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Abstract. Error diffusion is an often used method that transforms
a continuous tone (multibit) image into an image of lower bit
depth, most commonly into a binary output of black and white.
The simplicity of the processing and the quality of the output have
made error diffusion a frequently used tool. Part of the image
quality is attributed to the minimization of quantization errors in
the error-diffusion process. This article describes local instabilities
in a color multilevel error-diffusion system that—in contrast—can
lead to large local errors in the output, far exceeding the normally
expected quantization errors. This can have serious negative effects
specifically in connection with the design and incorporation of color
calibration sheets. c© 2016 Society for Imaging Science and
Technology.

INTRODUCTION
Error diffusion is a feedback-based halftoning technique
that first was described for image data by Hale1—for a
one-dimensional signal—and Floyd and Steinberg2—for a
two-dimensional image in 1976. In a simple description, the
input value at location (m, n) is quantized to its ‘‘nearest’’
possible output level. The error between the input at (m, n)
and output at (m, n) is then compared and defined as an
error. This error is subtracted from future pixels and this
combination of actual input value and accumulated error
value is considered the actual input for quantization. This can
be written as:

o(m, n)=Q
[
i(m, n)−

∑
i,j

aj,ke(m− j, n− k)
]

(1)

and

e(m, n)= o(m, n)−
[
i(m, n)+

∑
i,j

aj,ke(m− j, n− k)
]
(2)
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where o(m, n) refers to the output,Q(. . .) is the quantization
operator, i(m, n) is the original input and aj, k are theweights
with which the error is distributed to yet unprocessed pixels.
Note that the error might be defined as input minus output,
or output minus input; however, this only changes signs in
(Eqs. (1) and (2)).

Note that at this point we are not assuming anything
about i(m, n), in terms of vector or scalar quantity, o(m, n)
in terms of number N and distribution of available output
levels, and aj,k in terms of the actual error distribution.

In the past, a lot of work has been done on the selection
of the weighting coefficients aj,k, for example using the
larger matrix of Jarvis et al.,3 or by simplifying the weights
as for example done by Fan et al.,4 or by optimizing the
weights according to some criteria as in Kim and Gill5
and Kolpatzik and Bouman6 switching between different
weight matrixes as in Eschbach7 and adapting the weights to
other requirements, e.g., complex-valued for holography8 or
based on hardware constraints (found mainly in the patent
literature.9,10)

An additional area of work was the quantizer Q, which
in the binary case is a simple step function with an optionally
spatially varying threshold or distance metric11 or an input
dependent threshold.12 Generalizing the quantizer to an
N-level system,13 including an 8-bit to 8-bit conversion,14 or
to a vector quantizer,15 e.g., for color, was also done early.

In (virtually) all cases, the modifications attempted to
optimize the output with respect to some subjective or
objective criteria, such as image perception, quantization
noise spectrum, etc. In most cases, the optimization of
error-diffusion weights aj,k was done under the additional
constraint ∑

j,k
aj,k = 1 (3)

essentially guaranteeing that 100% of the error is com-
pensated. The criterion of Eq. (3), is not a sufficient
criterion and might lead to numerical instabilities16 that
grow exponentially. In the stable situations, Error Diffusion
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Figure 1. First 20 error values for a constant input of 0.3 and the two
output levels [0, 1].

as described in Eqs. (1)–(3) normally results in local errors
that are less than the dynamic range for an individual pixel.

In this article, we will describe a situation that creates
a large accumulation of process errors that does result in a
large localized drift between the desired and the created value
that goes beyond the bounds that are commonly associated
with the quantization. However, despite being large with
respect to the difference between quantization states, it is
not growing exponentially to lead to numerical instabilities.
Theoretically, the described instability can lead to an infinite
error; however, this value will only be approached in an
infinite number of steps, as will be described in subsequent
sections.

MULTILEVEL ERROR DIFFUSION
As a general observation one can say that—for scalar
error diffusion—an increase in the number of output levels
Q{î} will directly improve the quality of the output image
o(m, n). Transiting from the original binary method N = 2
to other small number of states, e.g., N = 3, N = 4, causes
some texture problems, commonly for input values close
to an intermediate output level,13 but reduces the locally
accumulated error. For vector systems a similar effect is also
often observed.17 The improvement in output quality can
be understood by considering that the quantization error
is the difference between the desired value and the closest
(to a specific criterion) possible output value and thus, with
more possible output values the quantization error in general
decreases. This is illustrated for a simple case of 1D error
diffusion1 with an input value of 0.3 and the two output levels
Q{i} = [0, 1] in Figure 1. Here, the first 20 errors are shown.

Adding a third output level at 0.5 to Q{i} = [0, 0.5, 1]
changes the errors to the ones shown in Figure 2, which is a
clear reduction compared to the errors shown in Fig. 1.

Note that for Figs. 1 and 2 only one weight a1,0 = 1 was
used, which is identical to the method described in by Hale.1

For scalar signals, the reduction in error through the
addition of additional output states is intuitive. If the
quantization error one has to make at a certain location
is smaller than in the case of fewer output levels, then the
accumulated error should also be smaller. This situation,
however, can change if we are transitioning from a scalar to
a vector system.

Figure 2. First 20 error values for a constant input of 0.3 and three output
levels [0, 0.5, 1].

VECTOR ERROR DIFFUSION
Error Diffusion has early on been generalized to Vector
Error Diffusion (VED).15 One of the promises of VED is
the joint control of the output dot placement, eliminating
the cross-separation issue from the scalar approach. Another
promise is the ability to better utilize a system where
the different available output states are note separable.
Consequently, there is considerable amount of work done in
VED.18–21 In this article, we will concentrate purely on the
error accumulation for some of the choices of output states.
At its core, any vector error diffusion is a multilevel system,
since it takes at least three output states to define a possible
area or volume. Let us consider a 2-dimensional output space
first, generalizing to the 3-dimensional RGB space in later
sections.

It can be seen that in the 2D case we can partition the
plane into triangles defined by the three closet output states.
In the actual 3D case, this would result in a partition into
tetrahedra, but we will restrict ourselves to the 2D case and
triangles. The 2D color space is tiled by triangles, where the
shape of the triangle is defined by the available output states.
This physical tiling, rather than an idealized mathematical
tiling, result in triangles that are a direct function of the
physical output states. For our case, wewill consider the effect
of different triangle properties on the error accumulation.

In the correspondence to the scalar case, we can define
a 2D space as having the output states [(0, 0), (1, 0), (0, 1)] as
a simple idealized form and examine the effect changes have
on this structure. In order to visualize the error, we can now
use two different descriptions. The first is theModified Input
and the second is the absolute error, meaning the length of
the error vector in that space.

The modified input is a commonly used metric, since
it shows the value that is actually given to the quantizer. In
rewriting Eq. (2) we can define the Modified Input imod as

imod(m, n)= i(m, n)−
∑
i,j

aj,ke(m− j, n− k) (4)

where the Modified Input shows the relation to the original
data and the dynamic range.

Both error metrics are shown for an input value of (0.42,
0.37) as example in Figure 3. Fig. 3(a) shows the progression
of the Modified Input for the first 20 pixels. The three output
stats that define the gamut are indicted by circles and their
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(a) (b)

Figure 3. (a) Progression of the Modified Input for a given constant input value (triangle) of (0.42, 0.42) and three output states (circles) [(0, 0), (0, 1),
(1, 0)]. (b) Progression of the absolute error in the same scenario.

(a) (b)

Figure 4. Adding an additional output state at (0.45, 0.45), additional circle in (a) reduces the Modified Input and the absolute error in (b).

convex hull is indicated by the dotted line. The solid line is
the progression of the Modified Input. One can see that the
Modified Input stays close to the gamut. It extends beyond
the boundaries to somedegree, since theModified Input adds
an error term to the actual input value. Since the actual input
value is limited by the gamut, we would expect to add—at
most—a value of O{dynamic range}.

Fig. 3(b) shows the progression of the absolute error
for the first 20 pixels. The absolute error stays within one
dynamic range—as was expected.

If one now adds a fourth possible output state, as is done
in Figure 4, we effectively should reduce the error and thus
create aModified Input that is closer to our available dynamic
range and an absolute error that decreased from before. In
our case, we are introducing a level (0.45, 0.45) [indicated as
the fourth circle] in Fig. 4(a) and as predicted, the effect is
similar to the effect observed in the scalar black and white
case, in that the error decreases. Note that we increased the
number of pixels to 100, since some effects are only visible at
larger pixel counts.

In the case shown in Fig. 4, the maximum error was
reduced from approximately 0.8 to 0.5 as one might expect
when comparing it to the scalar case. From the data above,
one might assume that the increase in number of output
levels will always create a reduction in the error. However,
we will show that contrary to this assumption, slight changes
in the scenario can actually increase the error considerably.

Please be aware that all input values that we will be using
here and in the subsequent sections are within the dynamic
range, meaning within the convex hull of the defined output
states. Thus every value can be well represented by the output
states and no issue exists caused by a violation of the available
dynamic range. We emphasize this point, since violations of
the dynamic range have an effect that can be confused when
only a few pixels are regarded.

To illustrate the case of increased errors, let us consider
the same distribution of states as before, but using a slightly
different input value of (0.51, 0.485) which is still within the
convex hull of [(0, 0), (1, 0), (0, 1)], but moves the input value
to the triangle spanned by the output states [(0.45, 0.45),
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(a) (b)

Figure 5. Changing the input value slightly [black triangle in (a)] leads to a large Modified Input in (a) and the corresponding large absolute error in (b).

(1, 0), (0, 1)]. This is shown in Figure 5, where the scales of
the x- and y-axes have changed with respect to Fig. 5.

The Modified Input can now be on the order of (2.5,
2.5) despite the dynamic range of the input being bound
by the triangle [(0, 0), (1, 0), (0, 1)]. Considering the four
possible output states (circles in the Fig. 5) spanning the
dynamic range, one clearly sees that the Modified Input is
now deviating considerably.22 This deviation can also been
seen when looking at the absolute error as done in Fig. 5(b),
where we see an increasing in absolute error by essentially a
factor of 6.

Since the addition of an output state causes, in this case,
a problem, one might say that it could be circumvented by
a more intelligent definition of the possible output states.
However, output states are often defined by actual physical
means, e.g., colorants, separations, in which case problem
illustrated above exist.20,21 Omitting that output state in the
computation is also not a desired option since it eliminates
the advantages this output state creates for other input levels
than the one used in this example.

CONVEXHULL AND CIRCUMCENTERS
In order to get a better understanding of the process causing
the described problem, one can visualize the output states as
the set of points P that form the corners of triangles as done
in Figure 6. For the 2-dimensional case, we now have a set
of triangles spanning the entire possible in-gamut space and
the definition of the three closest output states to any input
state. Choosing the triangles one can also easily generalize the
description to a 3D color space with more than the saturated
output states and to spectral data for a physical rather than
visual match between input and output.

In the example of Fig. 4, the input value was contained
inside the lower triangle (labeled A in Fig. 6) and for the case
of Fig. 5 was contained in the slim upper triangle (labeled C
in Fig. 6).

Figure 6. Triangles A–C defining the areas for the given output states.

The shape difference of the triangles (A, B) versus (C)
can be used to explain and predict the behavior of the
Modified Input and absolute error.

In calculating the ‘‘closest’’ possible output states, we will
always pick one of the three states that forms the triangle
the current value is in. The boundary for the selection, or
decision surface, can be shown as the orthogonal bisectors
of the different sides, meeting in the circumcenter of the
triangle. This circumcenter is the center of the circle going
through the corresponding states, i.e. the circumcircle. This
is shown in Figure 7 where the circumcenters of the three
triangles are marked using the labels of their respective
triangles. Note that the outside triangle spanned by [(0, 0),
(1, 0), (0, 1)] is not indicated since it never forms the smallest
triangle a value can be in.

As one can see that the circumcenters for all obtuse
triangles fall outside the actual triangle and in the case of
triangle ‘‘C’’ the furthest outside. The relative circumcenter
position is an actual explanation for the error behavior we
observed in Fig. 5. When thinking of the bisectors as the
‘‘threshold line’’ between two states, it becomes clear that
the modified input value has to approach—and cross—the
bisector in order to select another output state. If three states
are needed—as in our examples—the modified input should
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Figure 7. Circumcenter locations for the three triangles spanning the
dynamic range of the examples.

Figure 8. An extreme example of a shallow obtuse triangle having a
circumcenter at (17, 17).

approach the circumcenter point before the algorithm can
effectively switch between the different states. For the case of
Fig. 5 this circumcenter would be at location (2.975, 2.975)
which is the value the Modified Input approaches. It should
be noted that the Modified Input will fluctuate around the
circumcenter in an area that makes all three output states
accessible.

Considering the circumcenter, one can also understand
that theoretically the error can approach infinity, but that it
needs an infinite number of steps to get there. An extreme
example is shown in Figure 8 where the circumcenter point
is marked by a black square at location (17, 17). Note that
the input dynamic range is defined by the same triangle
as before (visible four circles) and that the actual error of
approximately 15 is thus well outside the actual data range.
Fig. 8 also indicates the need to show large pixel counts, since
drifts and quasi-stability alternate often, with the overall
Modified Error still approaching the circumcenter marked
by the square, as already visible in Fig. 6.

At this point one might—correctly—state that there are
only few colors inside an extremely obtuse triangle and that
in real cases no image will have a large number of constant
color values inside this small triangle. This is true for natural
scenes but changes if one considers the creation of multilevel
or multispectral calibration sheets. Inside each calibration
sheet, there might be more than 20,000 identical values
(assuming a 600 dpi printer and a patch of ca 5× 5 mm2). In
that case, there is a large accumulated error. This error will
actually influence subsequent calibration patches since the
error diffusion will compensate the entire error and a local
accumulation in one direction will have to be compensated
by subsequent pixels. If this happens on a calibration sheet,
the actual calibration data will contain large errors that
subsequently will be embedded into all images run through
the system. Thus a strongly obtuse output state configuration
in vector error diffusion can lead to actual problems in print
even if the images do not contain considerable image content
in that area of color space.

ERROR LIMITATION
There are two obvious approaches to reduce the problem in
error diffusion. One of the approaches is to reduce the error
feedback, either by using weighting coefficients that do not
sum to ‘‘1’’ or by limiting the total accumulated error through,
e.g., thresholding. A second approach is to eliminate output
states from the set of used states as a function on the centroid
point for that set of states.

Both methods are practical implementations, but they
do not offer new insights into possible ways to modify
the error-diffusion method to get a more stable system
and to avoid potential other problems that are inherent
in a vectorial/multilevel system. Therefore, we are trying
to explore alternate methods that still fulfill the full
error feedback through

∑
j,k aj,k = 1 and still use all

available output states, albeit with a potentially different
selection mechanism. For the purpose of this article, we
will concentrate on a purely mathematical determination of
‘‘error’’ either by considering absolute or vector errors, and
we will not directly evaluate visual quality. The reason for
this is that the visual quality is potentially influenced by other
attributes as texture, ‘‘worms,’’ etc. and that those artifacts
can occur almost independent on the actual local error.

L2 Norm and Homogeneous Distributions
In error diffusion, scalar and vectorial, the error calculation
can be seen as an L2 norm. When using this standard
norm in vector error diffusion, the selection of the output
state will tend to move the modified input toward the
circumcenter of the available states. For a vectorial scenario,
however, one can envision different approaches. Of these
approaches one can argue a preference for approaches that
are indistinguishable from an L2 norm for the scalar case,
thus including, e.g., L1 norm. However, one can take a
different view of thresholding in error diffusion and regard
it as a two step process, with the first state being a decision
process with a definable decision surface and the second step
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Figure 9. Indicating the likelihood that an output state is selected for an
obtuse triangle.

is the calculation and forwarding of the corresponding error.
This is not actually a deviation from the original concept
of error diffusion. Consider quantization to be a process by
which one image is transferred to another image under a
specific norm. The standard (e.g., L1, L2) norm would give a
direct binarization, and error diffusion actually modifies this
decision by incorporating past behavior. There is no principle
argument against doing a similar step for vector quantization.

Consider Figure 9 where we show the triangle ‘‘C’’ from
Figs. 6 and 7 using the labels L, M, N for the three output
states defining that triangle and CC for its circumcenter.
The areas marked l, m, n are the areas that—under our
norm—would select the corresponding states. For values that
are inside our triangle, we can see that the output state L
is the most likely selected output state, and also the output
state that drives the vector error toward CC. Here, ‘‘most
likely selected’’ assumes a homogeneous distribution of input
values. We chose this language intentionally, since it directly
implies a different way at looking at the thresholding in the
scalar case. There, a L2 normwould actually create an equally
likely output state for a homogeneous input value. If we now
assume that it is the uneven likelihood of an output that is in
part the driver and that this likelihood in scalar problems is
implemented as a simple distance, we can also explore if the
likelihood—or something similar—is also a valid approach
for the vectorial case.

Under that assumption, we would change the decision
boundaries from being the bisectors and circumcenter, to
the medians and the centroid. These decision boundaries
are shown in Figure 10. Both decision boundaries from
Figs. 9 and 10 will degenerate to an identical decision when
transitioning to a scalar model. Given this explanation one
can argue that a decision surface that more closely resembles
the medians and centroid would be preferable in at least
some of the vector cases. Note that in acute triangles the
circumcenter is also inside the triangle and thus ‘‘close’’ to
the centroid.

DECISION BOUNDARIES AND PHANTOM LEVELS
From the previous examples, we have seen that the areas
of color space where the output states form strongly obtuse

Figure 10. Defining the output state selection through medians and
centroid results in an equal likelihood.

triangles, cause large error accumulations. In the following,
we will concentrate on those triangles only. Thus, of all
possible output colors for a VED system, only the—likely
small—subset of output colors is considered that fall into
this class. However, these colors might be contained in the
calibration sheet and thus also influence other areas.

In Fig. 10 we argued that decision boundaries are
not necessarily an L2 distance. The only requirement that
we have for the decision boundaries (or surface in the
multidimensional case) is that they maintain full error
correction over the image and only locally modify the greedy
minimumdistance criterion. The ‘‘equal likelihood’’ from the
previous paragraph is one such decision boundary; however,
it suffers from the fact that the actual processing becomes
more complicated and it is also one specific form with no
flexibility. For that reason, we are exploring here a different
approach that (1) creates more flexibility in the selection
likelihood and (2) stays largely within the computational
framework of L2 metrics.

As stated before, in the standard distance metrics, the
values tend to approach the circumcenter of the three states
defining the area. Changing one of the states will change
the circumcenter and thus also change which state will be
chosen as output. Let us introduce a Phantom Level, i.e.,
a mathematical output state that does not have a physical
output state associated with it and let us call that state L′.
Note that we are not able to actual print that state L′ since
the Phantom Level is purely mathematical. For simplicity we
will also locate L′ be on the same vertex as L. This is done
in the scope of this article to show the general effect and the
flexibility of the Phantom Level concept, and not to indicate
an optimal PhantomLevel location. It is clear that for the new
triangle (less obtuse) the corresponding circumcenter CC ′
will move toward the triangle and its centroid (note that it
will be generally different from the centroid, but closer to it
than the original circumcenter). The furtherwemoveL′ from
L the more we reduce the likelihood that L will be chosen.
However, since L′ is a purely mathematical level, we will only
use it in the distancemetric, as will be explained below. Thus,
if L′ is the closest to the current modified input, we will take
this as indicating to use the actual level L as output state and
also calculate the error with respect to L, thus maintaining
the original error-diffusion approach. L′ thus only influences
when output state L is chosen.
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(a) (b)

Figure 11. Scenario used for the Experimental Result section. The output states [circles in (a)] are [(1, 0), (0, 1), (0.4, 0.4)] with a circumcenter [square
in (a)] of (1.7, 1.7) and the associated absolute error in (b).

(a) (b)

Figure 12. Adding a Phantom Level at (0.2, 0.2) [black square in (a)] limits the Modified Input (a) and clearly reduces the absolute error (b).

With the introduction of the Phantom Level, we
achieved two things that we assumed to be desirable for the
processing: (1) we can maintain the current distance metric
implemented in most—if not all—algorithms and (2) we can
modify the likelihood that each of the three output states are
chosen.

EXPERIMENTAL RESULTS
In order to visualize the proposed approach, we picked a less
extreme set of values compared to the previous case. The
actual usable output states are (1, 0), (0, 1) and (0.4, 0.4) with
the third state being the obtuse L and the one that will be
augmented using a Phantom Level L′. For this triangle, we
get a circumcenter location CC= (1.7, 1.7) and a centroid
location CT= (0.467, 0.467).

As can be seen on the left of Figure 11, the absolute
error approaches 1.2 within a few pixels to stabilize for the
next few pixels. As had been shown in Fig. 8 these short
term stabilizations are common and the Modified Input will

continue to increase to approach circumcenter (1.7, 1.7),
indicated as square in (a). We stopped after 25 pixels since
the effect is already visible and the traces for the Modified
Error are easier to follow.

We can now introduce a Phantom Level. For simplicity
we will pick Phantom Levels on the 45◦ line (y = x) and
to the left of L to create a less obtuse triangle. With our
argumentation, a Phantom Level of L′ = (0.2, 0.2) would
move its circumcenter to (0.76, 0.76) and thus should reduce
the error both in absolute as well as in the vectorial sense of
Modified Input.

This is shown in Figure 12, where the black square
indicates the Phantom Level.

Note that the error has come down in both definitions
as predicted in the previous sections.

One can further move the Phantom Level, say to
L′ = (0, 0) and would expect that the error is even further
decreased. The circumcenter for this case is at (0.5, 0.5) and
thus inside (on the boundary) of the triangle defined by our
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(a) (b)

Figure 13. Using the same output states and input data as in Figs. 11 and 12, but moving the Phantom Level to (0, 0) [black square in (a)], further
reducing both Modified Input (a) and absolute error (b).

available physical output states. This is shown in Figure 13
where the Modified Input is further reduced (in (a)) and
the absolute error (in (b)) is now predominantly within the
dynamic range.

From Figs. 11–13 it is clear that the error follows the
expected behavior and that we are thus able to reduce the
local error to within one dynamic range, as we are commonly
experiencing scalar error diffusion.

Note, that in this article we are not making a judgment
about the visual quality of a print, rather we are looking at
the mathematical errors and attempt to control them via a
Phantom Level.

CONCLUSIONS AND FUTUREWORK
Vector Error diffusion exhibits some non-intuitive behaviors
that can manifest themselves as large local error leading to
image artifacts. These large errors will only occur in some
specific areas of color space where the output states define
strongly obtuse triangles. It is those areas only that need
to be modified following the described approach. Since the
affected colors might be part of the calibration sheets that are
used to define the system, they still potentially have an impact
on the overall color reproduction and it is thus beneficial to
control the error accumulation.

We have traced these errors to the circumcenter
locations created by an L2 distance metric and proposed the
use of Phantom Levels to maintain an L2-norm algorithm,
while simultaneously changing the decision boundaries
for the output states. The Phantom Level was used to
create a virtual circumcenter that more closely resembles a
centroid of the relevant triangle and this was used in the
decision process to select the output.Whenever the Phantom
Level was selected as output, the actual available level was
substituted and the actual error caused by this was used in the
error feedback. In that manner, the overall error correction
is maintained and only locally modified. We could show that

this strongly reduces the errors in the process and at that a
simple mathematical prediction for the resultant error exists.

This approach has the advantage that the error-diffusion
process stays largely the same and that the Phantom Level
only gets introduced for very few input areas. Even there
only the selection mechanism was changed, maintaining the
actual output states and the overall error compensation.

An additional advantage of the Phantom Level is the
ability to simply generalize to arbitrary number of dimen-
sions for the data and a standard tetrahedral description. This
should also allow us to generalize to spectral error diffusion
where for a standard L norm large errors have been observed
in the past.

It should be noted that we concentrated on the error
accumulation and that resultant changes in visual quality
are not a subject of this article. Texture development,
edge/detail reproduction are important topics that will be
examined in subsequent work. Here it is understood that
locally increasing the error might actually have some visual
advantage.12 Future work will examine this and includes the
visual effects of limiting the local errors aswell as its influence
on local structures and textures. Additional future work will
be on the generalization to spectral data, considering the
introduction of Phantom Spectra to achieve a similar error
limitation as in the above description.
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