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Abstract
Inverse quadratic problem of joint demosaicing and multi-

frame super-resolution(SR) was considered. Closed form solu-
tions for different constant sub-pixel motions between frames were
obtained and represented in the form of filter bank, which al-
lows to compute solution of SR problem using adaptive filtering,
where filters are selected depending on sub-pixel motion between
frames. This procedure can be carried out using single iteration.
For directional and non-directional parts of image correspond-
ing directional or non-directional filters were applied. Color ar-
tifact reduction was achieved via usage of linear cross-channel
regularizing term inspired by popular demosaicing methods. The
framework includes motion estimation in Bayer domain, inte-
grated noise reduction sub-algorithm, directionality estimation
sub-algorithm, fallback logics and post-processing for additional
color artifact reduction. Bank of filters is computed offline us-
ing specially developed compression techniques, which allows to
reduce number of actually stored filters. Developed solution had
shown superior results, compared to subsequent demosaicing and
single channel SR and was tested on real raw images captured by
cell phone camera in burst mode.

Super-resolution problem
Super-resolution(SR) is the name of techniques that allows

to construct single high resolution (HR) image out of several ob-
served low resolution (LR) images (Fig. 1). Compared to single
frame interpolation SR reconstruction is able to restore high fre-
quency component of the HR image exploiting complementary
information from multiple LR frames. SR problem can be stated
as described in [1].

Figure 1. Multi-frame SR

Let X be the HR image that we are trying to reconstruct and
Yk be the k-th observation. The way each LR observation is ob-
tained from HR image can be described by Yk =Wk ·X +V, where
Wk is image formation operator for k-th observation and V is noise
term. Operator Wk can be composed out of warp Mk, blur G, dec-

imation D, or other components, such as Bayer decimation B:

Wk = D ·G ·Mk (1)

Wk = B ·D ·G ·Mk (2)

In case, when image formation model includes Bayer deci-
mation, the problem deals with joint demosaicing and SR. Thus,
sought SR image X can be found out of the matrix equation

Y = W ·X+V, (3)

where Y =
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∣∣∣∣∣∣∣∣ and n is the num-

ber of LR images. As long as V is unknown and is assumed to be
Gaussian noise, instead of solving problem 3, we can deal with
optimization problem X = argmin‖W ·X−Y‖2. In real life in-
put data is insufficient for perfect reconstruction, so regularized
problem

X = argmin(‖W ·X−Y‖2 +λ ·Γ(X)), (4)

is considered instead, where Γ(·) is regularization term.
Extensive reference to different types of norms, regulariza-

tion terms and corresponding solvers used in different reconstruc-
tion frameworks (including SR, demosaicing, HDR imaging, etc.)
can be found in [2]. Most of the research in SR is focused on the
problem with quadratic data fidelity term and total variation(TV)
regularization term. In case of non-linear and particularly non-
convex form of regularization term the only way to find solution
is iterative approach.

The goal of the present work was to obtain straightfor-
ward(without iterations) solution of joint SR and demosaicing
problem, which can be used in consumer electronics devices like
mobile phones or digital cameras.

Detailed explanation is provided below.

Filter bank representation of solution
We have chosen L2 norm and quadratic regularization term

Γ(X) = λ 2 · (H ·X)T · (H ·X). In this case problem 4 is known to
have closed form solution

X = A ·Y,A = (WT W+λ
2 ·HT H)−1 ·WT .

It’s important, that this solution depends on input data Y linearly.
This means, that if we pre-compute set of matrices A for all pos-
sible shifts between LR frames and later use them for SR recon-
struction (Fig. 2).

Although at the first sight this idea does not look meaningful,
it will be shown, that after imposing a few additional constraints
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Figure 2. General idea of pre-computing matrix A

it becomes possible to provide very compact representation of a
set of matrices A, sufficient for fairly accurate computation of SR
problem solution. The way to obtain this compact representation
is based on the following approaches:
• Reduce number of values to represent each matrix
◦Take in account matrix multilevel structure and use just a

few lines from each matrix
◦Take in account banded structure to retain only a few el-

ements from each line
• Reduce number of matrices needed to obtain reasonable ac-

curacy
◦Use the same translational motion for every pixel of the

image
◦Consider only sub-pixel motions
◦Use appropriate quantization of sub-pixel motions corre-

sponding to accuracy of motion estimation procedure
◦Take in account symmetry properties of the problem

Let’s describe additional constraints. The first constraint is
related to regularization term, because all the further reasoning is
highly dependent on it. We’ll narrow our problem to particular
choice of H in the form of 2D convolution operator with kernel

Ĥ, where Ĥ =

∣∣∣∣∣∣
−1/8 −1/8 −1/8

−1/8 1 −1/8

−1/8 −1/8 −1/8

∣∣∣∣∣∣ . This choice of H pro-

vided visually pleasing results on real images. Detailed analysis
of applicability of our results to other types of regularization term
is the matter of further research.

The second constraint is related to operator Wk. We’ll con-
sider only uniform relative translations of input LR images, where
each k-th LR image is shifted with respect to decimated HR im-
age by s · uk pixels horizontally and by s · vk vertically, where s
is decimation factor (we assume that the same factor was used
for horizontal and vertical decimation). In this case A is a func-
tion of 2 · k values: A = A(u0,v0,u1,v1, . . . ,un,vn). On one hand
this constraint provides means for initial reduction of number of
matrices, on the other hand it is the reason of special multilevel
structure of A.

Let’s consider single channel SR only (without demosaic-
ing). Analysis of joint demosaicing and SR is a little bit more
complicated, but the main idea is quite the same.

Let X be vectorized single channel image. To obtain colored
output image the same procedure should be applied to each color
channel (R,G,B) of input LR images separately.

Our numeric experiments with boundary conditions have
shown that it makes no big difference whether to use Toeplitz or
circular boundary conditions when constructing matrices Mk and
G. Maximum difference of elements of matrix A, corresponding
to central pixels of HR image constructed for different boundary
conditions is no more than 0.5%. Thus, we have preferred to use
circular boundary conditions, which are beneficial from compu-
tational point of view, while reconstruction result just negligibly

differs from results for physically motivated Toeplitz conditions.
Matrix A has specific structure, and we have performed some

analysis inspired by [6], but here only practical conclusions will
be mentioned.

If we add the third constraint that s is integer, matrix A for
single channel SR problem can be completely described by it’s
s2 lines(basic set) that are used to compute adjacent pixels of HR
image, belonging to the same block of size s×s. If for some index
i, j there is a line belonging to the basic set, than these values are
enough to construct a line for any other index i1, j1 satisfying i1
mod s = i mod s& j1 mod s = j mod s. If LR image’s dimen-
sion is m×m, A will be completely described by only s2 · n ·m2

out of (s ·m)2 · (n ·m2) values.
In [9] decay properties of multi-band matrices were studied.

We have conducted numeric experiments to evaluate these prop-
erties for our case. Let’s consider matrix A constructed for some
small absolute values of uk and vk. Map of elements of A with
absolute value more than 10−3 for n = 3 is shown in Fig. 3. It
can be seen that no more than 5% of matrix element have signifi-
cant absolute values. Fig. 4 explains extraction of a single line of

Figure 3. Structure of matrix A(n = 3).

matrix A corresponding to a single pixel of HR image, splitting
this line into n parts, corresponding to LR images, and reshaping
these parts to m×m matrices, where m is dimension of LR im-
age. We can re-numerate elements of matrix A so that HR pixel

Figure 4. Presenting A in filter form.

with coordinates i, j will be computed as convolution of a certain
vicinity of LR images in location i

s ,
j
s with a 3D kernel

w(i mod s, j mod s,u0,v0,u1,v1, . . . ,un,vn)

of some reasonable size

xi, j = ∑
k=0..n

∑
î=−ε..ε

∑
ĵ=−ε..ε

wk
î, ĵ · y

k
i
s +î, j

s + ĵ
,
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where wk
î, ĵ

= a(i−1)·m·s+ j,m2·(k−1)+( i
s +î−1)·m+ j

s + ĵ and notation
aα,β refers th the element of matrix A with corresponding co-

ordinates. Let’s consider value Pε =
∑

k=0..n
∑

î=−ε..ε
∑

ĵ=−ε..ε

|wk
î, ĵ |

∑

β=1..m2 ·k
|a(i−1)·m·s+ j,β |

. Fig. 4

shows, that this value becomes very close to 1 for quite small val-
ues of ε .

Figure 5. Dependency of the proportion of energy of filter coefficients inside

ε-vicinity of the central element from vicinity size

This means than a single line of A can be accurately enough
reconstructed from a 3D filter consisting of n · (2 · ε +1)2 values.
The whole matrix can be reconstructed from s× s filters with di-
mensions n× (2 · ε +1)× (2 · ε +1). Fig. 4 proves, that fo single
channel SR assuming |uk| < 1, |vk| < 1 we can take ε = 5 which
means that filter w may have dimension n×11×11. Although as-
sumption about small absolute values of |uk| and |vk| have direct
impact on the value of ε , thanks to structure of A we can store
only filters, computed for |uk| < 1, |vk| < 1. Suppose we need to
solve SR problem for ũ0, ṽ0, ũ1, ṽ1, . . . , ũn, ṽn,, where some or all
|ũk|> 1, |ṽk|> 1. If we have a filter

w(i mod s, j mod s,u0,v0,u1,v1, . . . ,un,vn),

where uk = ũk− round(ũk),vk = ṽk− round(ṽk), HR pixel can be
computed as

xi, j = ∑
k=0..n

∑
î=−ε..ε

∑
ĵ=−ε..ε

wk
î, ĵ ·y

k
i
s +round(ũi)+î, j

s +round(ṽk)+ ĵ
, (5)

Due to decay property only a few nearest corresponding LR pix-
els are used to reconstruct each HR pixel, which means that our
initial assumption about uniform translational motion, which can
hardly hold in practice for the whole image, should now hold
only in ε vicinity of each pixel. Such assumption typically holds
and this means that approach shown in Fig. 6 can be imple-
mented in practice. Decay property also means that while us-
ing circular boundary conditions accurate filter values can be ob-
tained from rather a small matrix A. As matrix inversion has
O(n3) complexity, this might have been a severe limitation oth-
erwise. Let’s conclude explanation above by a small numeric ex-
ample. Suppose we have a 16× 16 LR image, decimation fac-
tor s = 4 and number of LR images n = 3. If we tried to store

the whole matrix A it would have been necessary to memorize
(16 · 4) · (16 · 4)× (16 · 16 · 3) = 3,145,728 values. In compact
form it’s possible to store only (4 · 4)× (3 · 11 · 11) = 5,808 val-
ues, which is 0.18% of the original number. Since filters are
already computed, computing one pixel of HR image requires
n · (2 · ε + 1)2 multiplications (in the example above this will be
363) and n · (2 · ε +1)2−1 additions (disregarding complexity of
motion estimation and other sub-algorithms).

Figure 6. SR with representation of pre-computed matrix A in the form of

filter bank

Let’s consider more facts, that allow to reduce the number
of considered A′s. If rounding operation means rounding towards
nearest integer, we can pre-compute filters only for

−1/2≤ uk < 1/2,−1/2≤ vk < 1/2.

We also can assume that u0 = v0 = 0 so matrix A is a function
of only 2n parameters.

Since in practice motion estimation is done with some lim-
ited accuracy (we can consider 1/4 pixel accuracy as a reasonable
estimate) quite a few quantization levels of shifts should be con-
sidered. For q quantization levels of for sub-pixel motions and
n + 1 input observations (0th observation with zero shift) only
q2n possible A′s should be considered. For 4 quantization lev-
els (−1/2,−1/4,0,1/4), 3 input LR images (n = 2) and s = 4 all
possible solutions will be described by 256 sets of 16 filters with
dimensions 3×11×11. These pre-computed values can be stored
in the filter bank and appropriate filters can be selected based on
value of sub-pixel motion, as shown in Fig. 7. Here block ”core
SR algorithm” implements expression 5 for each pixel.

Figure 7. Single channel SR algorithm outline

In section some prospects of reducing number of stored val-
ues and complexity of obtaining single operator A are covered.

Joint demosaicing and super-resolution
Approach described in the section above can be used for the

problem of joint demosaicing and SR. The difference would be in
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using 2 instead of 1. In this case unknown vector will be formed

out of stacked color channels X =

∣∣∣∣∣∣
XR
XG
XB

∣∣∣∣∣∣.
In this case we had to modify regularization term to intro-

duce cross-channel regularization. Unlike [3] we’ve used a linear
term:

H̃ =

∣∣∣∣∣∣∣∣∣∣∣∣

H 0 0
0 H 0
0 0 H

Hc −Hc 0
Hc 0 −Hc
0 Hc −Hc

∣∣∣∣∣∣∣∣∣∣∣∣
. (6)

We have taken Hc = γ ·H,γ = 3. Compared to single channel so-
lution described in section , sub-pixel shifts should be considered
in the interval [0,2) and 3 sets of filters, corresponding to color
channels, should be stored. Fig. 8 shows, that joint demosaic-
ing and SR performs better, than demosaicing followed by single
channel resolution. Some more comparison results, including our

Figure 8. (left) [5] demosaic + RGB SR (right) Bayer SR

implementation of joint demosaicing and SR approach, described
in [2] with cross-channel regularization term, described in [3] are
provided in 9. It can be seen, that using a simple linear regular-
ization term can be sufficient to obtain reasonable quality.

Figure 9. Sample results of joint demosaicing and SR on rendered sam-

ple with known translational motion (a) ground truth; (b) demosaicing from

[4]+bicubic interpolation; (c) demosaicing from [4]+ RGB SR (d) Bayer SR,

smaller regularization term; (e) Bayer SR, bigger regularization term; (f) Our

implementation of bayer SR from [2] with cross-channel regularization term

from [3]

Numeric evaluation on synthetic samples
We have performed numeric evaluation of SR algorithm

quality on synthetic images in order to concentrate on core al-

gorithm performance without considering issues of accuracy of
motion estimation. We have used an image on Fig. 10, which
contains several areas which are typically challenging for demo-
saicing algorithms.

Figure 10. Test image

As far as reconstruction quality depends on displacement be-
tween low resolution frames (worst corner case: all the images are
exactly the same), we have conducted statistical experiment with
randomly generated motions Fig. 10. No wonder, that results for
green channel, which is sampled more densely, results are better
than in blue and red channels, where quality is quite the same.
Fig. 11 explains influence of number of LR frames and multiplier
lambda at the regularization term on restoration PSNR. This fig-
ure makes clear the following facts:
• Different sub-pixel shifts provide differrent PSNR for the

same image, which means that for accurate evaluation of SR
setup many possible combinations should be checked
• It’s possible to find globally optimal multiplier lambda
• Increasing number of LR frames leads to higher PSNR, so

number of frames is limited only by shooting speed and so-
lution complexity
• Green channel can be reconstructed with higher accuracy

than red and blue channel
As it was expected, this chart helps to make the best choise

of ; increasing number of LR frames leads to increasing opfg Ta-
ble 1 shows median values of PSNR obtained for different exper-
imental settings (red channel). We have tested cases with 2,3 and
4 input frames and single channel and joint demosaicing and SR
(Bayer SR) configurations. As far as number of stored filters in-
creases dramatically while increasing magnification ratio, we also
compares true 4X SR and 2X SR with subsequent 2X bicubic up-
scaling. For 4 input frames and Bayer SR we have obtained more
than 3dB enhancement in average.

To check potential of reducing computational load by filter
truncation, we have also checked PSNR in case of truncated ker-
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Figure 11. Evaluation results on synthetic test

Simulation results on synthetic samples (4X magnification,
red channel)

MV
Rounding

Domain Demosaicing
method

Config. 2 Frames 3 Frames 4 Frames

No

RGB
[5]

4X↑SR

23.5 23.7 23.9
Yes 23.4 23.6 23.7
No [4] 24.3 24.5 24.6
Yes 24.0 24.3 26.3
No

Bayer N/A
2X↑SR+2X↑ 24.6 25.2 25.6

Yes 23.3 23.4 23.5
No 4X↑SR 24.9 25.7 26.3
Yes 24.5 25.2 25.6
No

RGB
[5]

2X↑SR+2X↑

23.5 23.7 23.9
Yes 22.8 22.9 23.0
No [4] 24.1 24.2 24.5
Yes 23.4 23.5 23.5
N/A RGB [5] 4X↑ 23.0

nel. Table 2 shows, that filter size can be safely decreased to
12×12. Further truncation caused significant PSNR drop. In this
set up we have also checked, if 2X SR is the same as X4 SR with
subsequent downscaling. Untill now we haven’t figured out how
to modify 2X SR problem posing to obtain exactly the same re-
sults as 4X SR. It can be seen that X4+downscaling can provide
in average more than 4dB gain.

Influence of kernel size (Bayer, 2X magnification, red channel)
Kernel size Zoom config. 2 Frames 3 Frames 4 Frames

16×16 4X↑ SR + 2X↓ Bicubic 30.93 31.75 32.12
2X↑ SR 29.34 30.19 30.25

14×14 4X↑ SR + 2X↓ Bicubic 30.93 31.75 32.12
2X↑ SR 29.34 30.04 30.26

12×12 4X↑ SR + 2X↓ Bicubic 30.93 31.72 32.12
2X↑ SR 29.33 30.05 30.25

N/A [4] demosaicing + 2X↑ Bicubic 27.95

Filter bank compression and fast filter bank
computation

Taking in account symmetry inherent to solution of SR prob-
lem, it is possible to reduce significantly number of stored values
(volume) needed to describe closed form solutions of SR problem.
For example, for joint demosaicing and SR solution (n = 3,s = 2)
solution volume was decreased for about 80 times, and for sin-
gle channel SR (n = 3,s = 4) more than 40 times. We suppose
to prepare a separate with proofs and detailed description of such
compression technology. Besides, taking account special types
of matrices involved in computation, advanced methods for block
circulant matrices can be used. Thus, for size of high resolution
block n× n solution requires O(n2 logn) instead of O(n6) oper-
ations needed for matrix inversion. This work will be also de-

scribed in other paper.

Integrated solution
For application in real life conditions we have implemented

integrated solution, containing some additional sub-algorithms
and features (Fig. 12), such as motion estimation in bayer do-
main, fallback logics, integrated noise reduction and some more
additional features. We have found, that our Bayer SR algorithm

Figure 12. Algorithm structure

for some motions performs poorly on edges, and developed edge
directional reconstruction filters to applied for strongly directional
areas (Fig. 13). Fig. 14 shows sample output of directional mask

Figure 13. Structure of directionality adaptation sub-algorithm

estimation (marked by color) and Fig. 15 shows difference be-
tween directional and non-directional processing. Still, it is cru-
cial not to use directional adaptation in non-directional areas, like
shown in Fig. 18, where anisotropic filters descriobed in section
were applied. In order to control noise reduction and regular-

ization term depending on noise level and saliency map, we have
developed adaptation scheme shown in Fig. 16, which allows to
obtain at the same time better detail level in textured areas and
higher noise suppresion in flat areas (Fig. 17).

Some sample output for real images (burst shot in Bayer, 3
frames) is shown in Fig. 18.

Conclusion and future work
We have developed high quality multi-frame joint demosaic-

ing and SR (Bayer SR) solution which does not use iterations and
has linear complexity. Set of supplementary sub-algorithms was
developed and integrated with core solution to obtain implementa-
tion robust to motion errors and fast motions, different noise levels
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Figure 14. (left) Input image (right) Directions marked by color wheel

Figure 15. (left) Without directionality adaptation, NR off (right) With direc-

tionality adaptation, NR off

Figure 16. Local salincy map-based NR power adaptation and choice of

regularization term and NR power based on noise level

Figure 17. (left) Salience-based adaptation off; (right) adaptation on

and different textures. Our next step will be theoretical arrange-
ment and parameter tunings along with providing clear theoretical

Figure 18. Sample quality on real images. (top row) demosaicing from

[4]+bicubic interpolation (bottom row) proposed

description of methods, used for filter bank compression and fast
computation of filters.
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