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Abstract
The idea of contrast at a pixel, including contrast in colour

or higher-dimensional image data, has traditionally been associ-
ated with the Structure Tensor, also named the di Zenzo matrix or
Harris matrix. This 2×2 array encapsulates how colour-channel
first-derivatives give rise to change in any spatial direction in x,y.
The di Zenzo or Harris matrix Z has been put to use in several
different applications. For one, the Spectral Edge method for im-
age fusion uses Z for a putative colour image, along with the Z
for higher-dimensional data, to produce an altered RGB image
which properly has exactly the same Z as that of high-D data. So
e.g. the contrast from RGB+NIR images can be fused such that
Z in RGB takes on the same values as Z for 4-D data. As well,
Z has been used as the foundation for the Harris interest-point or
corner-point detector. However, a competing definition for Z is
the 2× 2 Hessian matrix, formed from second-derivative values
rather than first derivatives. In this paper we develop a novel Z
which in the first place utilizes the Harris Z, but then goes on to
modify Z by adding some information from the Hessian. More-
over, here we consider an extension to a Hessian for colour or
higher-D image data which treats colour channels not as sim-
ply to be added, but in a colour formulation that generates the
Hessian from a colour vector. For image fusion, experiments are
carried out on three datasets of 50 images each. Using the mod-
ified version of Z that includes Hessian information, results are
shown to retain more details and also generate fused images that
have smaller CIELAB errors from the original RGB. Using the
new Z in corner-detection, the novel colour Hessian produces in-
terest points that are more accurate, and as well generates fewer
mistake points.

Introduction
Interest point detection has uses in many different fields in

computer vision, such as patch matching [1], object recognition
[2], and others. An interest point usually refers to a corner since
corners are points that carry a substantial amount of information
about different features of an image. Since Moravec’s [3] idea of
the application of corner and edge detection to obstacle avoidance
in 1980, corner detection has been widely used in many different
fields. A Harris matrix H [4] is a 2×2 matrix composed of prod-
ucts of the gradients of image pixels in the x and y directions, Ix,
Iy, where subscript x and y refer to partial derivatives. For an RGB
image R, matrix H has two eigenvalues λ1 and λ2 which both take
on high values in the case of interest points, hence its use in cor-
ner detection. Although there are many variant approaches for
finding corners, the Harris corner detector still remains one of the
most popular corner detectors in computer vision.

On another tack involving the Harris matrix, image fusion,

the process of creating a new image from the information in a set
of related images [5], is central in converting multi-channel im-
ages into images that are understandable on a monitor by humans
for use and analysis. Recently, as dimensionality has increased
in remote sensing [6] and satellite imaging [7], image fusion has
become an increasingly prominent topic of interest. To date there
have been several approaches for image fusion, from high pass
filtering techniques to uniform rational filter banks and Laplacian
pyramids. In the Spectral Edge (SpE) approach [8], the gradient
for a representative RGB output image is in large measure pre-
served while exactly preserving colour contrast derived from a
higher-dimensional multispectral image dataset. In SpE, a 2× 2
structure tensor matrix Z is used (also called the di Zenzo matrix
[9]), where Z is identical to a Harris matrix. The Harris matrix
encapsulates colour contrast, and SpE makes use of this by re-
mapping colour gradients such that Z is preserved.

A typical use of SpE is in carrying out image fusion for an
RGB image plus an accompanying, spatially registered, near in-
frared (NIR) image. The Harris matrix is still 2× 2 but captures
contrast for the entire 4-dimensional collection of image data. In
this way, image data information from the NIR image informs the
multi-dimensional contrast and SpE changes the initial RGB so
that it includes NIR information. Although we get rather good
image fusion results in SpE using Harris, here we define a new
definition of Z: the novel idea is to modify Z so as to include
some content due to a different descriptor of colour contrast, the
Hessian matrix.

The paper proceeds as follows: in §2 we define Harris and
Hessian corner detectors. In §3 we explain image fusion and a re-
cent method, Spectral Edge, for image fusion. In §4 we introduce
our new method and its use in both corner detection and image
fusion. Finally in §5 we discuss experiments using the new de-
scriptor.

Harris and Hessian Corner Detection
A good many interest point detectors ([10, 11, 12, 4, 13, 14,

15]) and evaluations of them ([16, 17]) have been studied. Here
we focus on Harris and Hessian detectors.

Harris Corner detection
Harris corner detector is an improved version of Moravec’s

corner detector [3]. The basic idea of Harris corner detection is as
follows: considering a pixel in a greyscale image I, if we are in
a flat region then shifting the pixel’s local region in any direction
would not lead to a change in intensity. For a corner, however, a
shift should give a large intensity change when moving the square
in any direction. Image derivatives arise when we are taking very
small shifts: the result of the analysis is that the intensity change
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is high when both eigenvalues of the image derivatives matrix H
are high. For a greyscale image I, the Harris matrix H is defined
as

H =

 I2
x IxIy

IxIy I2
y

 (1)

Harris and Stephens [4] then define a measure R of corner
response (corner “energy”) in terms of eigenvalues λ1, lambda2
of matrix H as follows: let

R = λ1λ2−κ(λ1 +λ2)
2 = det(H)−κ · trace2(H) (2)

with κ being a tunable sensitivity parameter which is between
0.04 and 0.06. Note that the definition of R obviates having to
actually calculate eigenvalues (although this is merely an analytic
calculation for a 2× 2 matrix). Corner points are then defined
by finding the maximum of R in each region of the image. Here,
the derivatives of the matrix are calculated by convolution with
the mask [−2,−1,0,1,2] followed by application of a Gaussian
smoothing kernel with width σ . We utilize the default value κ =
0.04, and obtain a value R for each pixel. Then the corners would
be the local maxima of R, found via non-maximum suppression.

In this paper a colour Harris corner detector is defined by
simply filtering the image with a Gaussian mask and then com-
bining the derivatives of each colour channel in the x and y direc-
tions, ending up with LxR,LyR,LxG,LyG,LxB,LyB . Then a colour
Harris corner measure is here defined as follows:

L(x) = g(σI)⊗ I(x)

L2
x = L2

xR +L2
xG +L2

xB

L2
y = L2

yR +L2
yB +L2

yB

MxMy = LxRLyR +LxGLyG +LxBLyB

(3)

where operator ⊗ indicates convolution. We then insert (3) into
the Harris corner measure as follows:

R = L2
xL2

y − (MxMy)
2− k(L2

x +L2
y)

2 (4)

Note that we did not specifically define a new Harris matrix, but
instead simply developed a colour version of the corner energy by
analogy to the scalar greyscale image case.

Fig. 1 shows a pseudocolour view of the corner measure R,
with highest to lowest values mapped from red to dark blue. Then
we generate local maxima via local non-maximum suppression,
shown in Fig. 2(a); in Fig. 2(b) the source image is displayed with
corner points overlaid in red.

To date, different uses and adaptations of the Harris corner
detector have been developed, such as a scale invariant version
[18]; motion tracking and 3D structure from motion recovery us-
ing the Harris matrix [19]; a so-called quasi-invariant edge and
corner detection [20], and so on.

Hessian corner detection
The Hessian matrix is another 2× 2 symmetric square ma-

trix, but constructed out of second-order partial derivatives as op-
posed to the first derivatives in the Harris detector. The Hessian is

(a) Sample image (b) R mapped to pseudocolour
Figure 1. Sample image and its corner measure R

(a) Local maxima (b) Output image with cornerpoints
Figure 2. maximum points and final corner detection

an alternative formulation that has been used for corner detection
[21]. For a greyscale image I, the Hessian is defined as

Hess =

 Ixx Ixy

Ixy Iyy

 (5)

Then the feature-point “energy” is defined as the determinant
of Hess, thus generating a scalar measure of corner-ness:

HessEnergy = IxxIyy − (Ixy)
2 (6)

For an RGB image, this has been extended in prior art [22]
to a scalar energy

HessEnergy =

[
3

∑
k=1

(
Rk

xxRk
yy− (Rk

xy)
2
)2
]1/2

(7)

where Rk = (R,G,B) for k = 1..3.
The algorithm for corner detection using this Hessian-based

detector is the same as for the Harris corner detection energy
(2) [23, 24] but with the difference that whereas Harris uses first
derivatives the Hessian uses second derivatives.
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The Hessian matrix has the advantage of capturing local
structure for a selected pixel, without canceling the opposing vec-
tors which can happen when we add the first derivatives of each
channel. Note that for the Hessian as well, a Gaussian smoothing
kernel σ2

I is applied to the image, mostly used to remove noise.
One important property of the Hessian to note is that it is

actually a re-definition of the Laplacian-of-Gaussian (LoG) oper-
ator. I.e., what we are doing in forming the LoG is first smoothing
the image with a Gaussian filter and then taking the Laplacian for
each pixel of the image: the Laplacian is

∆(x,y) =
∂ 2I
∂x2 +

∂ 2I
∂y2 (8)

which gives us

LoG(x,y) =− 1
πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (9)

which is identical to equation (7).

Novel Colour Hessian
In effect, the extension above of the definition of Hessian

corner-ness to colour has been by analogy with that scalar value
for greyscale. Instead, here we consider a colour Hessian matrix
as a whole. Instead of starting with a 2× 2 matrix, we instead
develop a 6× 2 matrix formed by analogy to the greyscale case,
eq. (5), which more naturally takes into account the 3-D nature of
colour second-derivatives:

Hess =



Rxx Rxy

Gxx Gxy

Bxx Bxy

Rxy Ryy

Gxy Gyy

Bxy Byy


(10)

For this novel definition of a colour Hessian matrix, we can define
a colour contrast matrix as

ZHess = HessT Hess , (11)

a 2× 2 array. The determinant of this matrix gives an energy
which is very different from (7).1 We found that making use of
this new quantity improved corner detection, and in the remainder
of the paper we exclusively make use of this definition. We also
found that adding a quantity of this new matrix ZHess to the Harris-
based colour contrast matrix Z improves colour rendition in the
SpE image fusion method.

1The determinant is given by the expression B2
xx ∗B2

yy +B2
xx ∗G2

xy +

B2
xx ∗G2

yy +B2
xx ∗R2

xy +B2
xx ∗R2

yy−2∗Bxx ∗B2
xy ∗Byy−2∗Bxx ∗Bxy ∗Gxx ∗

Gxy − 2 ∗Bxx ∗Bxy ∗Gxy ∗Gyy − 2 ∗Bxx ∗Bxy ∗Rxx ∗Rxy − 2 ∗Bxx ∗Bxy ∗
Rxy ∗Ryy +B4

xy +B2
xy ∗G2

xx +2∗B2
xy ∗G2

xy +B2
xy ∗G2

yy +B2
xy ∗R2

xx +2∗B2
xy ∗

R2
xy +B2

xy ∗R2
yy− 2 ∗Bxy ∗Byy ∗Gxx ∗Gxy− 2 ∗Bxy ∗Byy ∗Gxy ∗Gyy− 2 ∗

Bxy ∗Byy ∗Rxx ∗Rxy−2∗Bxy ∗Byy ∗Rxy ∗Ryy +B2
yy ∗G2

xx +B2
yy ∗G2

xy +B2
yy ∗

R2
xx +B2

yy ∗R2
xy +G2

xx ∗G2
yy +G2

xx ∗R2
xy +G2

xx ∗R2
yy− 2 ∗Gxx ∗G2

xy ∗Gyy−
2 ∗Gxx ∗Gxy ∗Rxx ∗Rxy− 2 ∗Gxx ∗Gxy ∗Rxy ∗Ryy +G4

xy +G2
xy ∗R2

xx + 2 ∗
G2

xy ∗R2
xy +G2

xy ∗R2
yy−2∗Gxy ∗Gyy ∗Rxx ∗Rxy−2∗Gxy ∗Gyy ∗Rxy ∗Ryy +

G2
yy ∗R2

xx +G2
yy ∗R2

xy +R2
xx ∗R2

yy−2∗Rxx ∗R2
xy ∗Ryy +R4

xy.

Image Fusion and SpE
Fusion of multispectral image data is an important current

research field: we would like to visualize higher-dimensional
image data in a comprehensible way. Having different image
data modalities such as NIR, radar, magnetic resonance imaging
(MRI), or nuclear magnetic resonance imaging (NMRI) gener-
ating a plethora of image pixel data not easily interpretable by
human vision, we need to be able to create a high quality output
image in a format that can be easily visualized. Image fusion is
the process of combining multi-dimensional information, reduc-
ing the dimension, whilst keeping the quality of the output im-
age high. It first became a target of interest in 1980 in the field
of remote sensing, for hyperspectral data. There are many im-
age fusion methods available (a good summary is [25]). Here we
consider the Spectral Edge Image Fusion (SpE) method as enun-
ciated by Connah et al. [8]. This is a gradient-domain approach
that maps images of dimension N channels to images of (gener-
ally lower) dimension M, with the property of preserving contrast
as defined by the structure tensor matrix for the N-D data. The
structure tensor matrix was first introduced by di Zenzo [9]. In
terms of N-D data C the gradient matrix is defined as follows:

∇C =

 C1
x C1

y
...

...
CN

x CN
y

 (12)

E.g., for RGB data matrix ∇C would have size 3× 2. Then the
structure tensor ZC is given by the inner product of ∇C:

ZC = (∇C)T
∇C (13)

Spelled out, this reads

ZC =

 ∑k Ck
xCk

x ∑k Ck
xCk

y

∑k Ck
xCk

y ∑k Ck
yCk

y

 (14)

where k ranges from 1 to N for N−D data. The goal in SpE is
to have the same contrast ZC for both high and low dimensional
images. Suppose that we already have a putative RGB image R̃.
Then the gradient of R̃ is a 3×2 array ∇R̃. In SpE, we are looking
for a 2×2 transform matrix A from our initial gradient ∇R̃ to an
improved gradient ∇R, such that the new gradient has structure
tensor that agrees exactly with that for the high-D gradient ∇C
[8]:

∇R = ∇R̃ A (15)

Then insisting on the same structure tensors for high and low di-
mensional images we have a solution for matrix A as follows:

ZR ≡ ZC

⇒ ZR = ∇RT ∇R = AT ∇̃R
T

∇̃RA≡ ZC

⇒ AT Z̃RA≡ ZC

⇒ A = (
√

Z̃R)
+√ZC

(16)
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Now a problem with using Harris (i.e., the above) as a def-
inition of contrast in SpE is that, although it generates excellent
image fusion results, the structure tensor matrix for a 1-channel
greyscale image always has only one non-zero eigenvalue. There-
fore, in the Harris corner detector, we don’t ever use the det(·)
part of the Harris energy, just the trace(·) part: i.e., Z has only
one non-zero eigenvalue. In Section 4, we introduce a new defini-
tion of Z which overcomes this problem and produces improved
results.

Adding the Hessian Information
Here, we define a new Z using the novel Hessian matrix

ZHess above (given for example for a 3-D image data in eq.(11)).
We add the Hessian-derived contrast matrix ZHess with a weight
factor α2 to the structure tensor matrix ZC and denote the result-
ing combination by ZH. Thus we acquire some of the contrast
definition from the Hessian while still having that from the Harris
approach persist in influence:

ZH = ZC +α
2ZHess (17)

This new ZH turns out to produce better results both in image
fusion in terms of maintaining colour plausibility in image fusion
images, and in corner detection as well.

Extended Contrast ZH in SpE
Inserting ZH into (16) we have

ZR ≡ ZH

⇒ ZR = ∇RT ∇R = AT ∇̃R
T

∇̃RA ≡ ZH

⇒ AT Z̃HR A ≡ ZH

⇒ A = (

√
Z̃HR)

+
√

ZH

(18)

Thus we can see that the addition of a factor of the Hessian-
derived contrast matrix ZHess to the structure tensor still works
for copying higher-D contrast exactly to a lower-D image fusion
result, and the transform matrix A is found the same way. In Sec-
tion 5 we compare the results in terms of colour error from the
original RGB and see that ZH gives substantially better results
than Z alone.

ZH In Corner Detection
In order to use ZH in corner detection, rather than simply

using Harris or Hessian matrices alone to calculate a corner mea-
sure, we use a matrix ZH given by

ZH =

 L2
x +α2Lxx MxMy +α2Lxy

MxMy +α2Lxy L2
y +α2Lyy

 (19)

at each pixel.
Because in corner detection we are usually dealing with an

RGB image, the novel matrix H will now be

H =



Rx Ry

Gx Gy

Bx By

α2Rxx α2Rxy

α2Gxx α2Gxy

α2Bxx α2Bxy

α2Rxy α2Ryy

α2Gxy α2Gyy

α2Bxy α2Byy



(20)

This means that the 2×2 array ZH is indeed

ZH = HT H = ZR +α
2ZHess (21)

so that the corner measure response RZH becomes

RZH = σ
2
I det(ZH) (22)

where σI is the size of Gaussian kernel we use for our Gaussian
filter. We then continue in the same way as previously, finding
local maxima and visualizing corners in an output image. In the
next section we compare results for corner detection using Harris
and ZH and we see that ZH gives better results in detecting corner
points.

Experiments and Results
In SpE applied to fusing RGB and NIR, a 4-dimensional im-

age is constructed to be used in the role of the higher dimensional
image, and the desired RGB image gradient is just the A2×2 trans-
form of our RGB gradient. Here, for use in our extended cntrast
situation, we use the same 4-dimensional RGB+NIR image and
compare the CIELAB errors when using Z as compared to using
ZH. We carry out experiments by using three different datasets
from [26], called “country”, “indoor”, and “street”, each consist-
ing of 50 RGB images and corresponding NIR. Table 1 shows the
CIELAB error for our outputs, compared to the initial We see that
using our method significantly reduces colour error.

Figs. 3 and 4 shows sample RGB outputs using Z and ZH
respectively. We find that the colour looks more natural when
using ZH, while for output using Z the colour is quite different
from the original image, leading to a loss of image details and
substantial CIELAB difference.

In Fig. 5 we compare results for corner detection using the
Harris method and our method. We find that corners detected by
our method are more accurate and there are no mistakes (detecting
a non-corner point). Here tests used α = 4.0 and σ = 3.0.
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(a) Original RGB image (b) Output RGB using Z (c) Output RGB using ZH

(d) Original NIR image (e) CIELAB ∆E from original RGB using Z (f) CIELAB ∆E from original RGB using ZH
Figure 3. Comparing RGB outputs of SpE using Z and ZH.

(a) Original RGB image (b) Output RGB using Z (c) Output RGB using ZH

(d) Original NIR image (e) CIELAB ∆E from original RGB using Z (f) CIELAB ∆E from original RGB using ZH
Figure 4. Another example comparing RGB outputs of SpE using Z and ZH.

Conclusions
Corner detection and image fusion are both topics of current

interest that make use of contrast, here colour contrast. In this
paper we introduce a new colour contrast descriptor by adding a
portion of the Hessian matrix of second derivatives to the Harris
matrix of first derivatives. In this way we not only do not lose part
of the image information by simply making use of eigenvalues,
and moreover also add extra information which improves both
the SpE method and Harris corner detection. Our experiments
show substantive improvements in both SpE and corner detection,

thus justifying the suitability of the new Hessian-based contrast
measure. Further research will include using the new ZH in other
applications.
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