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Abstract
This paper presents a new metric for evaluating the color

perceptual smoothness of color transformations. The metric es-
timates three dimensional smoothness to cover the full gamut of
the transform. This metric predicts any artifacts like jumps in any
gradient introduced by the transformation itself. From the state of
the art, three works have been found and compared for evaluating
their pros and cons. Based on these previous proposals, a new
metric has been developed and tested with several applications.
The metric is based on the perceptual distance: CIEDE2000. The
defined metric is dependent on the number of ramps and the num-
ber of colors per ramp but these two parameters can be reduced
to a single one called granularity. The proposed metric has been
applied on the AdobeRBG and sRGB color spaces with and with-
out the addition of artificial artifacts and tested for a large variety
of granularity values. Several basic statistics have been proposed
and the root mean square seems to be a good candidate for repre-
senting the global smoothness. The metric demonstrated robust-
ness for evaluating the global smoothness of a transform and also
or detecting small jumps.

Introduction
Aim

The term ”color transform” hides a wide variety of different
operations ranging from simple color filtering applied on a photo
to gamut mapping algorithms through the effects of discretization
inherent to any digital systems. For any of them, ensuring smooth
color transition is very important to avoid.It is also important to
ensure a smooth transition in colors to avoid creating disruptive
elements on the resulting image. The aim of the work presented
in this article was to find a metric for evaluating the smoothness
of a display color transformation. This metric should predict any
artifacts like jumps in any gradient introduced by the transfor-
mation. In this new framework, either the system should be in
a native mode or a transform should be applied via the applica-
tion of three-dimensional Look-Up-Tables (LUT) or ICC profiles.
The metric should evaluate the color perceptual smoothness of
different color calibration, or any gamut mapping transformation.
The metric should be able to evaluate the presence of artifacts on
an entire LUT in minimum time. The metric estimating three-
dimensional smoothness should not be reduced and minimized to
a “mono-numerosis” and rather extended to a whole set of statis-
tics.

State of the art
From the state of the art, three works have been found, the

first one from Green in 2008 [1], the second one from Kim in
2010 [2] and the third one by Aristova in 2011 [3].

Green proposed in 2008 [1] a methodology for estimating the
smoothness of a color transform applied on a color gradient. The
method is represented by the Figure 1 originally from the presen-
tation of the paper [3]. For any input colored ramp with n pixels,
the metric CIEDE2000 [4] defined by the CIE is computed be-
tween two L∗, a∗, b∗ consecutive triplets of the ramp, resulting
in a (n− 1) CIEDE2000 ramp. From this resulting ramp, a sec-
ond derivative is calculated by simply computing the approxima-
tion of a derivative by subtracting two consecutive elements of the
CIEDE2000 ramp resulting in a (n−2) ramp for which summary
statistics are used.

Figure 1. Green’s framework.

In Aristova paper [3], the author assumes that the 95th per-
centile is calculated representing the smoothness of the color
transform of the input ramp.

Kim et al [2] proposed another framework represented on Fig-
ure 2. It is also applied on 1D ramps by using the first and sec-
ond derivatives; but contrary to Green the color distance is esti-
mated thanks to the original Euclidean CIEDE metric instead of
CIEDE2000. The derivative is approximated by subtracting two
consecutive elements of the ramp. In addition to the estimation
of rough transitions - or tone jumping - Kim proposes to evaluate
also tone clipping. The first derivate was used for evaluating the
tone clipping by using the 5th percentile and the second derivative
for tone jumping with the 95th percentile in the evaluated ramp.
The resulting tone jumping is weighted by applying a weighting
factor calculated with the first derivative and the tone clipping.

Figure 2. Kim et al framework.

Kim has also shown that the optimum percentile level was
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determined to be 95th to best fit the subjective data from the mea-
surement of the magnitude of tone jumps of 96 test gradations.

Aristova et al [3] proposed to evaluate not only one ramp but
all vertical and horizontal ramps of one RGB plan converted to
L∗a∗b∗. Aristova’s framework computes a first derivate on each
individual color component: L∗, a∗ and b∗ by subtracting two
consecutive elements of the ramp as illustrated by Figure 3. Then
a second derivative is applied. The 95th percentile is computed for
all ramps. The maximum of both vertical and horizontal ramps are
extracted for the studied plan. These two maximums are multi-
plied and the result corresponds to the smoothness of the selected
plan. Aristova finally summarizes the global smoothness to the
average smoothness of the plans.

Figure 3. Aristova et al framework.

Method
The three metrics presented in the previous section do have

pros and cons. We hereby propose a new metric that keeps only
the pros of the metrics from the state of the art without their weak-
nesses. CIEDE2000 is the last standard proposed by the CIE and
therefore this metric should be the core color perceptual differ-
ences metric for defining our smoothness metric. Aristova pro-
posed to evaluate the smoothness component-by-component: L∗,
a∗, b∗ and by taking the maximum of the 95th percentiles, it re-
sults in a very strict metric. Meaning that if one of the three com-
ponents has a jump it will be detected. The proposal of consid-
ering any artifact is interesting and we propose not to take into
account only the arithmetic mean but also other basic statistics
such as root mean square, median, standard deviation, minimum
and maximum but for all 95th percentile of the ramps calculated
from CIEDE2000. The metric is used to evaluate the perceived
difference between two colors by taking into account the three

components L∗, a∗, b∗ at once. There is no need to separate them.
Evaluating ramps is a good approach and it should be extended
not only by plan like proposed by Aristova but in all directions
in three dimensions. The idea of estimating the tone clipping in-
troduced by Kim [2] is a good one but the estimated factor has a
variable value depending on the content making difficult to have
a generic framework.

Description of the proposed metric
Our metric as represented on Figure 4 can be considered as

an extension of Green’s framework with inspiration from Aris-
tova’s framework. Green’s framework has been extended to three
dimensions while keeping using CIEDE2000. The aim is to ap-
ply the metric and to get an estimation of the smoothness for any
gradients.

Figure 4. Proposed framework.

Therefore all gradients in any direction are taken into ac-
count. For that, based on the three dimensional representations
of the color transform from RGB to L∗a∗b∗, in the three main
directions of the Red, Green and Blue axes, L∗a∗b∗ ramps are
computed.

Figure 5. Example of color gradients used to compute the global smooth-

ness. The blue plots represent the CIEDE2000 difference color-to-color along

the ramp for the ideal sRGB gamut and the yellow plot represents the varia-

tions of CIEDE2000.

Figure 5 illustrates the process on three different color gra-
dients. For each ramp, CIEDE2000 is computed between two
consecutive L∗a∗b∗ triplets along the ramp, resulting in a (n−1)
ramp. CIEDE2000 values are represented by a blue plot for the
three example gradients on Figure 5. From there, a second deriva-
tive (yellow plots on Figure 5) is approximated by the absolute
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difference of two consecutive elements of the CIEDE2000 ramp,
resulting in a (n− 2) ramp of positive values. This value repre-
sents the smoothness of the color transform for the input ramp
and is noted αi where i is the index of the input ramp.

This is repeated in the three directions, and three 2D-tables
(one for Red, one for Green and one for Blue directions) are ob-
tained from which basic statistics can be calculated: arithmetic
mean, root mean square, median, standard deviation, minimum
and maximum of the combined tables can represent the global
smoothness. Considering the fact that a perfectly smooth color
transform would result in exactly null second derivatives along
any color gradient, the sum (or the arithmetic mean) of αi must
be as low as possible. However, reducing the global smoothness
to the average of the ramp smoothnesses may be inefficient to rep-
resent punctual discontinuities, especially for fine granularities in
which a single discontinuity would be hidden. Standard devia-
tion would clearly reveal such a unique discontinuity, but it would
not reflect a uniform difference between two transforms. For this
reason, the root mean square appears as a better candidate as it
combines both aspects. Figure 13 and section ’Detection of Arti-
facts’ illustrate the fact that some statistics are more sensitive than
others to such punctual discontinuities. For this reason, it remains
interesting to consider other statistics to have a better view of the
situation.

The new presented metric is a three dimensional extension
for covering the full gamut of the transform. Nevertheless the
precision of the metric should not be sacrificed to improve the
computation time. It depends on both the number of considered
color gradients or ramps and on the number of colors composing
the gradients. These two parameters can be combined into one
single parameter called granularity ’g’. In other words, the num-
ber of color composing the gradients is constant to all ramps. The
chosen approach is actually to select a sample of evenly spread
RGB triplets and build the color gradients from this sample. This
way, both the number of ramps and the number of colors per ramp
are defined by the sample granularity. The number of colors per
ramp is given by the granularity ’g’. The number of steps per
ramp ’s’ is equal to g− 1. The number of directions is given by
the parameter d and its maximum value is 3. The total number
of ramps ’t’ is equal to d.n2. All the previous parameters are de-
picted on the Figure 6.

Figure 6. Parameters of the proposed metric.

Influence of granularity
As explained above, the defined metric is dependent on the

number of ramps ’t’ and the number of colors per ramp but re-
duced to one single parameter called granularity ’g’. The number

of colors composing the gradients must be as high as possible.
Judging the smoothness on a too limited sample of color ramps
would not be representative of the overall smoothness of a color
transform. The number of colors on color ramps is also impor-
tant. By having more colors on the gradients, chances to detect
some local irregularities are increased. Also important to be no-
ticed, the resulting smoothness amplitude depends on the number
’g’. With a high granularity value, the smoothness will have a
tendency to have a smaller amplitude whereas with a small gran-
ularity or a limited number of colors composing the ramps (gra-
dients), the amplitude of the smoothness will be larger. This is
depicted on the Figure 7, where the y axis is the value of smooth-
ness(based on root mean square) for two color spaces: AdobeRGB
and sRGB, and the x axis is the granularity g’ parameter with a
value from 5 to 256. The number of steps or colors directly af-
fects the CIEDE2000 values calculated along the ramps, and so
their derivatives and therefore the resulting statistics and finally
the smoothness.

Figure 7. Smoothness (root mean square) of sRGB and AdobeRGB color

spaces as a function of the color sample granularity. The color space smooth-

ness is expressed as the arithmetic mean of the gradient smoothnesses.

To summarize, a finer granularity gives more accurate re-
sults but the computational cost is more important. A coarser
granularity allows faster computation but may act as a low-pass
filter and hide local artifacts. As mentioned above, the granularity
has a direct impact on the absolute results of the proposed metric.
Although, as the metric may be used to compare different color
transforms or gamuts, it is important to figure out if the granularity
can affect the conclusions of such comparison. Figure 8 presents
the ratio of AdobeRGB smoothness versus sRGB smoothness for
different granularity values from 5 to 256. Different statistics are
given on the Figure: arithmetic mean, root mean square, median,
standard deviation, minimum and maximum. One can notice the
ratio is almost constant for the different statistics which could be
used to define the smoothness as long as the granularity is superior
to 50.

Results and validation
The method described above has been used to evaluate the

smoothness of different well defined color gamuts such as sRGB
[5] and AdobeRGB [6]. Table 1 presents a set of statistics result-
ing in the analysis of both color gamuts with a granularity of 52.
These results are in line with Figure 8.

The data is also represented in boxplot in Figure 9. It is no-
ticeable that AdobeRGB always present higher results than sRGB.
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Color smoothness of sRGB and Adobe RGB color spaces as
they are defined for a granularity of 52 with basic statistics:
real minimum, real maximum, median, arithmetic mean, root
mean square and standard deviation.

sRGB AdobeRGB
Minimum 0.0247 0.0294
Maximum 0.9788 1.2126
Median 0.1211 0.1457
Arithmetic mean 0.1709 0.2235
Root mean square 0.2206 0.3021
Standard deviation 0.1395 0.2032

This is mainly due to the fact that AdobeRGB gamut is wider
than sRGB. Thus an equivalent granularity necessarily ends up
in larger differences between colors.

Detection of artifacts
The capacity of the metric to detect artifacts has been stud-

ied more in detail. This is done by introducing some punctual
discontinuities in an sRGB color space and comparing the result-
ing smoothness with the default sRGB. Only one artifact is in-
troduced at a time. Artifacts of different sizes and colors can be

Figure 8. Ratio of Adobe RGB smoothness to sRGB smoothness for differ-

ent statistic methods versus the color sample granularity.

Figure 9. Box plots of the smoothness data of Table 1 for sRGB and Adobe

RGB color spaces. The minimums and maximums are re-calculated exclud-

ing the outliers. The outliers are not displayed.

introduced. In the present example the artifact consists in a mod-
ification of the hue (from HSV representation of the RGB cube)
of a cube of size 8 ∗ 8 ∗ 8 centered on (123;82;65)RGB256 within a
RGB cube of resolution 256∗256∗256 .

Figure 10 shows an example of an artificial artifact intro-
duced at the intersection of the color ramps already presented by
Figure 5. The artifact is shown on three different plans of the RGB
cube.These plans are orthogonal and intersect at the center of the
artifact. On Figure 10, each plan is composed of 256∗256 colors
and the artifact is a cube of 8 ∗ 8 ∗ 8. Of course, on the plan the
size of the artifact is reduced to 8∗8.

Figure 10. Three plans extracted from a RGB cube used to evaluate the

effect of an artifact on the calibration. The plans are orthogonal and intersect

at the position of the artifact.

Figure 11 presents the three color gradients already shown
on Figure 5 after the introduction an artifact. The plots still corre-
spond to a sRGB gamut, and the granularity is g = 64. A peak is
clearly visible on both CIEDE2000 and its derivative at the arti-
fact’s position.

Figure 11. Three plans extracted from a RGB cube used to evaluate the

effect of an artifact on the calibration. The plans are orthogonal and intersect

at the position of the artifact.

Figure 12 corresponds to the relative variation of the smooth-
ness with the introduced artifact compared to the original smooth-
ness of sRGB as a function of the granularity. It shows that the
artifact induces a rise of the smoothness value obtained thanks to
the proposed method. it also emphasizes the importance of the
granularity. Indeed, a peak is visible on the plot for a granular-
ity g = 64, corresponding to twice the spatial frequency of the
artifact: 256

8 = 32. This corresponds to the Nyquist theorem [7],
indicating that a signal can be correctly detected only if the sam-
pling frequency is at least twice as high as the signal’s frequency.

Studying the effect of an isolated artifact also allows to em-
phasize the importance of the different statistics obtained from the
list of ramp smoothnesses αi.

On Figure 13, one can observe how the artifact studied above
affects different basic statistics. It is clearly noticeable that the
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Figure 12. Relative variation of the smoothness (root mean square) with

the artifact introduced compared to the original smoothness of sRGB as a

function of the granularity.

arithmetic mean and the median are unable to detect punctual vari-
ations, while the standard deviation is much more fitted to do so.
Root mean square presents variations similar to standard devia-
tion although they are less pronounced. Of course the maximum
is clearly the most impacted by the artifact, but it would not be af-
fected by a second artifact of lower amplitude, while it would be
the case of root mean square or standard deviation. Therefore for
keeping one statistic, we recommend to use the root mean square
with a sufficiently high level of granularity.

Figure 13. Relative variation of the smoothness (represented by different

statistics) with the artifact introduced compared to the original smoothness

of sRGB as a function of the granularity.

Computation time
Figure 14 presents the computation time as a function of the

granularity for the proposed method. The metric has been imple-
mented in C++. This estimation of time takes into account the
sampling of the color space, the color conversion from RGB to
L∗a∗b∗, the computation of the different ramp smoothnesses and
the statistical analysis.

This bench test was performed on a Quad-Core AMD
Opteron Processor 2384 (2.70GHz). According to the method
description given previously, the complexity of the algorithm is
Θ(g3), although it could be improved and optimized by the use of
parallel programing techniques.

Application and discussion
The metric described in this document has already been used

successfully several times. The first one is also the origin of

Figure 14. Computation time of the smoothness of sRGB gamut as a

function of the granularity.

the metric development [8]. It is a method for making a moni-
tor compliant with the required standard for medical applications
(DICOM)[9]. This method makes use of ICC profiles, and met-
rics are used to assess the quality of the final calibration, including
color interpolation from the different LUTs.

Moreover, the smoothness metric has been reused in [10] as
a Quality Assurance method for the Color Standard Display Func-
tion (CSDF).

The present manuscript describes a metric to measure the
smoothness of a color transform or color gamut by studying the
perceptual color differences along a set of color ramps. These
ramps are defined as orthogonal lines along the RGB represen-
tation of the color gamut, following one of the three axes. This
configuration has been chosen as the easiest way to build ramps
having all the same number of steps equal to the sample granu-
larity. However one could imagine adding some ramps ringing
around the achromatic diagonal, or parallel to it.

It is also possible to focus on a sub-part of the entire color
space for some applications which do not make use of all available
colors. For instance in the case of quantitative imaging applica-
tions which use color scales to spatially represent some numerical
data. Such applications often uses color scales containing a lim-
ited number of colors covering a more or less well defined portion
of the color gamut. For such application, the smoothness of col-
ors outside this portion of the color space can be considered as
irrelevant.

Conclusion
A new metric for evaluating the perceptual smoothness of

any color transform has been described and implemented and il-
lustrated thanks to several applications. The next step for the en-
tire validation of the metric would be a psychophysical study with
human observers for proving the correlation between humans and
the metric.
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