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2XLIM, Université de Poitiers, France

Abstract
To reproduce the appearance of real world scenes, a num-

ber of color appearance models have been proposed thanks to
adapted psycho-visual experiments. Most of them were designed
and intended for a limited dynamic range, or address only dy-
namic range compression applications. However, given the in-
creasing availability of displays with higher luminance and con-
trast ranges, a detailed analysis of appearance attributes is
also necessary for dynamic range expansion scenarios. In this
study, we propose a psycho-visual experimental setup, designed
by adapting and combining the adjustment and partition scaling
methodologies, which we employ for measuring perceptual color-
fulness of color patches with different levels of lightness, chroma
and hue. The proposed setup reduces the complexity and in-
creases the efficiency relative to previous experimental setups and
allows both expert and non-expert participants to be included.
From the collected data, a modified color space is obtained and a
new saturation model for dynamic range compression and expan-
sion is derived for high dynamic range imaging.

Introduction
When observing an object or material in a real scene, the

light reaching our eye is processed and eventually reinterpreted in
order to give us an impression of that object’s appearance. For
many applications, it is thus useful to describe the appearance of
objects according to characteristics corresponding to our percep-
tual processes. For that purpose, several perceptual color spaces
and color appearance models have been defined [37, 33, 30].

Most such models have been designed based on reflective
objects in the luminance range of slightly above zero and per-
fect diffuse white [40, 10, 17, 8, 25, 22]. As such, these models
may not be directly applicable to high dynamic range (HDR) ap-
plications, where higher luminance and contrast ranges need to
be considered. To address this limitation, several color and im-
age appearance models have been designed using HDR stimuli as
their basis [21, 19, 7, 31]. Although these models offer complete
predictions of appearance, covering several complex appearance
phenomena, they require a complete description of the scene and
viewing environments, making them impractical for many imag-
ing applications.

In contrast, perceptual color appearance models, such as
CIELab or IPT [29], offer a reasonable trade-off between percep-
tual accuracy and complexity of application. Similar to traditional
color appearance models, they have also been designed with low
dynamic range (LDR) applications in mind. Both spaces were

extended to HDR versions recently, however they were found to
offer less accurate predictions compared to their original versions
when evaluated against perceptual data [14].

Given the increasing availability of HDR displays even in the
consumer market, accurate but computationally efficient methods
for color management and reproduction that extend to higher lu-
minance and contrast levels are becoming necessary, both for con-
tent creation and consumption applications. For instance, recent
standards, such as ITU-R BT.2020 [35], are likely to be imple-
mented in upcoming HDR displays and include a very wide color
gamut, necessitating gamut transforms. Consequently, percep-
tually accurate color spaces that can extend to these luminance
ranges are necessary.

With this in mind, in this work, we measure the perception of
chroma for different levels of adapting luminance, reaching up to
4000 cd/m2 and evaluate the ability of existing perceptual mod-
els at predicting the resulting data. To achieve this, we design
and perform a psycho-visual study based on the partition scaling
methodology, which provides us access directly into the percep-
tion of chroma of the observers.

In the partition scaling methodology, observers find the mid-
point between the appearances of two stimuli [24, 18]. Tradition-
ally, this technique has been used for lightness modeling using
reflective patches [7, 6]. In contrast to previous work, we employ
this technique for measuring chroma, using emissive patches on
an HDR display and covering several levels of adapting luminance
as well as several hues. By presenting patches with the same hue
and perceptual lightness, we can determine equal distances along
the chroma dimension as perceived by observers. Combined with
absolute radiometric measurements of the experimental stimuli,
this data allows us to evaluate the predictions of existing chroma
functions for the studied luminance levels.

In addition, we have seen that existing HDR appearance
models and color spaces are designed with the intention of dy-
namic range compression [21, 19, 7, 31]. As shown in a re-
cent perceptual comparison of HDR appearance models and in-
verse tone mapping operators [2], their non-linear and compres-
sive functions creates more desaturated results in cases of dy-
namic range expansion applications.

Therefore, for more accurate dynamic range expansion and
compression applications, we propose a perceptually motivated
space based on the findings from our proposed experimental pro-
tocol. The proposed space combines our previous LDR and HDR
lightness models together with CIELab based color opponent
components computation as well as a new perceptual saturation
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model. We evaluate the proposed model for the case of dynamic
range expansion and compression through comparisons against
existing HDR color appearance models, perceptual color spaces
as well as a representative reverse tone mapping operator.

Generally, in this work, we present the following contribu-
tions:

• A new experimental setup based on the method of adjust-
ment and partition scaling, which is used to measure several
perceptual appearance properties of emissive stimuli.

• A detail analysis of color appearance attributes under ex-
tended range of luminance levels.

• A complete HDR color space.
• A novel saturation model for HDR imaging application.

Related Work
To understand and model color appearance of simple and

complex stimuli, several psycho-visual studies have been per-
formed [33, 11, 38]. The goal of such studies is to link physical
properties of patches or images to perceptual appearance quali-
ties, allowing for mathematical models to be constructed that can
predict or modify appearance in a controlled and perceptually ac-
curate manner. Here we discuss key studies and experimental
methodologies as well as relevant appearance models.

Color Appearance Studies Most traditional color appearance
models were designed based on the LUTCHI dataset, which was
gathered through a perceptual experiment following the magni-
tude estimation methodology [23]. The observers estimated light-
ness, chroma and hue of presented stimuli relative to a provided
reference white and reference colorfulness stimuli for different
media and viewing conditions. However, the luminance range of
the stimuli used was limited to 690 cd/m2 which affects the mod-
els’ accuracy for appearance predictions under higher luminance
ranges. For this reason, Kim et al. extended the dataset towards a
wider range of luminance level, up to 16.860 cd/m2 [19].

In both experiments, observers were presented with a refer-
ence stimulus with arbitrary perceptual attribute values and asked
to directly quantify the corresponding perceptual attribute of an-
other stimuli. To accurately quantify a perceptual dimension how-
ever, observers need to to be experienced color experts. Also,
to sufficiently sample an extended range of luminance, a large
number of stimuli is required, increasing the experiment duration.
Therefore, in such a type of experiments, observer fatigue may
negatively affect the accuracy of results, while at the same time, a
large number of appropriate observers is difficult to find.

Another psycho-visual experiment based on the partition
scaling methodology was employed for perceptual lightness scal-
ing below and above diffuse white [7]. Observers in this study
were presented with three patches printed on glossy paper and
mounted on a wall and they were asked to adjust a projector il-
luminating the right-most patch so that the three patches were
equidistant in terms of their perceptual lightness.

Our experiment expands on the ideas presented by [7] in
their study of reflective patches, extending their design to emis-
sive stimuli. A new study is necessary as findings from reflec-
tive patches cannot be directly applied to emissive display appli-

cations: reflective patches induce an ‘object’ mode of viewing,
whereas emissive displays induce a ‘non-object’ mode of view-
ing [27, 11]. Our methodology uses emissive high dynamic range
displays, and therefore our results, model as well as conclusions
pertain to such displays.

Appearance Models and Color Spaces Studies such as the
ones described above have led to a multitude of appearance mod-
els of varying levels of complexity. At the simplest case, color
spaces such as CIEL∗a∗b∗ and IPT offer a chromatic adaptation
model as well as predictions of lightness, chroma and hue ap-
pearance attributes, requiring only an adaptation white point as
input. Both are color-opponent spaces with dimension L/I en-
coding lightness and a/P and b/T encoding the color-opponent
dimensions, based on nonlinearly compressed XYZ coordinates
[33, 37]. However, such models cannot consider the full appear-
ance of the scene.

For more complete predictions of scene appearance, addi-
tional factors like luminance and hue-dependent effects, spatially
structured phenomena, and more viewing condition related phe-
nomena should be considered. Therefore, a more complete color
appearance model proposed by Hunt et al. [15]. This model in-
cluded non-invertible formulations of appearance attributes and
hence was not widely used. However, together with models pro-
posed by other researchers [26, 11], the model plays a significant
role as the main building block in the development process of
more practical, simpler and yet complete color appearance mod-
els, such as CIECAM97s [17] and CIECAM02 [25].

Although several of these models are widely used and vali-
dated, they are not suitable for modeling scene appearances under
a wide range of illumination as they are designed based on low
dynamic range datasets [23]. In an effort to extend existing mod-
els towards HDR, modifications were proposed for both CIELAB
and IPT color spaces, termed hdr-CIELAB and hdr-IPT respec-
tively [14]. The CIEL∗a∗b∗ and IPT color spaces power function
was replaced by the MichaelisMenten equation, following physi-
ological models of human vision. For more complex images with
spatially varying structure image appearance models such as s-
CIELAB [39] and iCAM [13] have been proposed, considering
local adaptation aspects. These have been subsequently extended
to HDR, notably with the introduction of iCAM06 [20], followed
by the models of [19] and [31].

In recent years, HDR displays have been commercialized,
leading to HDR content being increasingly available and therefore
necessitating solutions for adapting content to displays of poten-
tially different dynamic range and luminance capabilities. Exist-
ing HDR-capable appearance models have been designed with dy-
namic range compression in mind, however they are less suited to
dynamic range expansion applications. A recent study comparing
several dynamic range expansion solutions shows that existing ap-
pearance models are significantly outperformed by simple reverse
tone mapping operators (rTMOs) when comparing the resulting
images with the corresponding HDR ground truth, even though
rTMOs tested operated only on luminance and did not consider
scene or viewing conditions [2].

Effectively, although existing solutions address several as-
pects of appearance, as of now, no complete model is capable of

IS&T International Symposium on Electronic Imaging 2017
Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications 49



modeling color appearance in the context of dynamic range com-
pression and expansion, despite a clear need for one. To that end,
this work aims to measure and analyze color appearance attributes
in order to propose models considering a wider range of dynamic
range management and color applications.

An Overview of the Experiment
To measure perceptual attributes under extended luminance

levels in an efficient manner, without requiring expert partici-
pants, we have conducted a psycho-visual experiment based on
a novel methodology combining both methods of adjustment and
partition scaling. We let the observers control the colorfulness of
a uniform patch until it appeared to be perceptually half-way be-
tween an achromatic and a chromatic reference patch. To study
colorfulness under different luminance levels, a reference white
patch was included during the adjustment of every experimental
stimulus.

We used a calibrated 47” SIM2 HDR display, with a max-
imum luminance level of 4000 cd/m2, and HDTV resolution
(1920x1080 pixels) to display the stimuli [34] in a darkened room.
Observers were placed at a distance of 3 times the screen height
and used a keyboard connected to a laptop to provide input and
adjust the colorfulness of the patch.

Stimuli
To sufficiently represent the entire gamut of the HDR display

while keeping the number of stimuli manageable, we sampled the
cylindrical representation of the CIEL∗a∗b∗ color space based on
linearly spaced lightness, chroma and hue levels. For sampling the
hue space, we only consider 5 major hues (35◦,90◦,136◦,306◦

and 345◦) in this study. The CIEL∗a∗b∗ 35◦,136◦,306◦ hues
correspond to the hues of the RGB primaries of the display,
while hues of 90◦ and 345◦ approximately correspond to yellow
and purple patches. The [0,100] range of the lightness space is
sampled into 5 linearly spaced levels whereas the [0,127] range
chroma space is sampled into 4 linearly spaced chroma levels. In
total we generate 100 stimuli plotted within the CIExy chromatic-
ity diagram in Figure 1, which approximately span the entire color
gamut of the HDR display.

For the computation of the Cartesian components of
CIEL∗a∗b∗ patches which span a wide range of colors
within an extended luminance range of up to 4000 cd/m2,
the reference white of the SIM2 HDR display, XnYnZn =
[3854.4,4377.2,4312.6] is used. We have transformed the XYZ
values to SIM2 display RGB values using the 3×3 matrix Msim2
and look-up tables RGBLUT according to Eq. 1, 2 and 3 gener-
ated from a characterization of the SIM2 display using the PR670
spectrophotometer.

R
G
B

RGBLUT (R′)
RGBLUT (G′)
RGBLUT (B′)

 (1)

R′

G′

B′

= Msim2

X
Y
Z

 (2)

where,

Msim2 =

 3.3704 −1.3948 −0.5491
−1.0111 1.8606 0.0304
−0.0410 0.0160 0.9633

 (3)

CIE1931 Chromaticity 

CIE1931 Chromaticity diagramCIE1931 Chromaticity diagram

Experimental 
stimuli

S
IM

2 
ga

m
ut

Figure 1. The tristimulus values of the experimental stimuli and the gamut

of SIM2 HDR display plotted in CIE1931 chromaticity diagram.

As shown in Figure 2, the observers were presented with four
patches within each trial. A reference patch of 200× 200 pix-
els set to the value of the reference adaptation white XnYnZn =
[3854.4,4377.2,4312.6] was presented at the top center of the
display while the other three 400× 400 pixel patches were pre-
sented at the bottom part of the display. For each individual hue
level the observers were presented, on the bottom left side of the
screen, with 20 chromatic patches in randomized order, which
varied in their lightness and chroma values only. On the bottom
right, achromatic patches with the same luminance levels, same
hue and zero chroma values were presented. The observers were
asked to adjust the central patch of the row which has the same
hue and luminance level as the left reference patches. The space
between patches was filled with a 1/ f noise pattern with an aver-
age background luminance of 2 cd/m2 to simulate second order
statistics that match those of natural images [28].

Procedure
In total, 15 participants (9 female, 6 male) took part in our

experiment, with ages varying between 24 and 57 years (µ =
38.4,σ = 10.78). Prior to the experiment, participants were asked
to “adjust the central patch so that it looks to be in the middle of
the left and the right patches”. All observers took a short train-
ing of one example trial to allow them to adapt to the viewing
environment and to familiarize themselves with the experimental
setup and controls. The observers took an average of 40 minutes
to complete the entire experiment.

The observers used the provided computer keyboard to ad-
just the chroma value of the test patches in smaller or larger in-
crements using different keys within the [0,100] range of chroma.
The test patch was initialized at a random chroma level. When the
observer finished the adjustment, the return key was used to pass

50
IS&T International Symposium on Electronic Imaging 2017

Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications



Figure 2. Colorfulness experiment example stimulus. The top patch rep-

resents the reference adapting white point of the display, while the bottom

patches depict the maximum Chroma on the left, the minimum Chroma on

the right and the observer adjustable patch at the center.

to the next trial. After each trial, the lightness, chroma and hue
values of all three patches were recorded. The same process was
repeated for all of the 100 experimental patches.

After the experiment was finished, all the recorded values for
each participant were again reproduced on the display and mea-
sured using the PR670 spectrophotometer to ensure that accurate
physical measurements were used in subsequent evaluations and
modeling steps.

Experimental Data
The chroma values of the 100 patches, described in Section ,

were collected for 15 observers. The summary of the gathered
adjusted chroma values for each of the five principal hues (red,
green, blue, yellow and purple) with their respective 5 levels of
lightness are shown in Figure 3. The bar plots show the ob-
servers’ mean adjusted chroma values corresponding to the half
colorfulness of the reference patches with the corresponding er-
ror bars indicating the 95% confidence intervals. The confidence
interval bounds are computed based on the respective standard
deviation values of the adjustments. In agreement with the Hunt
effect [33, 17, 37] observers perceive increased colorfulness with
increasing lightness and hence score higher chroma values.

To assess the variation among observers’ decisions, we have
performed analysis of variance (ANOVA) and the average F and
p results of the chroma adjustments for the different hue and lu-
minance levels are given in Table 1. Higher values of p and lower
values of F indicate the positive correlation of each observer’s
decision for all principal hues and lightness ranges. No signif-
icant differences were found in individual chroma adjustments,
suggesting that participant responses were consistent.

Average correlation of individual observers’ adjustments with
mean adjusted chroma.

Hues 90◦ 180◦ 270◦ 360◦

LightnessLevels F p F p F p F p
L = 0.1 2.5093 0.0829 0.7395 0.5389 1.9998 0.1409 0.5721 0.6388
L = 0.325 1.6703 0.1999 0.3138 0.8152 1.0361 0.3944 0.9879 0.4152
L = 0.55 0.8895 0.4607 0.6809 0.5723 1.1291 0.3571 0.4672 0.7079
L = 0.775 0.3992 0.7548 0.5685 0.6411 0.8213 0.4949 0.5220 0.6713
L = 1.0 0.7932 0.5097 1.1178 0.3614 0.6748 0.5759 0.9068 0.4524

The visualization of the average tri-stimulus values of the
reference and estimated patches in the CIE1931 chromaticity di-
agram shown in Figure 4 demonstrates the hue variation of the
measured experimental patches generated due to the limitation of
sRGB color gamut of SIM2 HDR display. From the figure, we
can observe the hue changes as the CIELab chroma and lumi-
nance values are changed. This in turn shows the inseparability
or dependencies of CIELab cylindrical coordinates. In addition,
as it can be seen in Figure 5, sRGB gamut has a limited range
of chroma values in CIEL∗a∗b∗ cylindrical and Cartesian spaces
and the range varies with hue. Since the color gamut of the SIM2
display is very close to sRGB, the figures explains the reason why
maximum chroma values vary with luminance and hue changes.

Most of the time, chroma is the least uniform dimension of
a color space, because not all colors can achieve the same level
of chroma. For instance a highly saturated red can have a chroma
that exceeds 25, while a green may only reach a chroma of 12-14.
In particular, towards the black and white ends of the neutral axis,
chroma becomes very limited. This behavior is also demonstrated
in the Munsell system and particularly Munsell’s color tree where
we observe different lengths of chroma for different branches.

Proposed HDR Color Space and Saturation
Model

For an accurate perceptual attribute modeling under ex-
tended luminance, we have combined the lightness models com-
puted based on our previous findings based on lightness experi-
ment [1] and color-opponent processing of the human visual sys-
tem to construct an improved HDR color space.

Description of the Color Space
We have designed a CIEL∗a∗b∗-like color-opponent space

which similarly has dimension L for lightness and, a and b for
the color-opponent dimensions, based on nonlinearly compressed
XY Z coordinates. For a given XY Z value of a stimulus and
XnYnZn of the reference white our proposed color space is con-
structed as follows:

Lnew = fnew(Y,Yn) (4)

anew = fnew(X ,Xn)− fnew(Y,Yn) (5)

bnew = fnew(Y,Yn)− fnew(Z,Zn) (6)

where,

fnew(W,Wn) =

1.266
(

Y
Yn

)0.266
−0.266 ifYn ≤ 100cd/m2

(1.127)
(

Y
Yn

)0.23
−0.127 ifYn > 100cd/m2

(7)

The corresponding lightness Lnew and opponent color com-
ponents anew and bnew are computed according to Equations 4 -
6, where the function fnew is defined as our previously defined
power-law lightness model [1] given as in Equations 7.

The lightness Lnew value of the space ranges from 0 to 1
whereas the values of anew and bnew are within the range of [-
1,1]. As in the Hunt color appearance model and the CIEL∗a∗b∗

color space, the anew and bnew components represent neutral gray
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(a) Red

(b) Yellow

(c) Purple

(d) Green

(e) Blue

(f) Legend

Figure 3. Mean chroma values of the adjusted patches for all the five lightness and hue levels.

values at anew = 0 and bnew = 0. The red/green opponent colors
are represented along the anew axis, with green at negative anew
values and red at positive anew values. Similarly, the yellow/blue
opponent colors are represented along the bnew axis with blue at
negative bnew values and yellow at positive bnew values [16, 14].
The three components, Lnew, anew and bnew, together give a Carte-
sian representation of the color space as shown in Figure 6.

The cylindrical representation of the color space, shown in
Figure 6, is also generated from the Cartesian Lnewanewbnew com-
ponents using the same transformations utilized in different color
spaces such as CIEL∗a∗b∗ [9, 14]. While the lightness compo-
nent of the cylindrical representation remains the same as it was
in the Cartesian representation, the chroma and hue components
are derived according to Equations 8 and 9. The anew and bnew
components can also be derived from the respective cylindrical
representation LCh based on Equations 10 and 11.

C =
√

(a2
new +b2

new) (8)

h = arctan
(

bnew

anew

)
(9)

anew =C cos(h◦) (10)

bnew =C sin(h◦) (11)

Optimization for New HDR Saturation Model
Since our adjustments of patch values performed by ob-

servers was done so as to match half the perceptual chroma of
the reference patches, we expect that the measured values of the
experimental patches satisfy Equations 12, 13, and 14. The hue,
hreference, lightness, Lreference and chroma, Creference of the refer-
ences patches should match the corresponding hue, hadjusted, light-
ness, Ladjusted and double the chroma, Cadjusted of the observer-
adjusted patches.

hadjusted = hreference (12)

Ladjusted = Lreference (13)

2×Cadjusted =Creference (14)

The data plots of lightness, chroma and hue of all the ex-
perimental reference patches plotted against the adjusted patches,
given in Figure 7, demonstrate the expected behavior in both the
proposed and CIEL∗a∗b∗ color spaces. The direct relationship
between the references patches chroma and double of that of the
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(a) Red

(b) Yellow

(c) Green

(d) Blue

(e) Purple

Figure 4. Mean tristimulus values of the measured reference (Red dots) and adjusted (Blue dots) patches for all chroma and lightness levels.

(a) Cartesian space (b) Cylindrical space

Figure 5. 3D gamut visualization of sRGB in the Cartesian and cylindrical

spaces of CIELab. In the left figure, lightness Cartesian coordinate is made

to point towards the reader.

corresponding adjusted patches indicates the linearity of percep-
tual chroma.

However, the computed saturation, using Equation 15, in
both the proposed and CIELab color spaces shows non-linearity,
particularly for chromatic patches with luminance values of less
than 100 cd/m2.

Slab =
Clab

Llab
(15)

Additionally, in previous rTMO comparison experi-
ments [2], desaturation problems were observed for most of the
dynamic range expansion results of current HDR color appear-
ance models. To a lesser degree, similar issues were observed
even with rTMO methods specifically designed for dynamic range

Yellow

b*

Blue

Green Red
a*

Light

Dark

L*

Cartesian.representations Cylindrical.representations

-1

1

1

1

-1

0

1.4142

0

1

Figure 6. The Cartesian and cylindrical representations of the proposed

HDR color space.

expansion applications. Therefore, for accurate modeling of per-
ceptual saturation and to increase the saturation reproduction ac-
curacy of our color space, we have further analyzed and modeled
the saturation property of our dataset.

For the new saturation model, we have modified the basic
saturation formula given in Equation 15 into the form of a power
function, given in Equation 16. The optimal parameter values as,
bs, cs, and ds are computed from all 100 patches using nonlinear
unconstraint optimization of Nelder-Mead simplex direct search
method [5]. Since the function to be optimized depends on both
C and L, a particular set of parameters, leads to a 3-dimensional
surface. As such, our optimization minimizes the prediction dif-
ference Es, given in Equation 17, between the saturation surface
of adjusted patches (computed by doubling the adjusted chroma)
and reference patches. The variables C and L represent the chroma
and lightness values computed in the proposed color space ac-
cording to Equation 8 and Equation 4. The subscripts stim and re f
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Figure 7. Computed appearance attributes of the reference patches versus

that of the adjusted patches in the proposed and CIELab color spaces. For

the chroma and saturation comparisons, the chroma values of the adjusted

patches are multiplied by two. Note that the saturation values are computed

using the standard C/L formula.

indicate the corresponding values for adjusted (stimulus) and ref-
erence patches, respectively. The total number of patches is then
represented as Np.

Snew(C,L) =
asCbs

csLds
(16)

Es =
Np

∑
i=1

|Snew(2Cstimi ,Lstimi)−Snew(Cre fi ,Lre fi)|
Np

(17)

As shown in Figure 8, the difference between the estimated
and reference saturation values of the experimental patches re-
duced in every iteration of the optimization process. The opti-
mization converges after 99 iterations and the final parameter val-
ues which minimize the error function given in Equation 17 are
as = 0.1533, bs = 0.7604, cs = 0.3331 and ds = 0.5794. The
resulting saturation model, as shown in Figure 9, leads to more
perceptually linear predictions.
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Figure 8. The demonstration of our surface optimization process of the new

saturation model for Red patches.
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Figure 9. Saturation predictions of the former and newly corrected satura-

tion formulas for reference and perceptually adjusted patches of our experi-

mental dataset.

Evaluation of the Proposed Model
The proposed HDR color space and saturation model are

evaluated relative to state-of-the-art HDR color appearance mod-
els. The models prediction of our experimental perceptual data
as well as their accuracies in tone compression and tone expan-
sion applications are compared using image difference metrics,
including RMSE, S-CIELab [39] and SSIM [36].

First, the saturation predictions of different HDR color ap-
pearance models for our perceptually adjusted patches are com-
pared with their predictions for the measured reference patches.
The following models are evaluated: CIELab [40], IPT [40], hdr-
CIELab [14], hdr-IPT [14] and the CAM of Kim et al. [19]. We
have used the author provided code where available. The stan-
dard saturation computation, in the form of Equation 15, is ap-
plied to all models, except the CAM of Kim et al. where their
provided saturation computation is used. As the adjusted patches
have half the perceptual chroma of the reference patches, the sat-
uration value of adjusted patches is computed using double their
chroma values. Also, due to the different saturation ranges of the
CAMs we normalized saturation results of each CAM by the max-
imum saturation value of their respective reference and adjusted
patches, independently.

The prediction of each method for both the reference and
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adjusted patches is averaged over each chroma level and given
in Figure 12. The corresponding average RMSE values of each
method’s prediction for the 5 lightness levels and 5 hue levels are
given in Table 2 and 3, respectively.

The results in Table 2, show that the prediction accuracy of
all the methods increases as the lightness levels of the patches in-
creases. Most of the methods have their higher inaccuracies for
patches with lower lightness levels. The proposed model, how-
ever, shows consistent and better accuracies for saturation pre-
diction of patches in all tested lightness levels. Table 3, on the
other hand, shows different performances of the evaluated meth-
ods. IPT [40] and hdr-IPT [14] produce higher error for red, blue
and purple hues. The highest error of CIEL∗a∗b∗ [40] is around
blue hues and the proposed model also shares the same behavior.

RMSE errors for the state of the art HDR color appearance
model saturation predictions. The error between the adjusted
and reference patches are averaged over all chroma and hue
in each luminance levels.

L 1 25.75 50.5 75.25 100

IPT 0.0847 0.0817 0.0814 0.0788 0.0788
CIELab 0.0706 0.0616 0.0602 0.0596 0.0541

Proposed model 0.0649 0.0623 0.0611 0.0590 0.0489
hdr-IPT 0.1019 0.0936 0.0928 0.0924 0.0923

hdr-CIELab 0.0649 0.0622 0.0600 0.0585 0.0581
Kim et al. 0.0704 0.0702 0.0703 0.0705 0.0700

RMSE errors for the state of the art HDR color appearance
model saturation predictions. The error between the adjusted
and reference patches are averaged over all chroma and light-
ness levels for each hue values.

hue in degree 35 90 136 306 345

IPT 0.12752 0.02736 0.05214 0.09408 0.09386
CIELab 0.05951 0.00690 0.01187 0.11769 0.07419

Proposed model 0.02880 0.00805 0.04528 0.11508 0.04637
hdr-IPT 0.15595 0.01454 0.05276 0.12347 0.11552

hdr-CIELab 0.05718 0.06502 0.06977 0.05454 0.04959
Kim et al. 0.15020 0.03316 0.01292 0.00731 0.14448

Finally, we have tested the proposed HDR color space for
tone compression and tone expansion applications based on a pro-
cess visualized by the workflow given in Figure 10. We use abso-
lute radiometrically calibrated HDR images, taken from the RIT
HDR Photographic Survey [12], and their LDR versions, gener-
ated by simulating an exposure bracketing method and selecting
the best exposed image in the series [4]. The set of images, shown
in Figure 1, covers different scene types and illumination condi-
tions.

State-of-the-art CAMs, such as CIELab [40], hdr-
CIELab [14], hdr-IPT [14], iCAM06 [20], the models of [19]
and [31] as well as the photographic TMO [32] were used to eval-
uate the capacity of the new model for dynamic range compres-
sion application. The simple color appearance models, namely
CIELab, hdr-CIELAB, IPT and hdr-IPT, as well as the model
of [19] are again used for evaluation of dynamic range expansion
application relative to the proposed model, due to their ability to
expand the dynamic range of LDR images. We also included an
rTMO proposed by Akyuz et al. [3] due to its performance in pre-
vious evaluations [2].

Figure 10. The steps for HDR image reproduction application using our

proposed models.

1 2 3 4 5 6

7 10 11 128 9

Figure 11. Experimental LDR images generated from the absolute radio-

metric HDR images, taken from the HDR Photographic Survey [12].

Example results are shown in Figures 13, 14 and 15. Qualita-
tively, we observe that our proposed model leads to a satisfactory
reproduction of saturation and overall contrast relative to other
methods tested (See Table 4). Comparing our complete model
with the lightness only model of our previous work [1], we ob-
serve a better reproduction of color and saturation. As a tone map-
ping operator, the proposed model achieved stronger compression
while preserving more detail, contrast and over all appearance
than most of the other color appearance models and TMOs. Color
appearance models like iCAM06 produce better tone mapped re-
sults due to their local processing and more complete considera-
tion of most of the factors of color appearance. However, their
post-adaptation nonlinear compression function reduces their ac-
curacy during tone expansion applications.

Image difference and Image quality results of the state of
the art HDR color appearance models and rTMOs relative to
ground truth image.

Metrics Kim et al. LDR CIELab hdr-CIELab Power law

S-CILab 23.0959 25.3167 33.5569 38.9337 14.9658
SSIM 0.9956 0.9949 0.9983 0.9975 0.9987

HDR-VDP2-QMOS 81.8173 57.3422 86.4108 58.6302 84.8936

Metrics Proposed model Akyuz et al IPT hdr-IPT

S-CILab 18.1559 16.2241 25.3885 28.1678
SSIM 0.9988 0.9983 0.9983 0.9944

HDR-VDP2-QMOS 83.4458 88.7996 33.6645 31.6254

Conclusions
We adapted the partition scaling methodology and employed

it to measure chroma and saturation perception on an HDR dis-
play for different levels of adapting luminance. The collected data
demonstrate the linearity of perceptual chroma in all tested lumi-
nance levels, matching previous knowledge, but also show slight
non-linearity of saturation values for low luminance. To account
for this non-linearity, we proposed a corrected saturation model,
optimized based on our experimental data.

We also proposed new HDR color space combining our for-
mer lightness model with CIEL∗a∗b∗ like color-opponent compo-
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(c) Purple patches, 345◦
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(d) Green patches, 136◦
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(e) Blue patches, 306◦

 

 
IPT reference
CIELab reference
Proposed Space reference
hdr−IPT reference
hdr−CIELab reference
Kim et al. reference
IPT adjusted
CIELab adjusted
Proposed Space adjusted
hdr−IPT adjusted
hdr−CIELab adjusted
Kim et al. adjusted

(f) Legend

Figure 12. Saturation predictions of HDR color appearance models for reference and perceptually adjusted patches of our experimental dataset. In each plot,

the average saturation values of patches of 4 chroma levels are used in each lightness levels.
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(a) HDR

(b) LDR

(c) Kim [19]

(d) CIELab

(e) Akyuz [3]

(f) hdr-CIELab [14]

(g) IPT

(h) hdr-IPT [14]

(i) Power low

(j) New model

Figure 13. Sample rTMO results of 8 color appearance models. All the images for the rTMO results, except the LDR input image, are tone mapped using

iCAM06 [20] tone mapping operator for visualization purpose.

(a) iCAM06 [20]

(b) Reinhard [32]

(c) Kim [19]

(d) CIELab

(e) Reinhard [31]

(f) hdr-CIELab [14]

(g) IPT

(h) hdr-IPT [14]

(i) Power low

(j) New model

Figure 14. Sample TMO results of HDR color appearance models and TMOs.

nents as well as our new saturation correction model. Finally, we
compared the proposed color space predictions against the for-
mer lightness-only models and evaluated their performances for
dynamic range compression and expansion applications.

Our evaluation results show that our proposed model leads to
improved reproduction of saturation and overall contrast relative
to other methods tested. The model also generates more appeal-
ing results with better color and saturation reproduction than our
lightness-only model.

Although our proposed model allows for improved color re-
production on an HDR display, it should be noted that chroma
in our analysis was computed in CIEL∗a∗b∗. This color space
was chosen as a basis for our chroma experiment as it is a well-
validated space and its lightness, chroma and hue components are
independent and reasonably uniform perceptually. But, even with
CIELab, we were able to see the lightness effects on the compu-
tation of chroma values. As a result, we have experienced a slight
change of hue values while we were changing lightness levels of
experimental patches. To fully account for such non-linearities,
an extensive perceptual experiment with a larger number of hue,
lightness and chroma levels would be essential. With more ex-
tensive measurements, a new way of color-opponent component
derivation with more linear and independent perceptual attributes
could be defined in future work.
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