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Abstract

Spectral information obtained by hyperspectral sensors en-
ables better characterization, identification and classification of
the objects in a scene of interest. Unfortunately, several factors
have to be addressed in the classification of hyperspectral data,
including the acquisition process, the high dimensionality of spec-
tral samples, and the limited availability of labeled data. Conse-
quently, it is of great importance to design hyperspectral image
classification schemes able to deal with the issues of the curse
of dimensionality, and simultaneously produce accurate classifi-
cation results, even from a limited number of training data. To
that end, we propose a novel machine learning technique that ad-
dresses the hyperspectral image classification problem by employ-
ing the state-of-the-art scheme of Convolutional Neural Networks
(CNNs). The formal approach introduced in this work exploits the
fact that the spatio-spectral information of an input scene can be
encoded via CNNs and combined with multi-class classifiers. We
apply the proposed method on novel dataset acquired by a snap-
shot mosaic spectral camera and demonstrate the potential of the
proposed approach for accurate classification.

Introduction

Recent advances in optics and photonics are addressing the
demand for designing Hyperspectral Imaging (HSI) systems with
higher spatial and spectral resolution, able to revile the physical
properties of the objects in a scene of interest [1]. This type of
data is crucial for multiple applications, such as remote sensing,
precision agriculture, food industry, medical and biological appli-
cations [2]. Although hyperspectral imaging systems demonstrate
substantial advantages in structure identification, HSI acquisition
and processing stages, usually introduce multiple factorial con-
straints. Slow acquisition time, limited spectral and spatial resolu-
tion, and the need for linear motion in the case of traditional spec-
tral imagers, are just a few of the limitations that hyperspectral
sensors admit, and must be addressed. Snapshot Spectral imaging
addresses that problem by sampling the full spatio-spectral cube
during each exposure, though a mapping of pixels to specific spec-
tral bands [13], [14], [15].

High spatial and spectral resolution hyperspectral imaging
systems demonstrate significant advantages concerning object
recognition and material detection applications, by identifying
the subtle differences in spectral signatures of various objects.
This discrimination of materials based on their spectral profile,
can be considered as a classification task, where groups of hyper-
pixels are labeled to a particular class based on their reflectance
properties, exploiting training examples for modeling each class.
State-of-the-art hyperspectral classification approaches are com-
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posed of two steps; first, hand-crafted feature descriptors are ex-
tracted from the training data and second the computed features
are used to train classifiers, such as such Support Vector Ma-
chines (SVM) [3]. Feature extraction is a significant process in
multiple computer vision tasks, such as object recognition, image
segmentation and classification. Traditional approaches consider
carefully designed hand-crafted features, such as the Scale Invari-
ant Feature Transform (SIFT) [5], or the Histogram of Oriented
Gradients (HoG) [6]. Despite their impressive performance, they
are not able to efficient encode the underlying characteristics of
higher dimensional image data, while significant human interven-
tion is required during the design.

In hyperspectral imagery, various feature extraction tech-
niques have been proposed, including decision boundary feature
extraction (DBFE) [7] and Kumar’s et al. scheme [8], based
on a combination of highly correlated adjacent spectral bands
into fewer features by means of top-down and bottom-up algo-
rithms. Additionally, in Earth monitoring remote sensing applica-
tions, characteristic feature descriptors are the Normalized Vege-
tation Difference Index (NDVI) and the Land Surface Tempera-
ture(LST). Nevertheless, it is extremely difficult to discover which
features are significant for each hyperspectral classification task,
due to the high diversity and heterogeneity of the acquired ma-
terials. This motivates the need for efficient feature representa-
tions directly extracted from input data through deep representa-
tion learning [10], a cutting edge paradigm aiming to learn dis-
criminative and robust representations of the input data for use in
higher level tasks.

The objective of this work is to propose a novel approach for
discriminating between different objects in a scene of interest, by
introducing a deep feature learning based classification scheme
on snapshot mosaic hyperspectral imagery. The proposed sys-
tem utilizes the Convolutional Neural Networks (CNN) [9] and
several multi-class classifiers, in order to extract high-level repre-
sentative spatio-spectral features, substantially increasing the per-
formance of the subsequent classification task. Unlike traditional
hyperspectral classification techniques that extract complex hand-
crafted features, the proposed algorithm adheres to a machine
learning paradigm, able to work even with a small number of la-
beled training data. To the best of our knowledge, the proposed
scheme is the first deep learning-based technique focused on the
classification of the hyperspectral snapshot mosaic imagery.

A visual description of the proposed scheme is presented in
Figure 1 where we present the block diagram for the classifica-
tion of snapshot mosaic spectral imagery, using am deep CNN.
The rest of the paper is organized as follows. Section 2 presents
a brief review of the related work concerning deep learning ap-
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Figure 1: Block diagram of the proposed scheme: Our system decomposes the input hypercubes into their distinct spectral bands,
and extracts AlexNet-based high level features for each spectral observation. The concatenated feature vectors are given as inputs to

multi-class classifiers in order to implement the final prediction.

proaches for the classification of hyperspectral data. In Section 3
we outline the key theoretical components of the CNN. Section 4
provides an overview of the generated hyperspectral dataset along
with experimental results, while the paper concludes in Section 5.

Related Work

Deep learning (DL) is a special case of representation learn-
ing which aims at learning multiple hierarchical levels of repre-
sentations, leading to more abstract features that are more ben-
eficial in classification [16]. Recently, DL has been considered
for various problems in the remote sensing community, including
land cover detection [17], [18], building detection [21], and scene
classification [22]. Specifically, the authors in [17] considered the
paradigm of Stacked Sparse Autoencoders (SSAE) as a feature
extraction mechanism for multi-label classification of hyperspec-
tral images. Another feature learning approach for the problem of
multi-label land cover classification was proposed in [18], where
the authors utilize single and multiple layer Sparse Autoencoders
in order to learn representative features able to facilitate the clas-
sification process of MODIS multispectral data.

In addition to the Sparse Autoencoders framework, over the
past few years, CNNs have been established as an effective class
of models for understanding image content, producing significant
performance gains in image recognition, segmentation, and de-
tection, among others [19], [20]. However, a major limitation of
CNNss is the extensively long periods of training time necessary
to effectively optimize the large number of the parameters that are
considered. Although, it has been shown that CNNs achieve su-
perior performance on a number of visual recognition tasks, their
hard computational requirements have limited their application in
a handful of hypespectral feature learning and classification tasks.
Recently, the authors in [23] utilize CNN’s for large scale re-
mote sensing image classification, and propose an efficient pro-
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cedure in order to overcome the problem of inefficient training
data. Additionally, in [24] the authors design a CNN able to ex-
tract spatio-spectral features for classification purposes. Another
class of techniques, solve the classification problem by extracting
the principal components of the hyperspectral scenes and incor-
porating convolutions only at the spatial domain [25], [31].

Feature Learning for Classification

The main purpose of this work is to classify an N spectral
band image, utilizing both its spatial and spectral dimensions. In
order to accomplish this task, we employ a sequence of filters
Wy y, of size (m x m), which are convolved with the “hyper-pixels”
of the spectral cube, aiming at encoding spatial invariance. To
achieve scale invariance, each convolution layer is followed by a
pooling layer. These learned features are considered as input to
a multi-class SVM classifier, in order to implement the labelling
task. In the following section, we present CNNs formulation and
how they can be applied in the concept of snapshot mosaic hyper-
spectral classification.

Convolutional Neural Networks

While in fully-connected deep neural networks, the activa-
tion of each hidden unit is computed by multiplying the entire in-
put by the correspondent weights for each neuron in that layer, in
CNNgs, the activation of each hidden unit is computed for a small
input area. CNNs are composed of convolutional layers which
alternate with subsampling (pooling) layers, resulting in a hierar-
chy of increasingly abstract features, optionally followed by fully
connected layers to carry out the final labeling into categories.
Typically, the final layer of the CNN produces as many outputs as
the number of categories, or a single output for the case of binary
labeling.

At the convolution layer, the previous layer’s feature maps
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are first convolved with learnable kernels and then are passed
through the activation function to form the output feature map.
Specifically, let n X n be a square region extracted from a training
input image X € RV*M_and w be a filter of kernel size (m x m).
The output of the convolutional layer h, of size (n—m+1) X (n—
m+ 1) is formulated as:

m—1m—1

;=7 kg z§> warX{iy 14 D)

where b is the additive bias term, and f(-) stands for the neuron’s
activation unit.

The activation function f(-), is a formal way to model a neu-
rons output as a function of its input. Typical choices for the
activation function are the logistic sigmoid function, defined as:
flx)= H% the hyperbolic tangent function: f(x) = ranh(x),
and the Rectified Linear Unit (ReLU), given by: f(x) = max(0,x).
The majority of state-of-the-art approaches employ the ReLU as
the activation function for the CNNs. The results and analysis
carried out in [32] suggest that deep CNN with ReLU activa-
tion functions, train several times faster compared to equivalent
designs with other activation function. Additionally, taking into
consideration the training time required for the gradient descent
process, the saturating gradients of non-linearities like the tanh
and logistic sigmoid, lead to slower convergence time compared
to the ReLU function.

The output of the convolutional layer is directly utilized as
input to a sub-sampling (i.e pooling) layer that produces down-
sampled versions of the input maps. There are several types of
pooling, two common types are the max- and the average-pooling.
Pooling operators partition the input image into a set of non-
overlapping or overlapping patches and output the maximum or
average value for each such sub-region. By pooling, the model
can reduce its computational complexity for upper layers, and can
provide a form of translation invariance. Formally, this procedure
is formulated as:

hfi = f(ﬁf down(hf)'j*l +bfj)),

where down(+) stands for a sub-sampling function. This function
sums over each distinct (m x m) block in the input image so that
the output image is m-times smaller along the spatial dimensions.
Additionally, B represents the multiplicative bias of the output
feature map, while b is the additive bias.

Classification Algorithms

Classification is the process of learning from a set of classi-
fied objects a model that can predict the class of previously unseen
objects. In this work, we deal with a multi-class classification
problem, since we aim to discriminate between 10 distinct image
categories. As a result, the proper selection of the classification
algorithm is a critical step. In the following paragraphs we pro-
vide a brief overview of three state-of-the-art classification tech-
niques that we have experimented with, namely: the multi-class
Support Vector Machines, the K-Nearest Neighbours and the De-
cision Trees.

Support Vector Machines
The state-of-the-art linear support vector machines (SVM’s)
is originally formulated for binary classification tasks [11], [12].
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Specifically, consider a set of training data along with their corre-
sponding labels: (x,,y,), n=1,---,N, x, € RP, 1, € {1,+1}.
SVM’s solve the following constrained optimization problem:
1 7 N .
min-w' w+C , subject to
w2 ; Sn: subj
WXty > 1= &, Vn,&, > OV,
where the slack variable &, penalize data points that violate the
margin requirements. The unconstrained and differentiable varia-
tion of the aforementioned equation is:

1 T N T 2
n&niw W+Cn; max(1 —w' x,1,,0)
The class prediction of the testing data x, outcomes from the so-

lution of the following optimization problem:
argmax (w’ x)z
t

The majority of classification applications utilize the softmax
layer objective in order to discriminate between the different
classes. Nevertheless, in our approach, the extracted features from
the Convolutional Neural Network, are directly utilized for Multi-
Label Classification among the different hyperspectral image cat-
egories. For K class problems, K-linear SVMs will be trained
independently, while the data from the rest classes form the nega-
tive cases. Consider the output of the k-th SVM as:

o (x) = wl'x
Then, the predicted class is estimated by solving the following
optimization problem:

argmax oy (x)

k

K-Nearest Neighbour

The K-Nearest Neighbor algorithm (KNN) [26], [27], [28] is
among the simplest of all machine learning classification tech-
niques. Specifically, KNN classifies among the different cate-
gories based on the closest training examples in the feature space.
The training process for this algorithm only consists of storing
feature vectors and labels of the training images. In the classifi-
cation process, the unlabelled testing data is assigned to the label
of its K-nearest neighbours, while the testing data are classified
based on the labels of their K-nearest neighbors by majority vote.
The most common distance metric function for the KNN is the
Euclidean distance, defined as:

m

d(x,y) = [[x—yl[= ) (xi —yi)
i=1
A key advantage of the KNN algorithm is that it performs well
with multi-label classification problems, since the final prediction
is based on a small neighbourhood of similar classes. Neverthe-
less, a major drawback of the KNN algorithm is that it uses all the
features equally, leading to classification errors, especially when
there is a small amount of training data.

Decision Trees

Decision Trees [29] are classification models in the form of
tree graphs. The typical structure of a decision tree includes the
root node, that contains all training data, a set of internal nodes, i.e
the splits, and the set of terminal nodes, the leaves. In a decision
tree, each internal node splits the feature space into two or more
sub-spaces according to a certain discrete function of the input
data. Consider x as the feature vector to be predicted. Then the
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Figure 2: Proposed Hyperspectral Dataset: 10-Category Hyperspectral Image dataset, acquired by IMEC’s Snapshot Mosaic Sensors.

value of x, goes through the nodes of the tree, and in each node x is
tested whether it is higher or smaller than a certain threshold. De-
pending on the outcome, the process continues recursively in the
right of left sub-tree, until a leaf is encounter. Each leaf contains
a prediction that is returned. Typically, Decision Trees are learnt
from the training data using a recursive greedy search algorithm.
These algorithms are usually composed of three steps: splitting
the nodes, determining which nodes are the terminal nodes and as-
signing the corresponding class labels to the terminal nodes [30].

Data Acquisition & Experimental Setup

In this section we explicitly describe the data acquisition pro-
cess and the simulation results obtained through a thorough evalu-
ation of the proposed hyperspectral classification scheme. To val-
idate the merits of the proposed approach, we explored the classi-
fication of hyperspectral images acquired using a Ximea camera,
equipped with the IMEC Snapshot Mosaic sensor [13], [14], [15].
These flexible sensors optically subsample the 3D spatio-spectral
information on a two-dimensional CMOS detector array, where a
layer of Faby-Perot spectral filters is deposited on top of the detec-
tor array. The hyperspectral data is initially acquired in the form
of 2D mosaic images. In order to generate the 3D hypercubes, the
spectral components are properly rearranged into separate spec-
tral bands. In our experiments, we utilize a 4 x 4 snapshot mosaic
hyperspectral sensor resolving 16 bands in the spectrum range of
470 — 630 nm, with a spatial dimension of 256 x 512 pixels.

For genearation of the dataset, we considered 10 distinct ob-
ject categories, namely: bag, banana, peach, glasses, wallet, book,
flower, keys, vanilla and mug. Our hyperspectral dataset consists
of 90 images. The images were acquired under different illumina-
tion conditions and from different view-points, thus producing the
first snapshot mosaic spectral image dataset used for classification
purposes. Fig. 2 presents an example of the proposed hyperspec-
tral dataset.

Simulation Results

Each training hypercube encodes 16 spectral bands, where
for each spectral observation, we extract high-level features using
a pre-trained state-of-the-art CNN, the AlexNet [34]. AlexNet
was trained on RGB images of size 227 x 227 from various cat-
egories. In order to comply with AlexNet’s input image spec-
ifications, we downscale the spatial dimension of each spectral
band and replicated each spectral bands to a three dimensional
tensor. To train the classifier, the features corresponding to the
FCS8 fully-connected layer were extracted, mapping the input im-
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ages to 1000-dimensional feature vectors. To quantify the capa-
bilities of the proposed scheme, we experimented with different
number of training images, ranging from the extremely limited
case of 10, up to 50 training examples, and evaluate the perfor-
mance on the remaining 40 spectral cubes, and report the results
over 10 independent trials. The classification accuracy is defined
as:

Number of Correct Predictions

A =
ccuracy Total Number of Predictions

Fig. 3 investigates the impact of the three comparable clas-
sification techniques, namely: the KNN, the Multi-Class SVM
model using linear kernel, and the Decision Trees, on the pro-
posed system’s classification accuracy. Specifically, we illustrate
the classification accuracy, with respect to the different number of
randomly selected spectral observations.

Concerning the KNN classifier, we observe that the first sce-
nario of using only 10 training images led to low classification
performance, of 73%, while the scenario where we use 50 train-
ing hypercubes achieves the best performance of 88%. We ob-
serve that the number of training hypercubes has a great impact
on the classification quality. As the number of training images,
grows, the classification accuracy also grows. Additionally, when
we utilize the highest possible spatio-spectral information, of all
16 acquired spectral bands, KNN classifier presents the highest
classification accuracy.

In the second scenario, we investigate the classification ac-
curacy when the SVM algorithm with linear kernel is utilized. We
observe that the SVM classifier achieves the highest accuracy, of
86% in the scenario where we use a large number of training data,
i.e. 50 training images. In contrast, the minimum classification
accuracy of 74% is achieved when we use only 10 training hy-
percubes. In this classifier, we observe that among the different
number of utilized spectral bands the classification accuracy does
not depict serious variations.

Finally, in the last scenario we exploit the Decision Trees for
the multi-class labelling of the proposed hyperspectral dataset. As
we may observe, the Decision Trees achieve the lowest classifi-
cation accuracy among the three comparable classification tech-
niques. Specifically, in the first scenario, where we use only 10
input training hypercubes, the classification accuracy remains sta-
ble (25%) among the different number of utilized spectral bands.
As the number of training images grows, the accuracy of the pro-
posed classifier also grows. However, in comparison with the
other two classification techniques, the Decision Trees achive the
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Figure 3: Classification Accuracy versus the number of spectral
bands, tested on variant number of training images, for the three
comparable classification techniques.

lowest performance, of 52% in the proposed hyperspectral clas-
sification scheme. Comparing the three classication techniques,
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we observe the KNN classifier outperforms both the sophisticated
SVM and the Decision trees techniques.

Conclusions and Future Work

Unlike traditional hyperspectral classification approaches
that extract handcrafted features, in this work we propose a
scheme which exploits a deep feature learning architecture for ef-
ficient feature extraction. The state-of-the-art method of CNNs
is able to identify representative features, encoding both spatial
and spectral variations of hyperspectral scenes, and successfully
assign each hyper-cube to a predefined class. The proposed deep
feature learning scheme is focused on the classification of snap-
shot mosaic hyperspectral imagery, while a new hyperspectral
classification dataset of indoor scenes is constructed. Our flexi-
ble scheme can be easily extended in working with many more
classes, and even with hyperspectral video sequences.

Acknowledgments

This work was funded by the PHySIS project, contract no.
640174, and by the DEDALE project contract no. 665044 within
the H2020 Framework Program of the European Commission.

References

[1] J. M. Bioucas-Dias , A. Plaza, G. Camps-Valls, P. Scheunders, N.
M. Nasrabadi, and J. Chanussot, Hyperspectral remote sensing data
analysis and future challenges, Geoscience and Remote Sensing Mag-
azine, IEEE, 1(2), pg. 6-36.(2013).

[2] N. Hagen, and M. W. Kudenov, Review of snapshot spectral imaging
technologies, Optical Engineering 52(9), 090901-090901, (2013).

[3] F. Melgani and L. Bruzzone, Classification of hyperspectral remote-
sensing images with support vector machines,IEEE Trans. Geosci.
Remote Sensing, vol. 42, no. 8, pp. 1778-1790, (2004).

[4] G. Tsagkatakis, and P. Tsakalides, Compressed hyperspectral sens-
ing, IS&T/SPIE Electronic Imaging, International Society for Optics
and Photonics.(2015).

[5] D. G. Lowe(1999). Object recognition from local scale-invariant fea-
tures. In Computer vision, 1999. The proceedings of the seventh IEEE
international conference on (Vol. 2, pp. 1150-1157).

[6] N. Dalal, and B. Triggs (2005, June). Histograms of oriented gradi-
ents for human detection. In 2005 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR’05) (Vol.
1, pp. 886-893). IEEE.

[7] C.Lee, and D.A. Landgrebe(1993). Feature extraction based on deci-
sion boundaries. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(4), 388-400.

[8] S. Kumar, J. Ghosh, and M.M. Crawford (2001). Best-bases feature
extraction algorithms for classification of hyperspectral data. IEEE
Transactions on Geoscience and remote sensing, 39(7), 1368-1379.

[9] P. Y. Simard, D. Steinkraus, and J. C. Platt, . Best practices for con-
volutional neural networks applied to visual document analysis. In
ICDAR (Vol. 3, pp. 958-962).

[10] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35.8 (2013): 1798-1828.

[11] J.A. Suykens, and J. Vandewalle (1999). Least squares support vec-
tor machine classifiers. Neural processing letters, 9(3), 293-300.

[12] Y.Tang (2013). Deep learning using linear support vector machines.
arXiv preprint arXiv:1306.0239.

[13] B.Geelen, T.Nicolaas, L.Andy, A compact snapshot multispectral

189



imager with a monolithically integrated per-pixel filter mosaic, Spie
Moems-Mems. Intern. Society for Optics and Photonics. (2014).

[14] B.Geelen, et al., A tiny VIS-NIR snapshot multispectral camera,
SPIE OPTO. International Society for Optics and Photonics. (2015).

[15] A. Lambrechts, et al, A CMOS-compatible, integrated approach to
hyper-and multispectral imaging, IEEE International Electron De-
vices Meeting (IEDM),(2014).

[16] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature
521.7553 (2015): 436-444.

[17] G. Tsagkatakis, and P. Tsakalides. Deep Feature Learning for Hy-
perspectral Image Classification and Land Cover Estimation.ESA
Symbosium, 2016.

[18] K. Karalas, et al: Deep learning for multi-label land cover classifica-
tion, SPIE Remote Sensing. Intern. Society for Optics and Photonics.
(2015).

[19] S. Lawrence, C. L. Giles, A.C. Tsoi, and A.D. Back (1997). Face
recognition: A convolutional neural-network approach. IEEE trans-
actions on neural networks, 8(1), 98-113.

[20] J. Long, E. Shelhamer, and T. Darrell. (2015). Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 3431-
3440).

[21] M. Vakalopoulou, K. Karantzalos, N. Komodakis, and N. Paragios.
Building detection in very high resolution multispectral data with
deep learning features. In Geoscience and Remote Sensing Sympo-
sium (IGARSS), 2015 IEEE International, pages 18731876. IEEE,
2015.

[22] Y. Zhong, F. Fei, and L. Zhang. Large patch convolu-
tional neural networks for the scene classification of high spa-
tial resolution imagery. Journal of Applied Remote Sensing,
10(2):025006025006,2016.

[23] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez (2017). Con-
volutional Neural Networks for Large-Scale Remote-Sensing Im-
age Classification. In IEEE Transactions on Geoscience and Remote
Sensing, 55(2), 645-657.

[24] Y. Chen, H. Jiang , C. Li, X. Jia, and P. Ghamisi(2016). Deep fea-
ture extraction and classification of hyperspectral images based on
convolutional neural networks. IEEE Transactions on Geoscience and
Remote Sensing, 54(10), 6232-6251.

[25] J. Yue, W. Zhao, S. Mao, and H. Liu. Spectralspatial classification
of hyperspectral images using deep convolutional neural networks. In
Remote Sensing Letters, vol. 6, no. 6, pp. 468477, 2015.

[26] D. Bremner, E. Demaine, J. Erickson, J. Iacono, S. Langerman, P.
Morin, G. Toussaint, Output-sensitive algorithms for computing near-
estneighbor decision boundaries, Discrete and Computational Geom-
etry, 2005, pp. 593604.

[27] T. Cover, P. Hart. Nearest-neighbor pattern classification, Informa-
tion Theory, IEEE Transactions on, Jan. 1967, pp. 21-27.

[28] J. I. N. H. O. KIM, B. S.Kim, and S. Savarese (2012). Compar-
ing image classification methods: K-nearest-neighbor and support-
vector-machines. Ann Arbor, 1001, 48109-2122.

[29] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classifi-
cation and Regression Trees. Chapman & Hall, Boca Raton, 1993.

[30] P. N. Tan, M. Steinbach, and & V. Kumar (2006). Classification:
basic concepts, decision trees, and model evaluation. Introduction to
data mining, 1, 145-205.

[31] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis.
Deep supervised learning for hyperspectral data classification through
convolutional neural networks. In IEEE IGARSS. IEEE, 2015, pp.

190

49594962.

[32] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, (2014). Dropout: a simple way to prevent neural net-
works from overfitting. Journal of Machine Learning Research, 15(1),
1929-1958.

[33] A. Ng. "Sparse autoencoder.” CS294A Lecture notes 72 (2011): 1-
19.

[34] Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification
with deep convolutional neural networks. In: Advances in Neural In-
formation Processing Systems.

[35] Y. LeCun, L. Bottou, G.B Orr, K. R. Muller: Efficient backprop.
In Neural networks: Tricks of the trade (pp. 9-48). Springer Berlin
Heidelberg. (2012)

Author Biography

Konstantina Fotiadou is currently pursuing the PhD degree in Com-
puter Science from the Computer Science Department of the University of
Crete. She received her M.Sc. degree in Computer Science from the Com-
puter Science Department of the University of Crete, and B.Sc. degree
in Applied Mathematics from the Department of Applied Mathematics, in
2014 and 2011 respectively. Her main research interests involve machine
learning techniques for computational imaging applications.

Grigorios Tsagkatakis received his B.S. and M.S. degrees in Elec-
tronics and Computer Engineering from Technical University of Crete, in
2005 and 2007 respectively. He was awarded his PhD in Imaging Science
from the Center for Imaging Science at the Rochester Institute of Technol-
ogy, USA in 2011. He is currently a postdoctoral fellow at the Institute of
Computer Science - FORTH, Greece. His research interests include signal
and image processing with applications in sensor networks and imaging
systems.

Panagiotis Tsakalides received the Diploma degree from Aristotle
University of Thessaloniki, Greece, and the Ph.D. degree from the Uni-
versity of Southern California, Los Angeles, USA, in 1990 and 1995, re-
spectively, both in electrical engineering. He is a Professor and the Chair-
man with the Department of Computer Science, University of Crete, and
Head of the Signal Processing Laboratory, Institute of Computer Science,
Crete, Greece. He has coauthored over 150 technical publications, in-
cluding 30 journal papers. He has been the Project Coordinator in seven
European Commission and nine national projects. His research interests
include statistical signal processing with emphasis in non-Gaussian esti-
mation and detection theory, sparse representations, and applications in
sensor networks, audio, imaging, and multimedia systems.

IS&T Infernational Symposium on Electronic Imaging 2017
Computational Imaging XV



