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Abstract 

We present a penalized-likelihood (PL) reconstruction method 
for transmission tomography where a new type of regularization, 
namely the weighted median regularization, is used in place of the 
conventional local smoothing-based regularization. In this work 
we note that, since the performance of the weighted median 
regularization is affected by the smoothing parameter that weights 
the regularization term with respect to the likelihood term, it is 
challenging to choose an optimal value of the parameter. To 
overcome this problem, we propose an adaptive method of 
choosing the smoothing parameter based on the pixel roughness 
derived from the histogram of a point-wise standard deviation 
image at each PL iteration. Our experimental results show that the 
proposed method provides acceptably good reconstructions which 
are almost comparable to the best reconstructions obtained with 
manually chosen smoothing parameter. 

Introduction  
With the rapidly growing use of transmission tomography, 

such as X-ray computed tomography (CT), efforts have been made 
to minimize radiation exposures by using model-based iterative 
reconstruction (MBIR) methods. [1] However, most of the MBIR 
methods use the penalty functions initially developed for emission 
tomography reconstruction, where the penalty function was 
designed to reflect the spatial characteristics of the underlying 
source distribution. However, the fundamental differences between 
transmission and emission scans require different approach to 
designing the penalty function. In fact, transmission tomography 
usually shows relatively sharp anatomical boundaries compared to 
emission tomography, which is due to the fact that different tissues 
and organs have different photon attenuations. 

Recently, we have introduced the weighted convex median 
prior [2], [3] (in the context of a maximum a posteriori approach) 
that can efficiently preserve the fine details by adaptively choosing 
the center weight for the median.  However, the performance of the 
algorithm using the adaptive weighted median prior (WMP) [3] 
turned out to rely on the smoothing parameter that weights the 
penalty term with respect to the likelihood term. This is due partly 
to the functional similarity between the center weight of the WMP 
and the smoothing parameter. Increasing the center weight of the 
median prior has an effect of better preserving the fine details but 
also has an unfortunate effect of increasing noise because the 
corrupted center pixel becomes less probable to be changed due to 
the larger center weight. [4]-[8] This behavior is similar to 
decreasing the smoothing parameter in conventional penalized-
likelihood (PL) reconstruction.  Therefore, it is important to study 
how to determine the smoothing parameter so that the image 
reconstructed by the PL-WMP method remains as accurate as 
possible. 

In this work we develop an adaptive method of choosing the 
smoothing parameter for PL-WMP reconstruction. More precisely, 
the purpose of this work is to develop a space-variant smoothing 
method for a given center weight of the WMP. Here we assume 
that the center weight for the median is properly chosen and search 
for an optimal value of the smoothing parameter at each pixel 
location by using the information on the roughness of the neighbor. 
The technical challenge in this case is to investigate how to make 
the smoothing parameter be adaptively chosen so that the WMP 
does not degrade the reconstruction when the center weight is 
relatively high. 

The final goal of our work would be to combine the adaptive 
WMP reported in [3] with an adaptive method of choosing the 
smoothing parameter, which will be proposed in this work, so that 
both of the two closely-related parameters can be adaptively 
chosen. In this work, however, we restrict ourselves to the case 
where the weight for the median prior is fixed over the entire 
reconstruction process. 

This work is organized as follows. In the Method section, we 
introduce a space-variant smoothing method for PL-WMP 
reconstruction followed by an optimization algorithm that can 
approximately maximize the overall objective function for our 
proposed method. In the Experimental Results section, we present 
and discuss the experimental results obtained from our simulation 
studies using a software phantom. Finally, we draw our 
conclusions. 

Space-Variant Smoothing for PL-WMP 
PL reconstruction in transmission tomography is to seek the 

attenuation coefficients μ of an underlying object by the following 

minimization:  

ˆ argmin ( | ) ( ) ,L λR    
μ

μ y μ μ  (1) 

where ( | )L y μ is the log-likelihood function of the transmission 

measurements y given μ , and ( )R μ is the regularizer. The 

positive parameter λ controls the balance between the likelihood 
and prior terms. The negative log-likelihood function is given by 

( | ) ([ ] ),

where  ( ) ( ) log( ).
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In (2) iy is the transmission measurement of the i-th ray, ib  is the 

blank scan counts of the i-th ray, and ir is the mean of the 

background events. The term [ ]i ij jj
a μAμ indicates the line 
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integral of the underlying object through the i-th ray, where the 
element ija of the system matrix A represents the contribution of 

the attenuation coefficient jμ in the j-th pixel to the i-th ray.  

To incorporate the WMP into the PL transmission 
reconstruction process, we basically follow the derivation of the 
median prior [9] originally developed for emission tomography, 
where an auxiliary field m in register with μ  is used so that the PL 
minimization problem becomes a joint minimization as follows: [9]  

,

ˆˆ , arg min ( | ) ( , ) .L R    
μ m

μ m y μ λ μ m  (3) 

In order to express the regularization term using the median 
operation with the aid of the auxiliary variable m, we utilize a 
connection between an absolute value penalty and the median, 

such as { } argmin .jj
m

median μ m μ [9] By modifying the 

absolute value function to a differentiable form, we define the 
following regularization term:  

2
' '

' ( )

( , ) ( ), where  ( ) .jj j j
j j N j

R w m


    μ m        (4) 

In (4) ( )N j  represents a local neighborhood system of the j-th 
pixel including j-th pixel itself,  is a positive parameter, which is 
small enough for the approximation to the absolute value | | , and 

'jjw  is the weight between  j and j’. In this work, we consider a 

center-weighted median [4]-[8] whose weight 'jjw is defined as   

'

1,     ' 1
, where 1, 2, ... ,  .

2 1,   ' 2jj

j j L
w k

k j j

 
   

 (5) 

In (5) L<(number of pixels in ( )N j ).  
To solve the above joint minimization problem in (3), the 

following alternating iterative algorithm is used:  

1 ˆ ˆˆ argmin ( | ) ( , ) argminΦ( , ).n n n nL R      
μ μ

μ y μ λ μ m μ m  (6) 

1 1ˆ ˆarg min ( , ) .n nR    
m

m μ m  (7) 

In our previous work [3], to adaptively select the center 
weight w, we modeled w as a function of the roughness of 
neighbors derived from the point-wise standard deviation (SD) 
image of the previous estimate where the two-dimensional (2-D) 
SD image was transformed into a monotonically non-decreasing 1-
D function constructed by the normalized cumulative histogram 
(NCH) of the SD image. A major advantage of using the NCH 
curve is that, unlike the method of manually constructing a series 
of pre-defined 1-D curves for iterative PL reconstruction, the 
NCH-based method updates the 1-D NCH curve at each iteration 
as soon as the new pixel jμ is updated. 

In this work, to adaptively select the smoothing parameter,  
we may use a similar approach to modeling the space-variant 
smoothing parameter jλ as a function of the roughness of 

neighbors. Note that, unlike the center weight of the median prior 
which increases the roughness as w is increased, the smoothing 
parameter decreases the roughness as λ is increased. Therefore, the 
function that determines jλ must be monotonically non-increasing. 

To construct a 1-D monotonically non-increasing function at the n-
th PL iteration using the NCH curve, we used the following 
formula: 

max ( ),n n
j jλ λ NCH s   (8) 

where n
jλ is the smoothing parameter for the n-th iteration, ( )NCH   

is the NCH curve, max ( )n
JNCH s   and { | 1,..., }n n

js j J s  is a 

point-wise SD image that measures the pixel roughness. Note that, 
since ( )NCH   is monotonically non-decreasing, n

jλ  gets smaller as 
n
js  increases, and vice versa. 

Optimization Method 
In this work, we used the ordered-subsets separable 

paraboloidal surrogates (OS-SPS) algorithm [10] for the 
minimization on μ . For the minimization on m, we used the 
Newton-Raphson method. In order to apply the OS principle [11] 
to the minimization on μ , the objective function in (6) can be 
decomposed into P angular subsets as follows: [11]-[13]  

,

1

, ,

( )

ˆ ˆΦ( , ) Φ ( , ),

ˆ ˆwhere Φ ( , ) ([ ] ) ( , ).

P
n n p
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    
  





μ m μ m

λ
μ m Aμ μ m

 (9) 

In (9)  ( ) ( ) | 1,...,S p S p p P  is the p-th angular subset.  

To solve the problem in (6) by the OS-SPS, the following 
separable quadratic surrogates are minimized in place of the 
decomposed objective function Φ p  at each iteration. [10], [13] 

, , ,

, 2 ,

ˆ ˆ ˆˆ ˆ ˆ ˆ( ; , ) ( , ) ( , )( )

1 ˆ ˆˆ ˆ( , )( ) ( , ),
2

n n p n n p n n p n
p p p

n n p n n p
pj pc

   

   

μ μ m μ m μ m μ μ

μ m μ μ μ m



 (10) 

where p denotes the first derivative of p  and pjc


is the 

curvature of p  which is given by 

, ,
'

( ) ' ( )

2ˆ ˆ( , ) ([ ] ) ( ),
n

n p n p
pj ij i i i j j

i S p j N j

c a c w m
P 

   λ
μ m Aμ


   (11) 

where ''
.i ijj

a    ic and ( ) ( )w       are the curvatures of 

the surrogates for the likelihood and the regularization terms, 
respectively. [14] In this work, we used the optimum curvature [13] 
for the surrogates for the likelihood term.   

To estimate ˆ,μ  from the quadratic surrogate function in (10), 
the update equation for μ  is given by 
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Figure 1. Phantom and anecdotal reconstructions: (a) phantom; (b) FBP; (c)-
(q) PL (20 iterations of OS-SPS with 32 subsets); (c)-(f) w=1; (c) WMP (λ=10, 
PE=13.92%); (d) WMP (λ=20, PE=14.33%); (e) WMP (λ=30, PE=15.02%); (f) 
SVWMP (PE=13.80%); (g)-(j) w=5; (g) WMP (λ=10, PE=13.90%); (h) WMP 
(λ=20, PE=13.88%); (i) WMP (λ=30, PE=14.47%); (j) SVWMP (PE=13.62%); 
(k)-(n) w=9; (k) WMP (λ=10, PE=13.98%); (l) WMP (λ=20, PE=13.82%); (m) 
WMP (λ=30, PE=14.33%); (n) SVWMP (PE=13.61%); (o) AWMP (λ=10, 
PE=13.85%); (p) AWMP (λ=20, PE=13.87%); (q) AWMP (λ=30, PE=14.45%). 
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 

 
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where ,ˆ n p
jμ represents the j-th pixel value of μ estimated from the 

p-th angular subset, and n
jλ is obtained by using (8) at the n-th 

iteration.  
Given ,ˆ ,n pμ  the update equation for m is given by 

   

   
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
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

     


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 (13) 

 
Figure 2. Mean of percentage error calculated from 50 independent noise 
trials for 5 different values of the center weight w. 

Note that the final update value at the K-th iteration is 
assigned as , , ,ˆ ˆ ,n p n p Km m where ,ˆ n pm is the estimate at the end of 

the n-th iteration after processing K sub-iterations.  

Experimental Results 
For our simulation studies, the projection data were acquired 

from the 256 256 software phantom shown in Fig. 1(a) by using 
a fan-beam projector with 430 detector bins and 480 discrete 
angles over 360˚. We tested with the following four reconstruction 
algorithms: filtered back-projection (FBP), PL with the WMP (PL-
WMP), PL with the adaptive WMP (PL-AWMP) whose center 
weight is adaptively chosen by our previously developed method 
[3], and PL with the space-variant smoothing based WMP (PL-
SVWMP) proposed in this work. Although our SVWMP method 
may be expandable to a space-variant smoothing based AWMP, 
we focus here only on PL-SVWMP method and show PL-AWMP 
for a comparison only. 

Figure 1 (b) shows an FBP reconstruction and (c)-(q) show 
PL-WMP/AWMP/SVWMP reconstructions. For PL-WMP and 
PL-SVWMP, the center weight w was set to the three different 
values of 1, 5 and 9, and the smoothing parameter λ was set to the 
three different values of 10, 20, and 30. For PL-SVWMP, λ was 
adaptively chosen within the range of [10,30]. For PL-AWMP, the 
center weight was adaptively chosen, whereas the smoothing 
parameter was set to the three different values of 10, 20 and 30. 
Note that, for a given value of w, the PL-SVWMP method 
performs even better in terms of the percentage error (PE)  than the 
PL-WMP method with the manually chosen λ for the best result. 
(Compare (c) with (f), (h) with (j), and (l) with (n).) 

To test our proposed method more accurately, we performed 
50 independent Poisson noise trials for each reconstruction method 
and measured the mean of percentage error (MPE) for each 
reconstruction method over 50 reconstructions for the five different 
values of w=1, 3, 5, 7 and 9, which is defined by 

 
1

2 2

1
,

ˆwhere  100%.
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j
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In (14) K=50 is the total number of independent noise trials, j is 

the pixel located at j in the phantom and ˆ k
j  is the pixel located at  
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Figure 3. Regional mean of percentage error calculated from 50 independent 
noise trials for 5 different values of the center weight w: (a) ROIs for regional 
MPE; (b) R1; (c) R2; (d) R3; (e) R4. 

j in the k-th reconstruction. Figure 2 shows that, for a relatively 
large smoothing parameter, as the center weight w is increased, the 
MPE is decreased. However, it is important to point out that the 
SVWMP method is less sensitive to the variation of the center 
weight than the standard WMP shown in Fig., which indicates that 
the SVWMP method controls the smoothing parameter efficiently. 
Note that the WMP method with λ=10 is exceptional in that it does 
not follow the characteristic of other WMP methods. This is 
presumably due to the fact that the value of 10 for the smoothing 
parameter is small enough to increase the PE for the weight w 
greater than 3. 

To evaluate the quantitative performance of our proposed 
method, we measured the regional MPE for each region of interest 
(ROI) shown in Fig. 3(a), which is defined by  

 
1

2 2

1
,

ˆwhere  100%.

K
k
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k k
j j j

j
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 
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

   
 (15) 

Figure 3(b)-(e) show center weight versus MPE curves for 
PL-WMP with three different values (10, 20, 30) of λ and PL-
SVWMP. For the regions (R1 and R3) containing edges, the MPEs 
decrease as λ is increased. On the other hand, for the monotonic 
regions (R2 and R4), the MPEs increase as λ is increased. Note that, 
while the PL-WMP with λ=10 yields minimal MPEs in R1 and R3 
over the range of the center weight, it performs worst in R2 and R4,  

 
Figure 4. Regional contrast recovery coefficient (CRC) versus background 
standard deviation: (a) ROIs for regional CRC; (b) R1; (c) R2; (d) R3; (e) R4. 

which indicates that the PL-WMP has a limitation in restoring 
monotonic regions. In contrast the PL-SVWMP performs equally 
well in all regions. 

We also measured the regional contrast recovery coefficients 
(CRCs) for the pre-selected ROIs shown in Fig. 4 (a). The CRC in 
each ROI is defined as  

0
, where  .

k kk
Bk k

k
B

Z ZCR
CRC CR

CR Z


 



   (16) 

In (16), 0CR is the true contrast in the phantom, k
BZ  is the mean 

attenuation in the background region, and ˆ / ,k k
jj

Z m 
  

where kZ represents the mean attenuation in each ROI at the k-

th noise trial and m is the number of pixels in each ROI .  The 

ensemble mean of CRC is defined as 

1

1
.

K
k

k

CRC CRC
K

 


   (17) 

While the CRC represents the degree of the recovered 
contrast of a region relative to the background region, it does not 
show how much the background noise is involved. In order to 
overcome this limitation, we measured the SD of the background 
noise as follows: 
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In (18) Bm is the number of pixels in background region B. Figure 

4(b)-(e) show the CRC versus SD curves for PL-WMP 
reconstructions with the three different values (10, 20, 30) of λ  and 
for PL-SVWMP, where each point indicates the center weight w 
set to 1, 3, 5, 7 and 9. Note that the WMP method reveals a large 
variation of SD by changing the value of the smoothing parameter 
from 10 to 30. While the WMP method with λ=20 or 30 reveals 
small SD, the WMP method with λ=10 suffers from significantly 
high SD. On the other hand, the SVWMP method not only reveals 
high CRCs almost comparable to the WMP method with λ=10, but 
also maintains low SD. 

Conclusion 
We have developed a space-variant smoothing based PL-

WMP method for transmission tomography reconstruction. This 
work improves our previous work for the PL-WMP method [3] by 
alleviating the problem of adjusting the smoothing parameter that 
weights the prior (or regularizer) term with respect to the 
likelihood term. Since our method uses a histogram of the SD 
image obtained from the previous estimate 1ˆ nμ  that is very close 

to the current estimate ˆ nμ , it provides important information about 
the roughness of neighbors  of a pixel at each iteration. 

Therefore, as compared to our previous work, where the 
smoothing parameter was manually chosen and fixed for all 
iterations, our new SVWMP method adaptively changes the 
selected smoothing parameter at each pixel location for each 
iteration, thereby efficiently improving the reconstruction accuracy. 
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