case of very good performance of the model. Fig. 4, on the other
hand, is highly textured with many chromatic edges. This is a case
of relatively poor performance of the model. Nevertheless, even
in this image, the modeled image is essentially visually indistin-
guishable from the original, though there are artifacts present that
will be looked at more closely in the next example.

Finally, Fig. 5 is a more natural image that contains flat
regions, textured regions, and dramatic chromatic edges. This
demonstrates a case of slightly below-average performance of the
model. A close up is shown in Fig. 6. In the closeup, we can see
edge artifacts at the boarder of the red truck. These arise because
the model rests on the assumption that there is only one image in
the local region being averaged. At edges, this is not true.

Despite the edge artifacts, the modeled images shown do
look very similar to the original images. This demonstrates that
the high psnrs of the modeled images do in fact indicate that the
model works well.

The errors at edges can be mitigated by adaptively changing
the averaging window to include only pixels on the same side of
the edge as the pixel under consideration. We implemented this by
considering only those pixels whose values were within a certain
threshold T of the value of the pixel under consideration.

The choice of the threshold T was based on the following
considerations. On the one hand, if T is too large, no edges will
be detected. On the other hand, if T is too small, then the set
of pixels being averaged will degenerate to only the pixel under
consideration. In this case, the “local average” will just be the
pixel under consideration and the residual will be zero. Since
all the residuals are trivially the same, the model will appear to
produce perfect results, though obviously this is not the intent.
The dynamic range of the images was 216, and we empirically
found that a threshold of 10,000 gave good results, detecting many
edges without collapsing to degeneracy.

These results are plotted as the red line in Fig. 2, which
shows that thresholding does improve the psnr of the modeled
image, as expected. The black line shows the local average com-
puted with thresholding. Although the local average does improve
with thresholding, modeling still adds back considerable informa-
tion, leading to much better performance. This demonstrates that
we have avoided degeneracy. A visual example is given in Fig. 7,
which shows that the thresholding does remove the edge artifacts.
We use this method in the rest of the paper.

Application to Denoising
This model can be applied to denoising in a very straightfor-

ward way. Specifically, we can compute q̂′, R̂′, Ĝ′, and B̂′ as given
in Eqs. (20) and (21) using the noisy image as R′, G′, and B′. This
assumes the noise is independent across color channels.

If the model were exactly correct and the local means were
known perfectly, we would expect the noise variance to be re-
duced, on average, by a factor of three, corresponding to a psnr
increase of 10log10(3)≈ 4.77dB. However, since the local means
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(a) Original (b) Modeled

Figure 3: Results of reconstructing image 1 with the proposed model.

(a) Original (b) Modeled

Figure 4: Results of reconstructing image 16 with the proposed model.

(a) Original (b) Modeled

Figure 5: Results of reconstructing image 47 with the proposed model.
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(a) Original (b) Modeled
Figure 6: Close up of image 47 and the result of modeling.

Figure 7: Close up of the result of modeling image 47 using a
threshold.

are being estimated from the noisy image using at most a 7x7 pixel
window, the actual potential increase is closer to 4.60dB.

To test this, we took the images from our database and added
white Gaussian noise (σ = 5000) to each color channel. We then
processed them with the denoising system just described. We used
a threshold to select only similar pixels to compute the average.
Unlike the noiseless case, there is no danger of degeneracy here.
Too small a threshold will simply give back the noisy image again.
Empirically, we found a threshold of seven times the standard de-
viation of the noise to work well. The results are shown in Fig. 8.
As in Fig. 2, the x-axis is the image number and the y-axis is the
psnr. The red line is the error of the noisy image. The blue line
is the result of performing chrominance based denoising, and the
green line is simply 4.60dB more than the red line at each point,
giving the theoretical limit of the system performance.

These results are quite good considering that this denoising
system is not exploiting spatial correlation. Given the fact that
only one pixel is used to do the denoising, the results are in many
cases almost as good as theoretically possible. Example images
are shown in Figs. 9- 11. Figs. 9a, 10a, and 11a are fragments of
Figs. 3a, 4a, and 5a, respectively, with noise added. Figs. 9b, 10b,
and 11b are the results of doing chrominance based denoising on
Figs. 9a, 10a, and 11a, respectively. These results were typical of
the images in our database and demonstrates that the increase in
psnr does in fact mean an increase in subjective visual quality.

We performed similar experiments on pictures taken with
other cameras, for example, the Kodak database, and found that
the type of camera used did not have a significant effect on the
results.

We note that this system could be paired with a black and
white image denoising system to create a color image denoising
method that exploits both the spatial and the spectral correlations
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Figure 8: Chrominance based denoising results.

of images. We will not explore this possibility in this paper.

Conclusions and Future Work
In this paper, we have presented a model of color images

from the early work on image demosaicking and have reformat-
ted the model to be more applicable to image denoising. We have
shown experimentally that this model is effective in describing
real images, and we have demonstrated that the model can be ap-
plied to a basic chrominance based denoising system to produce
good results.

Additionally, we note that this model could provide other
ways to extend black and white denoising methods to color im-
ages. As one example, a block-based denoising algorithm such
as BM3D or non-local means could compute the residuals q(x)
of each color channel. Since these residuals are expected to be
the same for all channels, it would be possible to search through
all three of them for similar blocks, thus increasing the amount
of available data and possibly leading to better results than are
currently achieved.

Finally, there is nothing about this model which limits it to
RGB images. We expect it could be successfully extended to hy-
perspectral images. Indeed, the more spectral channels that are
available, the better the simple chrominance based denoising sys-
tem presented here is likely to perform.
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