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Abstract 

Cameras as well as displays of mobile phones, autonomously 
driven vehicles, PC monitors, and TVs continue to increase their 
native resolution to 4k by 2k and beyond. At the same time, their 
high dynamic range formats demand higher bit depth for the 
underlying color component signals. Subsequently, uncompressed 
pixel amplitude processing becomes costly not only when 
transmitting over cable or wireless communication channels, but 
also across on-chip image processing pipelines that access 
external memory units. In 2016 we introduced a low cost, real 
time, visually lossless color image compression concept inspired by 
structure tensor analysis which promises a highly adaptive and 
robust compression performance across a substantial range of 
compression ratios (between 1x and 3x) without significantly 
compromising perceptual image quality. We also noticed 
surprisingly strong perceptual color stability in spite of having 
processed each color component independently in RGB color 
space. 

To manage a wider range of compression ratios as well as 
visually lossless image quality, we proposed a novel approach that 
converts image amplitudes into a pair of discrete structure and 
magnitude quantities on a pixel-by-pixel basis which had been 
inspired by structure tensor analysis. Graceful degradation of 
image information is controlled by a single parameter which aims 
at optimally defining sparsity – as a function of image content. 
Furthermore, we applied error diffusion via a threshold matrix to 
optimally diffuse the residual coding error. 

Strongly encouraged by these findings, we continued 
implementing a version which combines structurally similar 
elements across RGB color components. As a result, we already 
achieve visually lossless compression with compression ratios 
above 4x with 8bit gamma pre-corrected color component signals 
while having to only analyze 4 nearest neighbors per pixel. We 
believe to have well identified a conceptual explanation for the 
algorithm’s extraordinary perceptual color stability which we 
would like to present and discuss in detail. We also provide a 
detailed error distribution analysis across a variety of well-known, 
full-reference metrics which highlights the effectiveness of our 
new approach, identifies its current limitations with regard to high 
quality color rendering, and illustrates algorithm specific visual 
artifacts.  

 

Introduction  
We are greatly interested in developing image data 

compression architectures that enable context sensitive control of 
visually noticeable artifacts as a function of compression ratio. 
Compared to well-known image compression methods such as 

JPEG or MPEG standards, which can achieve relatively high 
compression ratios, we aim at low compression ratios in the range 
of 1.5 to 4. The fundamental architectural challenge arises from an 
implementation at a fraction of the cost of most well-known 
compression methods. 

In [1] we had already introduced a novel image data 
compression method inspired by structure tensor analysis [2], 
which itself emerged from parametric functional compression 
across nonlinear quantities in image amplitude domain [3, 4, 5]. 
Surprisingly, at moderate compression ratios between 2.0 and 2.5 
we did not encounter any critical visual artifacts compromising 
color fidelity, although each color component had been processed 
independently in RGB color space. Encouraged by the absence of 
visually annoying color artifacts as well as prospecting higher 
compression ratios we became interested in combining structural 
quantities across all color components while remaining in RGB 
color space. Such approach also mediates several significant 
advantages: (1) less cost in architecture implementation – 
especially when input and output color spaces are the same, (2) 
increased adaptation towards human visual fidelity of detecting 
any possible color artifacts at higher compression ratios and (3) 
performance comparison with color spaces that process luminance 
and chrominance components separately.  

     
In the remaining sections we first summarize the key 

components of our latest image compression algorithm enabling 
enhanced stability of perceptual color image quality, followed by a 
statistical analysis demonstrating significant performance 
characteristics of the compression algorithm while comparing 
cumulative error distribution functions of two different metrics in 
luminance domain, namely YPSNR, SSIM. Then we also compare 
performance characteristics of our color image compression 
algorithm using a traditional color aware metric, the CIE ∆E76 
metric. Finally, we draw a conclusion and propose related work 
still ahead. 

Key components of the image compression 
algorithm which provide increased stability of 
perceptual color image quality  

The overall functional architecture of the image compression 
algorithm emerges from the idea to combine several generic 
methods which could offer improved system stability. After having 
efficiently converted image amplitudes into a parametric pair of 
discrete structure & gradient magnitude quantities at pixel 
resolution, we apply a classifier, an integral error control loop and 
an error diffusion method based on a threshold matrix. 

Structure-magnitude pairs enabling classification 
into 3 major classes 

Here, we briefly summarize the principal processing steps that 
estimate a structure quantity and a magnitude quantity for each 
pixel in the image. Processing is done in sequential raster scan 
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order, column after column, from top left to bottom right across the 
entire image. Figure 1 shows the image processing kernel with its 
center pixel p(0,0) and its 4 local neighbors {p(-1,-1), p(0,-1), p(1,-
1), p(-1,0)}which have already also been processed by the encoder.  

Across all 4 local neighbors we determine the minimum 
gradient magnitude together with its maximum gradient magnitude 
in perpendicular direction and normalize the minimum gradient 
magnitude by the sum of minimum gradient magnitude and 
maximum gradient magnitude. Then, as illustrated in Figure 2, we 
(1) classify structure quantities in normalized gradient domain into 
three major categories, (a) contours (trajectories), (b) zones 
(homogeneous regions), and (c) extremes (local minimum or 
maximum); (2) operate an IntegralError control loop for each class 
separately; (3) prioritize the major categories in the order given 
above, (a) contours, (b) zones, and (c) extremes.   

 
Figure 1. Image processing kernel with center pixel p(0,0) and its relevant four 
local neighbor pixels (left) in relative coordinates; illustration of possible 
min/max gradient pairs in 4-pixel neighborhood: horizontal-vertical (center) 
and diagonal (right). 

 
Figure 2. Preprocessing of pixel amplitudes to obtain structure/gradient 
magnitude quantities that will be fed to 3 individual IntegralError Control-Loops 
corresponding to 3 distinct classes (contour, zone and extreme values). 

Integral error control loop 
Figure 3 illustrates the building blocks of our integral error 

control loop. The resulting two normalized minimum gradient 
magnitude values mG1 and mG2 (of the MinMax Gradient 
calculation stage) will be passed on to the integral error control 
unit and quantized by the compressor’s non-linear quantizer. 

The quantizer itself is also configured by the dynamic Error 
density control as well as a local mean value that represents the 
intensity of the local image region (adaptation to perceptual tone 
curve phenomena). Together with the residual error Err(n-1) 
obtained from previous pixel encoding, we obtain a new current 
Error value Err(n) by selecting the normalized minimum gradient 
magnitude value which, for example, creates the minimum 
absolute value of the Sum of the associated center pixel amplitude 
after decode, Err(n-1), and the ‘negated’ original center pixel 
amplitude. Please also note that the decoder’s functionality is 
entirely simulated within the compressor’s encoder. Therefore, we 
actually estimate and minimize the current local Error value by 
also analyzing the mean absolute error MinAbsErr as well as the 
minimum local variance MinLocVar in differential context across 

the local neighborhood of 4 pixels. Not only do we consider the 
local neighborhood of input quantities, but we also take into 
account the encoded quantities across their local neighborhood (4 
pixel positions). 

 
Figure 3. Estimation & minimization of local error within the integral error 
control loop. 

Generic density control and anchor method 
We would like to also introduce two principal functional 

components which play a significant role in stabilizing perceptual 
image quality, namely, error Density control and Anchor method 
along contours and zones. Both components use a simple threshold 
matrix control and can be easily generalized towards efficient re-
use in application specific optimization tasks of almost any system 
parameter. 

Density control 
A Threshold Matrix offers a simple solution to controlling 

density in multidimensional context by using a single density 
parameter which is proportional to the desired overall density of 
any target quantity. Figure 4 depicts a simplified example in 
spatial context. The Threshold Matrix is being repeatedly applied 
across the pixel raster of the image. A density parameter ranging 
from 0 to 4 covers 5 different levels of spatial density. For 
example, if the density parameter is set to 2, we select all the 
positions that are showing a value less than or equal to 2. In a 
second step we set the output value of all selected positions to one 
while values of the unselected positions remain zero. Now, we can 
modulate a desired target quantity by multiplying it with the output 
value in a pixel-by-pixel regime.  

 

1 3 1 3 1 3 1 3 1 

4 2 4 2 4 2 4 2 4 

1 3 1 3 1 3 1 3 1 

4 2 4 2 4 2 4 2 4 
Figure 4. A highly simplified representation of a threshold matrix to 
demonstrate the concept of generic density control (see text for a detailed 
description). 

In our image data compression task, for example, we also 
control the discrete representation of the normalized gradient 
magnitude and the structure orientation by such a density 

IS&T International Symposium on Electronic Imaging 2017
Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications 157



 

 

parameter that translates into variable precision of signal 
quantization by just adding the value of the Threshold Matrix to 
the target quantity after normalization. 

Anchor method 
We baptized this method ‘anchor method’ because we 

literally anchor our compression algorithm at selectable pixel 
positions to prevent any undesirable drift in differential domain. 
The anchor method is considered to be a significant contributor to 
extraordinary perceptual color stability. Using the underlying 
density control as a function of compression effort lets us select 
pixel positions in the image where we decide to transmit the 
original image amplitude values. The anchor method is applied to 
contours and zones and, therefore, assists the contour and zone 
classes in achieving augmented compression performance.   

A noteworthy side effect of the anchor method emerged with 
the fact that we can also control the lower bound of visual image 
quality by defining a lower limit of the associated density control 
parameter. Consequently, each class can control its contribution to 
visual image quality independently or relative to each other’s 
performance goal.  

Performance analysis of perceptual color 
stability  

Surprisingly, we could not yet reveal critical visually 
noticeable color related artifacts, even at compression ratios 
beyond 3x. In other words, color fidelity was never compromised 
although each color component had been processed independently 
in RGB color space. We hypothesize that this is due to graceful 
pruning of prioritized local contrast quantities in context of visual 
masking. Such graceful performance seems to be enabled since we 
eliminated (1) any convolutional linear filtering which would 
increase visibility of blur, eliminated (2) visibility of blockiness 
and (3) minimized visibility of contouring. 

Our underlying basic hypothesis can be summarized as 
follows: structure quantities that appear coherent across all color 
component channels can be transmitted as a single structure 
quantity without introducing inconsistent changes in hue quantities 
along contours that are visually noticeable. Or, formulated slightly 
differently, we transmit only one contour orientation coefficient 
per pixel – if such contour orientation quantity enables consistent 
color representation along a contour. 

We definitely felt attracted by the surprisingly robust 
performance of the novel image data compression method inspired 
by tensor analysis which was already well noticeable during very 
early algorithm elaboration phases. How could we better 
understand why the basic concept of combining structural 
quantities at pixel resolution combined with feature classification 
and error diffusion suddenly led to a superior overall compression 
ratio remained a dominantly recurring question.  

 
First of all, we would like to recall that we classified the 

structure quantities pixel-by-pixel into three major categories: 
contours (trajectories), zones (homogeneous regions with 
approximately constant gradients) and extremes (local minimum or 
maximum not part of a contour). The classification was motivated 
by the hypothesis that we find a higher level of stationary signal 
characteristics within each class than all classes combined. 
Especially strong, non-stationary signal behavior can be found for 
example when encountering a high contrast contour perpendicular 
to the direction of sequential pixel processing when transitioning 

from one zone to the next. Such scenarios create significant 
variability of variance quantities. In other words, signal power 
varies significantly in local context.  

Traditionally, such critical scenarios have been addressed by 
using, for example, Maximum Likelihood or Sigma filters [6] 
which exhibit satisfactory performance in various challenging 
image processing tasks. However, their cost efficient use in real 
time image data compression tasks is highly questionable. Since 
such filters are mostly working in magnitude domain (vs. structure 
orientation domain) they also do not easily offer a cost efficient 
strategy to minimize the integral (coding) error. 

Based on the observations mentioned above we elaborated the 
idea that combines structure quantities and integral error control on 
a pixel-by-pixel regime. At the same time, each of the three classes 
possesses its own error control loop.  As a result, non-stationary 
signal behavior has been significantly reduced due to 
independently and separately processing contours, zones, and 
extremes. In summary, we manage error quantities at pixel 
resolution that demonstrate significantly improved stationary 
signal behavior as well as minimum latency – enabling elevated 
system stability and robustness especially when processing images 
consisting of natural scene content.    

 
DISCUSSION: We would like to point out that a pixel-by-

pixel control by structure quantities appears to be an efficient 
concept in comparison with block based transforms such as DCT 
or Wavelet Transform. In our approach, discrete structure 
quantities remain the same independent of compression ratio. We 
are just increasing (or decreasing) quantization of gradient 
magnitude quantities to achieve the overall target compression 
ratio. To the best of our knowledge, block based transforms do not 
yet process structure quantities concurrently with amplitude/ 
magnitude quantities. As a result, block based transforms face a 
specific dilemma. Control of phase coherency in time domain is 
highly neglected since the compression effort is only controlled by 
coefficient quantization in frequency domain.  

In addition, several useful features are incorporated into the 
compression concept: 

- Compression quality is optimized locally by using an 
integral error control loop at pixel level. 

- Spatial error diffusion and spatial error density control with 
the help of a threshold dither matrix. 

- The class attribute (3 types of classes) can be easily 
extracted from the compressed stream enabling independent 
processing of each class (without interfering with characteristics of 
another class that is considered incompatible). For example, 
contours (isophotes) can be identified on a pixel-by-pixel basis 
without having to re-estimate their location. This could also 
simplify edge/contour processing tasks to be carried out after de-
compression. 

 
We are quite confident about having constructed a novel, 

conceptual foundation enabling the algorithm’s extraordinary 
perceptual (color) stability: (1) we classify structure quantities in 
normalized gradient domain into three major categories, (a) 
trajectories (contours), (b) homogeneous regions and (c) local 
extremes; (2) we prioritize the major categories in the order given 
above, (a) trajectories, (b) regions and (c) extremes); for example, 
if image quality needs to be degraded, we still predominantly 
protect trajectories; (3) for each category we assign a weight of 
global contribution to image quality; (4) we process structure 
quantities concurrently across all color components which 

158
IS&T International Symposium on Electronic Imaging 2017

Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications



 

 

maximizes perceptual color stability; (5) we track integral error 
quantities separately for each category, and (6) with the help of a 
threshold dither matrix we apply spatial error diffusion and 
spatial error density control. 

Interestingly, with the above constraints the compression 
algorithm is able to determine a maximally feasible compression 
ratio with an associated estimated image quality that appears to be 
largely independent of image complexity. At the same time the 
achievable upper limit of compression appears to be astonishingly 
well correlated with a constant overall perceptual image quality 
just moderately influenced by the underlying mathematical image 
complexity!  

 

Comparison of visual fidelity with luminance 
based image quality metrics 

Now we can also estimate the image quality as a function of 
compression ratio since the local error control in combination with 
spatial error density control provides extraordinary stability of 
image quality across the full range of selectable compression 
ratios.  

Figure 6(a-h) shows a series of image patches taken from 2 
reference images of the Kodak image data base (Figure 5). Each 
image patch triplet is the result of compression at 3 different 
compression ratios. 

 
Figure 5. Two representative high quality test images of the Kodak image data 
base from which we extracted a set of test patches to carry out compression 
performance analysis with regard to perceptual color quality analysis as well 
as detailed statistical error analysis based on several full-reference metrics. 

The compression algorithm processes the image patches in 
sequential raster scan, column after column, from left to right and 
top to bottom within each column. We added a mirrored image 
patch on the right to visualize possible side effects emerging from 
image quality control or sequential raster scan processing. 

 
To facilitate simplified visual comparison among a 

representative set of image patches together with their cumulative 
error distribution functions, we compiled the associated figures at 
the end of the paper (Figures 6a-6h). The representative set of 
image patches is motivated by the following criteria (at high 
compression ratios): 

VillageK_PatchA: absence of visually noticeable artifacts 
VillageK_PatchB: strong loss of structure (roof tiles) 
VillageK_PatchC: differential non-linearities in CDFs 
VillageK_PatchD: no loss of visually noticeable structure 
LadyK_PatchA: Visually noticeable degradation of texture 
LadyK_PatchB: slight loss of structure, varying contrast 
LadyK_PatchC: mixed content – skintone & eye regions 
LadyK_PatchD: skintone exposed to ‘contouring’ 

In search for a suitable metric that could perhaps confirm our 
surprising result of extraordinary perceptual color stability, we first 
tried to analyze and visualize significant similarities, differences, 
and shortcomings between the SSIM and the PSNR metric. Most 
importantly, we should not neglect that both metrics have been 
developed by focusing on monochromatic context only. In other 
words, they do not explicitly describe color specific sensitivity of 
the human visual system.  

So, why should we even consider a detailed performance 
analysis between PSNR and SSIM? We argue that an enhanced 
understanding of any metric is best achieved through parametric 
functional comparison with meaningful means of multi-
dimensional visualization in context of differential quantities. In a 
second step, we can perhaps more easily identify and compare 
highly suitable metrics that account for color specific sensitivity of 
the human visual system. In summary, the analysis of suitable 
image patches in this subsection leads to a valuable comparison 
with simple CIE ∆E metrics which we discuss in the succeeding 
subsection dedicated to color aware metrics.  

 
Our basic strategy was the following: we (1) created a set of 

image patches composed of objects with high relevance to the 
perceptual sensitivity of the human visual system, (2) analyzed the 
performance of our image compression algorithm upon subjective 
quantities derived from our own expert knowledge and (3) tried to 
correlate the result with the metric under evaluation. We were 
specifically interested in revealing systematic strengths as well as 
systematic errors and their root causes of our compression method.  
Visually analyzing the associated performance as a function of 
compression ratio seemed to be a promising approach – especially 
when focusing on variability in differential signal space. 

Variability in differential signal space can be comfortably 
revealed and visualized by a cumulative distribution function 
(CDF), for example.  Let us quickly recall that the CDF is bound to 
a monotonic signal dynamic that always starts at 0=f(0) and 
always ends at 1=f(1) when using normalized input quantities. In 
other words, the higher the (error) density and the smaller its mean 
(error), the later the probability converges toward 1. This property 
lets the CDF emerge as a great candidate for accumulative error 
signal analysis in 2-dimensional graphical representations.  Subtle 
changes in nonlinear error variability manifest themselves as 
highly visible (local) slope changes. The higher the local (error) 
density, the steeper the local slope. Such local regions are of 
significant interest when searching for the root cause, especially in 
context of functional parametric interdependence, for example, 
with regard to our (perceptual) error space by varying the 
compression ratio. 

We can also easily identify the source of the errors within the 
CDF if we keep track of each error element by adding an attribute 
that describes its pixel location. However, this feature has been left 
to the reader’s imagination since it proves only really powerful, for 
example, in an environment aimed at truly interactive data 
exploration.  

 
Figure 6 demonstrates the monotonic progression of image 

quality degradation with the associated cumulative distribution 
function (CDF) of PSNR quantities as well as SSIM quantities 
applied to a representative set of image patches. 

CDF of PSNR 
The CDF of PSNR exhibits an S-shaped curve with variable 

maximum slope when similar image content is evenly distributed 
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across the image patch. This appears to be a general characteristic 
and can be well observed across all image patches described in our 
current paper. We would like to point out that our compression 
algorithm already creates coding errors at a compression ratio of 
1.0. However, since it performs indisputably visually lossless on 
practically any natural image content (@ compression ratio 1.0) so 
far, we consider the underlying shape of the CDF as an ‘ideal’ or 
‘optimal’ reference shape. Interestingly, the compression 
performance spans across approximately 13dB between this ideal 
reference mean PSNR value and the visually lossless compression 
performance with compression ratios in the range of 2.6 to 2.7. 

Since the CDF of PSNR shifts left as a function of  decreasing  
mean PSNR, we also defined an arbitrary maximum upper mean 
PSNR bound equal to 60dB that corresponds to 1=F(1). 
Consequently, any PSNR value greater than 60dB will be clipped 
in the graphical representation.  

The legend shows the mean PSNR value together with the 
achieved compression ratio in parenthesis. The spacing between 
each plotted curve is driven by the target compression ratio, evenly 
incremented by 0.4 in the range of 1.0 to 5.0, therefore, generating 
11 independent curves. The inset illustrates the spatial occurrence 
of the error quantities at highest compression ratio. The darker the 
pixel in the inset image is, the stronger the associated error value. 
Now, we show evidence that the 2-dimensional curves provide 
valuable detailed insight into nonlinear differential variability 
which cannot be explicitly expressed by the single scalar mean 
PSNR value.  

 
At the same time, we can compare the variability of these 

curves with the visual observations we can draw from the result 
images shown at three different compression ratios (Fig. 6). The 
‘ideal’ compression performance at compression ratio 1.0 is 
illustrated in the top row. The visually lossless compression 
performance (at expert level) is shown in the middle row and the 
maximally achievable compression ratio is shown in the bottom 
row. The target compression ratio equals 1/10th of the number 
following the keyword ‘obj’ and the achieved compression ratio 
equals 1/10th of the number following keyword ‘real.’ The result 
image of the maximally achievable compression ratio is not only 
intended to illustrate the emerging visual artifacts but to also 
illustrate the extraordinary perceptual color stability of the current 
version of the compression method. 

 
 

CDF of SSIM 
We also propose to compare our subjectively motivated score 

of compression performance with the largely accepted full 
reference metric SSIM [7]. In comparison to PSNR, SSIM is 
already well normalized to 1 which transforms to location 1=f(1) 
in CDF space (see fig. 6). However, for the purpose of visualizing 
variability with increased detail, we preferred using a logarithmic 
scale along the CDF’s ordinate axis. This also conveniently renders 
the CDF of SSIM very often as an approximately linear slope that 
varies its slope coefficient as a function of compression ratio. As 
with the graph of CDFs of PSNR, the inset image depicts the SSIM 
values in spatial context at maximum compression ratio. 

Interestingly, the CDF of SSIM seems to change curvature 
across mid-range errors - from concave (exponent > 1) to convex 
(exponent < 1) - when we increase our visually lossless 
compression ratio beyond 2.7. So, can this curvature phenomenon 
therefore be highly associated to error values at visual threshold?  

The image patch ‘VillageK_PatchA’ at a compression ratio of 
4.5 demonstrates a special scenario in which SSIM clearly 
indicates that visually lossless performance has already been 
compromised while visually noticeable artifacts remained absent. 
Can we perhaps conclude that SSIM as a full-reference metric 
clearly indicates loss of structure compared to the reference image, 
but it cannot easily distinguish between visually noticeable 
artifacts and generic loss of structure quantities when visually 
analyzed in no-reference context?   

 
 

Color aware image quality metrics 
We can confidently state that perceptual color stability 

doesn’t appear to be compromised in any of the carefully selected 
image patches in spite of a plurality of emerging visual artifacts at 
maximally achievable compression ratios. Highly stupefied by this 
phenomenon, we now would like to analyze the phenomenon in 
detail by using the rather simple, color centric metric CIE ∆E76 
(CIEDE76). We remain mostly interested in revealing meaningful 
relative quantities in differential context (intra-CDF), instead of 
trying to argue about absolute quantities (inter-CDF) across 
comparable metrics, especially when considering the still 
questionable performance of SSIM with respect to absolute 
quantities (linear geometric mean) which we demonstrated by our 
set of color test patches. Since we are currently not interested in 
(re-)using absolute quantities of perceptual full-reference metrics, 
we also disregard the CIE ∆E2000 metric [8]. 

CDF of CIEDE76 
The fundamental separation into luminance, chrominance, and 

hue domain already present in the ∆E76 metric offers valuable 
insight on relative perceptual sensitivity between the three 
domains. Considering the still questionable performance of SSIM 
with respect to absolute quantities (linear geometric mean) as, for 
example, revealed by our exemplary set of color test patches, we 
can also much more easily discuss the general performance 
characteristics of the ∆E76 components.  

First of all, the CDF error profiles of our compression 
algorithm exhibit highly similar differential characteristics in 
luminance domain when we compare between SSIM and 
CIEDE76. Therefore, we adjusted the linear gain of error values so 
that they match the same dynamic range for simplified 
visualization in log-linear signal space. Figure 7 shows the 
variability of CIEDE76 CDF in luminance domain across all 8 
image patches; each image patch is represented by a pair of CDFs - 
with a unique color assigned - illustrating the minimum 
compression ratio (lower bound) and the maximum compression 
ratio (upper bound). Although the graph appears highly cluttered, it 
confirms the basic observations we have already drawn from the 
CDF of SSIM. Across all image patches we find concave to linear 
curvatures at low compression ratios and linear to convex 
curvature at high compression ratios. 

Rather expectedly, but still surprisingly, the variability of 
CIEDE76 CDF in chrominance domain and in hue domain shows 
mostly concave to linear curvatures and steeper linear slopes than 
in luminance domain across all 8 image patches. 

The image patch VillageK_PatchB illustrating roof tiles with 
loss of structure at maximum compression is a highly suitable 
candidate to compare the CDFs of the metrics in luminance, 
chrominance, and hue domain. We expect a stronger differential 
non-linear progression towards convex curvature in luminance 

160
IS&T International Symposium on Electronic Imaging 2017

Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications



 

 

domain versus chrominance and hue domain – especially across 
the roof tiles where luminance structure has been significantly lost. 
Astonishingly, the expected behavior is easily confirmed across the 
associated CDF in luminance domain at maximum compression 
ratio. 

We also propose to discuss variability found in luminance, 
chrominance, and hue domain while comparing the image patch 
VillageK_PatchA with the image patch VillageK_PatchB at 
minimum and maximum compression ratios. While luminance 
changes curvature to convex, chrominance and hue do not. In 
addition, all chrominance and hue slopes exhibit a significantly 
steeper slope than the corresponding luminance slopes. We 
therefore correlate the underlying phenomenon with significantly 
higher perceptual color stability. 

Conclusion  
The novel, nonlinear method applied to image compression 

enables significantly better local adaptation to non-stationary 
image information in context of human visual perception while 
accomplishing low computational complexity and preserving finest 
levels of discrete structure (orientation) and magnitude 
information. Error quantities are being processed in several 
complementary differential domains enabling advanced visual 
masking strategies. We also maintain full spectral bandwidth 
fidelity and optimal phase coherency by having eliminated any 
linear filtering or median filtering which was traditionally used to 
improve prediction and coding performance. Needless to say that 
less filtering also favorably translates into a fewer number of 
operations per pixel. In addition, the new possibility of processing 
structure quantities and gradient magnitude quantities concurrently 
but independently enabled adjusting the underlying sparse 
representation of image information as a function of compression 
ratio guided by a novel error density control based on a threshold 
matrix concept. Surprisingly, the associated image quality is highly 
stable and relatively proportional to compression ratio. In addition, 
the compression algorithm can be configured to respect a lower 
bound of overall perceptual image quality. As a result, 8-bit 
gamma-pre-corrected high quality still images reach compression 
ratios between 3.9 and 4.8. First estimates, which however still 
need to be confirmed, predict that compression ratios of about 5x 
appear very reasonable for 10-bit video streams – without creating 
any visually noticeable artifacts. We presume that the substantially 
high computational efficiency has been achieved by focusing on 
discrete orientation (encoded with just 2 bits per pixel) as well as 
normalized minimum gradient magnitude that are easily derived 
from discrete pixel amplitudes already present on the underlying 
grid of the pixel matrix. Such a discrete pair of orientation 
quantities and minimum gradient magnitude quantities offers an 
excellent solution for representing a powerfully adaptive 
coefficient in local context. This can be efficiently quantized and 
seems to well imitate astonishingly well human visual local 
contrast perception. 

A detailed analysis of error quantities across carefully 
selected image patches enabled us to underline the extraordinary 
perceptual color stability of the current image compression 
algorithm. Comparing three commonly known full-reference 
metrics, namely YPSNR, SSIM, and CIEDE76, in differential 
context of cumulative distribution functions proved extremely 
useful. 

We also imagine that the presented concept can be 
advantageously applied to multi-dimensional and multi-scale data 
sets of many other challenging engineering tasks achieving 

efficient computational performance and dedicated precision – 
especially where structural quantities represent important 
information in local context. 
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Figure 6a. Image patch with three compression ratios: {1.0, 2.7, 4.5} (top); 
CDF comparison of YPSNR, SSIM, and CIEDE76 (see text for details) 

 
Figure 6b. Image patch with three compression ratios: {1.0, 2.7, 4.3} (top); 
CDF comparison of YPSNR, SSIM, and CIEDE76 (see text for details) 
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Figure 6c. Image patch with three compression ratios: {1.0, 2.7, 3.9} (top); 
CDF comparison of YPSNR, SSIM, and CIEDE76 (see text for details) 

 
Figure 6d. Image patch with three compression ratios: {1.0, 2.7, 4.1} (top); 
CDF comparison of YPSNR, SSIM, CIEDE76 (see text for details)  
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Figure 6e. Image patch with three compression ratios: {1.0, 2.6, 4.5} (top); 
CDF comparison of YPSNR, SSIM, and CIEDE76 (see text for details) 

 
Figure 6f. Image patch with three compression ratios: {1.0, 2.7, 4.8} (top); 
CDF comparison of YPSNR, SSIM, and CIEDE76 (see text for details) 
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Figure 6g. Image patch with three compression ratios: {1.0, 2.7, 4.7} (top); 
CDF comparison between YPSNR, SSIM, and CIEDE76 (see text for details) 

 
Figure 6h. Image patch with three compression ratios: {1.0, 2.7, 4.8} (top); 
CDF comparison of YPSNR, SSIM, and CIEDE76 (see text for details)  
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Figure 7a. Variability of CIEDE76 CDF in luminance domain across image 
patches; each image patch is represented by a pair of CDFs - with a unique 
color assigned - illustrating the minimum compression ratio (lower bound) and 
the maximum compression ratio (upper bound) 

 

 
Figure 7b. Variability of CIEDE76 CDF in chrominance domain across image 
patches; each image patch is represented by a pair of CDFs - with a unique 
color assigned - illustrating the minimum compression ratio (lower bound) and 
the maximum compression ratio (upper bound) 

 

 
Figure 7c. Variability of CIEDE76 CDF in hue domain across image patches; 
each image patch is represented by a pair of CDFs - with unique color 
assigned - illustrating the minimum compression ratio (lower bound) and the 
maximum compression ratio (upper bound) 
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