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Abstract 
We present a maximum a posteriori (MAP) reconstruction 

method of increasing the pixel resolution of positron emission 
tomography (PET) whose typical pixel resolution is relatively low 
compared to that of other medical imaging modalities. We first 
model the underlying PET image on a finer grid and downsample 
it before performing forward projections to process with the 
observed low-resolution projection data at each iteration. We then 
apply a prior modeled by a linear combination of local and non-
local regularizers to our MAP algorithm. The idea of combining 
the two different types of regularizers is based on our own notion 
that, while local regularizers are suitable for preserving fine-scale 
edges, non-local regularizers are suitable for preserving coarse-
scale edges or flat regions. Our preliminary results show that the 
proposed method improves the reconstruction accuracy by 
compromising trade-offs of the two different types of regularization 
on a finer grid for high-resolution reconstruction. 

Introduction  
While positron emission tomography (PET) is recognized as 

one of the most advanced medical imaging techniques that can 
detect areas of molecular biology detail, it suffers from poor pixel 
resolution compared to magnetic resonance (MR) or X-ray 
computed tomography (CT) imaging. With the recent development 
of multimodal imaging systems, such as combined PET/CT and 
PET/MRI systems, increasing the resolution of PET images up to 
the level of the high-resolution CT or MR images has been of an 
important issue. 

The purpose of this work is to increase the pixel resolution of 
PET images by incorporating a super-resolution (SR) technique 
into the reconstruction process. This study is related to the 
conventional SR technique that can enhance the resolution of an 
imaging system by using a single low-resolution (LR) image or a 
set of LR images, but is unique in that, unlike conventional 
imaging systems, the data formation process in PET is based on 
projections from a radiation source. In this case the reconstruction 
process involves projection and backprojection operations, which 
leads to a different approach to SR. 

In this work we investigate a reconstruction method that can 
preserve fine-scale edges as well as coarse-scale edges of the 
underlying image while increasing the pixel resolution. We derive 
our reconstruction method within the context of a MAP approach 
where priors are designed to capture the spatial character of the 
underlying source. Unlike most common approaches that involve 
assumptions on the local spatial characteristics only, our method 
also include additional prior information derived from the non-
local self-similarity property. By reflecting both local and non-
local spatial characteristics in designing the prior, the resulting 
MAP reconstruction algorithm is expected to achieve a better 
accuracy on a finer grid for high-resolution reconstruction.  

This paper is organized as follows. The Method section first 
shows how to increase the pixel resolution with a single frame 
projection data, and then describe how to combine the two types of 

priors and incorporate them into the MAP reconstruction process, 
and finally describes an optimization method to derive final update 
equations. The Results section describes our experimental results 
obtained from the simulation studies. The Conclusion section 
summarizes and draws our conclusion. 

Method  
In emission tomography reconstruction, the MAP approach is 

to estimate the underlying source image f from the emission 
measurement g by using the following minimization: 

   ˆ arg min | ,    
f

f g f fL R  (1) 

where ( | )L g f  is the likelihood term derived from the negative 
logarithm of the projection data given the underlying source image 
with the relationship 1 ,Hg= f where 1H  is the system matrix,  R f

is the negative log prior term, which is also known as the 
regularization term to penalize the image roughness, and    is the 
smoothing parameter. 

Since our method of enhancing the pixel resolution is related 
to the single-frame super-resolution (SFSR) method, we may 
derive our method in reference to the SFSR method. 

For SFSR, there is only one observed low-resolution (LR) 
image for reconstruction. In this case the relationship between the 
observed LR image Lf  and its corresponding high-resolution (HR) 

image Hf  is given by 

,f fL HDB  (2) 

where D  is the downsampling matrix and B  is the blur matrix. 
For our PET reconstruction problem, the relationship between 

the observed projection measurements g and the underlying high-

resolution PET image Hf  is given by 1 HH Dg = f , where 1H  is the 

system matrix for low-resolution forward projection. Figure 1 
shows a schematic diagram of our method to increase the pixel 
resolution using an HR backprojector in the process of iterative 
reconstruction.  

 

 
Figure 1. Schematic diagram for increasing the pixel resolution in iterative 
reconstruction. 
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When a MAP reconstruction algorithm is used in Figure 1, the 
prior term (or the regularization term) not only regularizes the 
unstable data-likelihood term due to noise, but also regularizes 
newly created high-resolution pixels. 

Regularization for SR Reconstruction 
In order to incorporate a regularizer suitable for SR 

reconstruction, one can consider to use conventional edge-
preserving regularizers, which reflect the local spatial character of 
the underlying source with non-quadratic priors [1]. Unfortunately, 
however, these regularizers tend to produce blocky piecewise 
smooth regions or so-called staircase effects, which may be more 
significant on a finer grid in SR reconstruction. In contrast, the 
recently developed non-local regularizers (NLRs) are attractive in 
that they can preserve edges in different manner by exploiting the 
self-similarities of the patches ([2], [3], [4] and [5]). According to 
our own observations, while the local regularizers with a relatively 
small value of the smoothing parameter perform well in preserving 
fine-scale edges, they are sensitive to noise. In order to reduce 
noise, the smoothing parameter could be increased, which in turn 
will degrade the reconstruction accuracy by oversmoothing the fine 
scale-edges. Therefore, in order to preserve fine-scale edges as 
well as coarse-scale edges in SR reconstruction, the two different 
types of regularizers may be combined into a hybrid form in the 
regularization term.  

The two types of the regularizers used in this work are as 
follows:  
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where ( )jf x  is an intensity vector for the patch jx  centered at j , 

j  is the search window for the pixel located at j  with 
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denotes the difference between the two patches centered at j  and 

k , where ( )( )j lf x and ( )( )k lf x  denote the l-th pixels in the patches 

centered at j  and k respectively, and L is the total number of 

pixels in a patch.  NLQR f in (3) stands for the non-local quadratic 

(NLQ) regularizer and  LNQR f  in (4) stands for the local non-

quadratic (LNQ) regularizer.  
In this work, for the LNQ regularization term, we use the 

following penalty function proposed by Lange [6]  

  2 log 1 . 
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By combining the two regularizers described in (3) and (4), 
and by using the relationship between LR image Lf  and its 

corresponding HR image Hf described in (2), we may rewrite our 

reconstruction problem as  

     ˆ arg min | (1 ) ,       
f

f g f f f
H

H H NLQ H LNQ HL R R  (6) 

where [0,1]   is the weighting factor which controls the balance 
between the NLQ and LNQ regularizers. Note that  is a fixed and 
space-invariant parameter (so we call this method the space in-
variant combination (SIC) method). Note also that, while 1   
reduces the regularization term to  NLQ HR f , 0   reduces to 

 LNQ HR f . Therefore, the images reconstructed by decreasing the 

value of  from 1 to 0 will gradually change the reconstruction 
results from an NLQ reconstruction to an LNQ reconstruction. It is 
then expected that there will exist an optimal value of   yielding 
the most accurate reconstruction by compromising the merits of 
the two extreme cases.  

In this work, we investigate an adaptive method of finding an 
optimal value of   by noting that, while the NLQ regularizer is 
suitable for preserving coarse-scale edges or flat regions, the LNQ 
regularizer is suitable for preserving fine-scale edges. Our adaptive 
method determines the value of  for each pixel based on a relative 
weight between the following two types of pixels. (i) the pixel in a 
coarse-scale edge or a flat region, (ii) the pixel in a fine-scale edge. 
According to our own investigations, it is useful to model   for 
each pixel as a one-dimensional (1-D) function of the roughness at 
a pixel position. We have found an empirical method of 
constructing such 1-D curve from a cumulative histogram of the 
standard deviation (SD) image obtained from an estimated 
reconstruction at each iteration.  Note that the SD image defined in 
(7) measures the roughness at the pixel position j within its 
neighbors and the cumulative histogram of the 2-D SD image 
transforms the roughness into a monotonically non-decreasing 1-D 
curve.  
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where ( ( )jmean f x is the mean value of the patch jx  centered at 

j . Since the cumulative histogram has an inverted "L" shape, it is 
useful for classifying a pixel into two categories ((i) and (ii)). It 
maps onto a large value when ( )js f  is large ( jf  is assumed to 

belong to a coarse-scale edge) and maps onto a small value when 
( )js f  is small ( jf  is assumed to belong to a fine-scale edge). 

Therefore, instead of using space in-variant parameter  , we may 
utilize the cumulative histogram curve of the SD image to 
determine the value of  for each pixel at each iteration. In this 
case the minimization problem for the new method is modified as 
follows: 
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where ( ( )) ( ( ( )) )o
j j

max min
s f s f MIN min

MAX MIN
 

  


for the 

normalized cumulative histogram (NCH) curve of the SD image. 
Here ( ( )o

js f  is the original cumulative histogram of the SD 

image. MAX and MIN  are the maximum and minimum values of 
the cumulative histogram, respectively, and max and min are the 
desired maximum and minimum values of the NCH curve. 

Since each term in (8) is convex, we may use the complete-
data ordered subsets expectation maximization ([7] and [8]) 
(COSEM) algorithm and expand it to include a convex 
minimization method for the regularization terms. However, since 
our regularization terms involve a non-quadratic function, it is 
difficult to directly minimize (8). Here we use the separable 
paraboloidal surrogates (SPS) algorithm [9] for the regularization 
terms. In this case the surrogate functions are separable in f and 
depend only on the current estimates. Note that ( ( )) js f  in (8) is 

not fixed but is updated within a small range of [0, 1] at each 
iteration. Therefore, our COSEM-MAP reconstruction method 
using the SPS algorithm provides an approximated solution to (8), 
which is close to the true solution. 

Results 
To test our method, we performed 2-D simulation studies 

using the digital Hoffman brain and autoradiograph phantoms with 
two different levels of the resolution; 128 128  for LR and 
256 256  for HR as shown in Fig. 1(a)(e) for the Hoffman brain 
phantom and in Fig. 3(a)(e) for the autoradiograph phantom, 
respectively. The LR phantom was derived from the original HR 
phantom by summing up four adjacent pixels in each high-
resolution phantom to generate a corresponding pixel in the 
associated low-resolution phantom. The projection data were 
acquired using 128 bins and 128 discrete angles over 360 . 

Figure 2 shows anecdotal results for both LR and HR 
reconstructions. For HR reconstruction, the values of 1  and 2  

were independently adjusted to yield a reconstruction with the 
lowest percentage error (PE) of MAP-NLQ and MAP-LNQ 
reconstructions, respectively. We chose the smoothing parameters 

1  and 2  for LR images in the same manner. Note that the HR 

reconstructions in (f)-(h) show better subpixel accuracy than the 
LR reconstructions in (b)-(d) do. Figure 2(f) shows the image 
reconstructed by LNQ. Note that, while the fine details are well 
preserved, the overall image is relatively noisy. Figure 2(h) shows 
the image reconstructed by using NLQ, where the edges look sharp 
and the noise is significantly reduced. However, it lost some of the 
fine details. Figure 2(g) shows the combination of NLQ and LNQ 
with 0.7   which makes the PE value a minimum, where both 
the fine-scale and coarse-scale edges are well preserved, which is 
also true for the LR reconstructions. 

 
Figure 2. Hoffman brain phantoms and anecdotal COSEM-MAP 
reconstructions with two levels (LR and HR) of pixel resolutions: (a) LR 
phantom; (b) LR reconstruction using LNQ prior (PE=28.02%); (c) LR 
reconstruction using SIC prior with 0 7.   (PE=27.29%); (d) LR reconstrution 
using NLQ (PE=27.45%); (e) HR phantom; (f) HR reconstruction using LNQ 
prior (PE=24.50%); (g) HR reconstruction using SIC prior with 0 7.   
(PE=23.75%); (h) HR reconstruction using NLQ prior (PE=24.42%). 

 
Figure 3. PE curves of Hoffman brain phantom for high- and low-resolution 
SIC reconstructions over a range of 0 1  [ , ].  

 
Figure 4. Autoradiograph phantoms and anecdotal COSEM-MAP 
reconstructions with two levels (LR and HR) of pixel resolutions: (a) LR 
phantom; (b) LR reconstruction using LNQ prior (PE=19.17%); (c) LR 
reconstruction using SIC prior with 0 7  .  (PE=18.36%); (d) LR 
reconstruction using NLQ prior (PE=18.87%); (e) HR phantom; (f) HR 
reconstruction using LNQ prior (PE=18.05%); (g) HR reconstruction using SIC 
prior with 0 5.   (PE=17.77%); (h) HR reconstruction using NLQ prior  
(PE=18.61%). 

(a) (b) (c) (d)

(e) (f) (g) (h)



PE
(%

)

(a) (b) (c) (d)

(e) (f) (g) (h)
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Figure 3 shows   versus PE curves for both LR and HR 
reconstructions with the Hoffman brain phantom, which indicates 
that both curves have the minimum of PE at the same value of 

0.7  . Notice that the HR reconstructions significantly reduce 
PE over the corresponding LR reconstructions.  

Figure 4 shows anecdotal results of both LR and HR 
reconstructions for the autoradiograph phantom. Qualitative 
comparisons in Fig. 4 are similar to those in Fig. 2. However, 

0.5  yields a minimal PE value for the HR reconstruction with a 
combination of NLQ and LNQ (See Fig. 4(g)), which indicates that 
different phantoms with different image roughness have different 
optimal   values. 

 
Figure 5. PE versus 0 1  [ , ] curves of anecdotal COSEM-MAP-SIC 

reconstructions for the autoradiograph phantom with two levels (LR and HR) 
of resolutions. 

Figure 5 shows   versus PE curves of both LR and HR 
reconstructions for the autoradiograph phantom, where the curves 
for LR and HR reconstructions have values of 0.7   and 0.5  ,  
respectively, for the minimal PE. Similarly to Fig. 3, the HR 
reconstructions exhibit lower PE values than the corresponding LR 
reconstructions. 

Figure 6 shows comparisons of SIC and SVC for both 
Hoffman brain and autoradiograph phantoms. Comparison of (a) 
and (b) shows that the adaptive SVC method provides a result very 
close to the one generated by the SIC method with a manually 
chosen optimal  . The same is true for (c) and (d) for the 
autoradiograph phantom. 

Figures 7 and 8 show our numerical results from the ROI 
studies with the reconstructions obtained from 50 independent 
noise trials for the Hoffman brain phantom. To measure the mean 
contrast recovery coefficients (MCRCs) and mean percentage 
errors (MPEs), we chose 11 regions that contained flat regions as 
well as edge regions as shown in Fig. 7(a).  R1-R3 are for tumor 
regions. While R4-R8 were chosen across edges which include 
coarse-scale and fine-scale edges, R9-R11 were chosen in flat 
regions. Figure 7(b) shows that, in the tumor regions, the MCRCs 
of SIC and SVC are always in between the MCRCs of NLQ and 
LNQ. Figure 8 shows that NLQ has better performance in flat 
regions as well as coarse-scale edge regions, while LNQ performs 
better in fine-scale edge regions. The SIC with optimal 
compromises NLQ and LNQ methods, which not only recovers 
sharp edges and fine details in the edge regions, but also 
suppresses the noise in flat regions. In the overall comparison, the 
results generated by the adaptive SVC are comparable to the 
results generated by SIC with an optimal value of   and also SVC 
well compromises NLQ and LNQ.  

 
Figure 6. Comparison of SVC prior with SIC prior for HR reconstructions: (a) 
SVC (PE=23.76%); (b) SIC with 0 7.   (PE=23.75%); (c) SVC (PE=17.85%); 

(d) SIC with 0 5.   (PE=17.77%). 

 
Figure 7. Comparison of MCRCs for ROIs: (a) The phantom with region 
borders superposed; (b) MCRCs of tumor regions (R1-R3). 

 
Figure 8. Comparison of MPEs of ROIs in Fig.7(a). 

The regional MPE and MCRC of each ROI are defined as 
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Figure 9. Point-wise bias and SD images obtained from 50 independent noise 
trials; (a), (b), (c) and (d) are the bias images for NLQ, LNQ, SIC with 0 7. 
and SVC respectively; (e), (f), (g) and (h) are theSD images for NLQ, LNQ, 
SIC with 0 7.  and SVC, respectively. 

and 
1 ˆ

i

i

k k
R j

j R

Z f
T 

   denoting the mean activity in each region at 

the k-th noise trial, T the number of pixels in the i-th ROI,  
B

k
RZ

the mean activity in the background region, and 
0

k
RCR   the true 

contrast in the phantom. 
Figure 9 shows the point-wise bias and SD images obtained 

from 50 independent Poisson noise trials. Comparison of the four 
bias images in (a)-(d) indicates that SVC as well as SIC 
compromises NLQ showing relatively large bias errors and LNQ 
showing relatively small bias errors especially around fine-scale 
edges. Comparison of the four SD images indicates that NLQ in (e) 
reveals the highest SD along the edges due to its unstable edge 
localization, and SIC in (g) and SVC in (h) compromise NLQ in (e) 
and LNQ in (f) as expected.  

Conclusion   
We have developed COSEM-MAP reconstruction methods 

that can efficiently increase the pixel resolution of PET images 
from a single low-resolution sinogram by using both local and non-
local regularizers. The idea of increasing the pixel resolution is 
based on the backprojection of the low-resolution projection data 
into the high-resolution image space defined on a finer grid within 
an iterative reconstruction algorithm. 

To enhance the reconstruction accuracy, we also formulated 
the high-resolution image constraint with both NLQ and LNQ 
regularizers, each of which has its own merit in preserving 
important features in the underlying image. The constraint was 
formulated by linearly combining the two regularizers in two 
different forms; (i) space-invariant combination (SIC) with a fixed 
value of  , and (ii) space-variant combination (SVC) with a 
position-dependent value of  . It is important to point out that the 
form in (ii) is adaptive in that the value of  is updated at each 
iteration of COSEM-MAP as a function of the NCH of the SD 
image obtained from a previous iteration. 

The net conclusion based on our experimental results is that 
both the SIC and SVC methods improve the reconstruction 
accuracy when the pixel resolution is increased on a finer grid. 
Moreover, while the value of  in SIC is manually chosen, that in 
SVC is adaptively determined in the process of iterative 
reconstruction. 
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