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Abstract
A revolution in the field of genomics has produced vast

amounts of data and furthered our understanding of the genotype-
phenotype map, but is currently constrained by manually inten-
sive or limited phenotype data collection. We propose an algo-
rithm to estimate stem width, a key characteristic used for biomass
potential evaluation, from 3D point cloud data collected by a
robot equipped with a depth sensor in a single pass in a stan-
dard field. The algorithm applies a two step alignment to register
point clouds in different frames, a Frangi filter to identify stem-
like objects in the point cloud and an orientation based filter to
segment out and refine individual stems for width estimation. In-
dividually, detected stems which are split due to occlusions are
merged and then registered with previously found stems in previ-
ous camera frames in order to track temporally. We then refine the
estimates to produce an accurate histogram of width estimates per
plot. Since the plants in each plot are genetically identical, dis-
tributions of the stem width per plot can be useful in identifying
genetically superior sorghum for biofuels.

1. Introduction
Understanding the genotype-phenotype map is important to

address growing challenges such as ensuring global food security
and moving towards cleaner energy through biofuel production.
By connecting specific genotypes to phenotypes, geneticists and
breeders can select for more robust and higher yielding crops. Re-
cent advances have led to cheaper and more accurate genotyping
techniques providing a large variety of strains for breeders to se-
lect and screen. However, current phenotyping technologies rep-
resent a bottleneck. They are limited to manual measurements
out in the field. Manual measurements are too labor intensive and
time consuming and do not provide nearly enough data to sup-
plement the genotypes available. Minervini et. al. [1] discusses
the challenges in phenotyping using image analysis such as rapid
plant growth, change in shape and size, or the non-static nature
during data collection.

Various high throughput phenotyping platforms have re-
cently been developed to automate the data collection of pheno-
typic traits such as plant width and height. These platforms in-
tegrate a variety of imaging sensors including thermal infrared
imaging, fluorescence imaging, 3D imaging and tomographic
imaging. Li et. al.[6] provide an extensive survey of the different
types of sensors, their current applications, and their advantages
and limitations towards phenotyping. These sensors can also be
used for other tasks such as navigation through fields and segmen-
tation of plants from ground as in Weiss’s and Biber’s[2] work.

One recent imaging technology that shows promise is the
time-of-flight (ToF) sensor. ToF cameras provide 3D information

of an entire scene at speeds of up to 160 frames per second. They
are often spatially limited with lower resolution than traditional
imaging techniques, but are rapidly improving. Klose et. al. [3]
conducted a study of ToF sensors for automatic plant phenotyping
and confirmed their usability in outdoor conditions.

Algorithms have been developed to extract phenotypic in-
formation from the 3D data collected by these imaging sensors.
Terrestrial laser scanners have been used for stem extraction algo-
rithms of trees[10][11], but trees tend to provide a larger surface
with fewer branches. Other systems use multiple cameras or mul-
tiple views of the same plant to reconstruct complete 3D models
which are then processed for phenotypic information [5][8][12].
Others still approach the problem using 2D data, such as Amean
et. al. [7] who take advantage of the Frangi filter and Hough
transform to segment the stems or Haug et. al. [9] who apply
machine vision techniques.

Rather than segmenting individual plants, Bao et. al.’s[4]
pipeline estimates the width on a series of homogeneous plants
arranged in a plot. Their algorithm also allows for measurements
to be taken in the field rather than greenhouses and laboratory set-
tings, but it requires modifications such as increasing the spacing
between plant rows to reduce occlusion .

Our goal is similar to Bao et. al.[4] in that we automate width
estimation of crops in the field for sorghum as a source of biofu-
els. Our work focuses on automatic width estimation of sorghum
plants using a point cloud generated by a ToF sensor mounted on
a robot as it passes by the plant. Our algorithm is designed such
that the field requires no modification to accommodate the robot.
A typical field is divided into 3× 3 meter plots. Each plot con-
tains sorghum sharing the same genotype and is divided into four
ranges as seen in Figure 1. Seeds are planted roughly 6 cm apart.

The robot traverses between the middle two ranges with the
camera only mounted on one side facing the base of the stalks.
The sorghum crops have little space between them so a single
ToF camera frame often contains more than one stem which may
or may not overlap with others as seen in Figure 8. The robot
only sees one side of the crops so it also does not provide a 360◦

view of the plant which would simplify the task of isolating and
estimating the width of stems.

Our approach is designed to take into account the above con-
straints. Specifically, we segment the various stems within a sin-
gle frame, filter out extraneous structures such as leaves and de-
bris, estimate the width from a partial incomplete view, and then
register the various stems between frames. By tracking isolated
stems, we can refine the width estimation and provide a more ac-
curate histogram representing all stems detected within a typically
homogeneous plot. Currently, most plots are measured manually
with often less than five measurements per plot. Our algorithm
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Figure 1. A top down view of the plot. A single plot consists of 4 ranges of

sorghum crops. A robotic platform with a ToF sensor mounted on the base

traverses between two ranges.

measures more plots, provides more data points per plot, and al-
lows for more measurements throughout the growing season with
minimal human effort.

We organize the rest of the paper in the following way: First
we discuss the details of our algorithm in Section 2. Next we
explain the experimental setup designed to test the accuracy of
our algorithms in Section 3. Then we analyze the results of our
work in Section 4. Concluding remarks are in Section 5.

2. Tracking and Estimation Pipeline
Our proposed pipeline uses a recording of a single range of

plants within a plot collected by the robot as seen in Figures 1
and 2. An unordered point cloud with each point represented by
its (x,y,z) coordinates is extracted from each frame of the ToF
camera and passed into the pipeline. As a pre-processing step, a
Frangi filter[13] is applied to every point cloud generated from
a frame. The Frangi parameters are designed to enhance vessel
like structures within the point cloud, which typically preserves
points corresponding to the stems. An adaptive threshold is ap-
plied to only keep points with a high response as seen in Figure
3. Orientation information generated from the Frangi filter is also
kept for use later in the pipeline as seen in Figure 4. In summary,
three forms of data are associated with frame i of the ToF cam-
era: an unordered point cloud from the ToF sensor Pi, a Frangi
cloud Fi, and the orientations Oi which point in the direction of
the vessel of each point in the Frangi cloud .

Our pipeline consists of four major steps for each frame of
the ToF camera: registration, stem extraction, tracking across
frames, and width estimation are described in Sections 2.1, 2.2,
2.3 and 2.4 respectively. Every unique stem found during the ex-
traction process is assigned an ID j. Every frame that contains
stem j as determined by the temporal registration step has an asso-
ciated estimated width wi, j . As a post-processing step, every wi, j
is reduced to a single estimate W j and outputted as a histogram

Figure 2. A sideways view of the robot traversing past a single range.

Sorghum crops are spaced 6 cm apart with the ToF sensor mounted directly

on the side of the robot. The ToF sensor captures a limited FOV.

Figure 3. Output of Frangi filter(red) overlaid on original point cloud(green)

generated from a single frame of the ToF camera.

Figure 4. Frangi point cloud(green) with vessel orientation(white) overlaid.
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Figure 5. An example histogram of width estimations generated from a

single range.

as seen in Figure 5. Tracking stems temporally prevents multiple
measurements of the same stem from polluting the statistical in-
formation of a plot, so the histogram is an accurate representation
of the biomass statistics.

2.1 Registration
Every point cloud produced from a single frame of the ToF

camera represents a small slice of the physical plant range. The
Frangi cloud Fi exists in the same frame as point cloud Pi based on
the physical location of the camera during data collection. How-
ever, the clouds Fi and Pi, do not share the same coordinate system
as Pj and Fj where j 6= i. A physical stem exists in a subset of the
point clouds generated from the frames. In order to reason about
the same stem across the mulitple frames and their corresponding
point clouds, we must first register the point clouds to a single
coordinate system.

In order to register the clouds Pi to Pi−1, we perform two
transformations T1,i and T2,i. The first transformation T1,i is a
translation determined by the vector −−−−→CiCi−1 where Ci denotes the
centroid of point cloud Pi. The robot in which the camera is
mounted moves at a low enough velocity such that frames i and
i− 1 typically have large overlaps. Thus, the translation of Pi to
T1,i(Pi) as determined by the centroids is sufficient to provide an
inital aligment with Pi−1.

We then determine T2,i using Iterative Closest Point(ICP) to
refine the alignment of T1,i(Pi) to Pi−1. Transformations T1,i and
T2,i are then applied to Fi, which exists in the same frame as Pi,
to register it as well with the global coordinate frame as defined
by the first frame. Thus T1,1 and T2,2 are both merely the identity
matrix.

2.2 Stem Extraction
The Frangi filter retains all vessel like points. This includes

the stems as well as unnecessary parts such as leaves. Every point
in Fi has a corresponding orientation in Oi. We take advantage of
the vertical orientation of stems by removing points in Fi whose
orientations are close to horizontal. Specifically, all points in Fi
whose corresponding orientations in Oi lie closer to the horizontal
plane than the vertical axis can be removed as seen in Figure 6.

Gaps between clusters of points in Fi are introduced as a re-
sult of removing points with horizontal orientations. We then use
a flood-fill algorithm to segment the various clusters in Fi. We
define a cluster as a group of points where every point is at least

Figure 6. Frangi cloud after points with horizontal orientations are removed.

within a certain distance of another point in the cluster. Clusters
that consist of less than a minimal number of points are removed
as noise.

It is important to make the distinction between clusters and
stems. A stem is an actual physical plant. A cluster is a collection
of points in point clouds Fi or Pi that corresponds to the stem. We
design the radius of the flood fill algorithm such that each cluster
only corresponds to a single stem, but a single stem may consist
of multiple clusters.

Each remaining cluster often still contains points associated
with leaves which were not removed in the horizontal points re-
moving filter. However, a majority of the points within a cluster
have roughly the same orientation. We use this to refine a cluster
further. Specifically, we construct a 2D histogram of the orien-
tation vectors by first projecting them onto the ground plane and
then binning them. We then locate the bin with the highest count
and keep all points within its small neighborhood in the cluster.

Inspecting Figure 3, we note that the width of the Frangi
points in Fi corresponding to a single stem does not necessarily
match up with the width of the points in Pi corresponding to the
same stem. This is because the Frangi filter is only designed to
preserve vessel like structures, not biomass information. Thus,
we need to use the cluster of points from Fi to generate a corre-
sponding cluster of points in Pi in order to accurately estimate the
width. To do this, we perform a radial based search of all points
in Pi centered around every point in each cluster in Fi to select
relevant points in Pi. The resulting clusters can be seen in Figure
7. Note that clusters can correspond to the same stem as seen by
the yellow and purple clusters. We address this issue in the next
step.

2.3 Tracking Across Frames
Often stray leaves or other horizontal occluding objects cut

a stem into multiple parts. An unordered set based merging al-
gorithm combines all clusters from the same stem. Each cluster
begins as its own set. All clusters that are determined to come
from the same stem by our match criteria have their sets merged.
We represent every cluster ki

α in frame i of the ToF camera as
a line `i

α determined by its centroid ci
α , and a vector represent-

ing the average orientation oi
α in order to determine whether two

clusters belong to the same stem as seen in Figure 9. For the re-
mainder of this section, we assume all clusters belong to frame i
and thus drop the superscript.
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Figure 7. Frangi cloud clustered and refined into stem candidates are then

used to extract corresponding stem points from the original point cloud.

Figure 8. (a) Infrared image from the ToF camera representing the field of

view with minor occlusion. (b) Unordered point cloud generated by the ToF

camera.

Figure 9. (a) Three potential clusters undergoing the merging algorithm.

A line representing the vector as determined by their centroids and average

orientation vectors is overlaid. (b) A 2D example where cluster 1 (blue) and

cluster 2 (yellow) do not satisfy the distance criteria. Although the orientation

of the vectors align, the distance between the points c′1 and c′2 on the plane

of comparison is too large. (c) An example of a successful match between

cluster 2 (yellow) and cluster 3 (pink). The distance between the points c′2
and c′3 on the plane of comparison satisfies the distance criteria and thus

clusters 2 and 3 are determined to lie on the same physical stem.

Figure 10. Two corresponding stems from different frames matched and

assigned the same stem ID.

Two clusters kα and kβ existing in 3D space that belong to
the same physical stem must lie on or close to the same line. We
compare the direction of `α and `β , the lines representing kα and
kβ respectively, using the average orientations. Specifically, the
angle between oα and oβ must be below a certain threshold. In
order to determine whether `α and `β occupy the approximately
same position in space, we first determine a plane for compari-
son. We find the points c′α and c′

β
that lie on `α and `β respec-

tively and intersect a plane parallel to the ground offset at the
distance cα,y+cβ ,y

2 where cα,y and cβ ,y represent the distance of the
centroids of kα and kβ from the ground respectively. The offset
distance of the plane is determined in order to minimize errors
introduced by inaccuracies from the sensor and Frangi filter. We
then determine the distance between c′α and c′

β
as the error met-

ric. If the error in distance between c′α and c′
β

exceeds a certain
threshold, the clusters kα and kβ occupy a different region in the
point cloud and thus do not belong to the same physical stem.
Two clusters kα and kβ must satisfy the orientation and distance
criteria in order to be considered a match. An example of a suc-
cessful and a failed match based on the distance metric is shown
in Figure 9. For the case of the clusters shown in Figure 7, only
the yellow and purple clusters are considered a match and thus
merged.

Once merged, stem candidates in frame i must then be reg-
istered with stems found in previous frames. An example of two
corresponding stems can be seen in Figure 10. Each physical stem
found thus far has a unique ID assigned to it. We only consider a
subset of these stems active if they are likely to exist in the current
frame i. We compare the stem candidates in frame i to the list of
all active stems collected from frames 1 to i−1. Correspondence
is determined with the same match criteria as the merging algo-
rithm using the line determined by the average orientation and
centroid. Correspondence is determined through a greedy match-
ing algorithm comparing ci

α and oi
α with c j

β
and o j

β
and assign-

ing ID j to the cluster ki
α on successful matches. Any remaining

clusters are determined to be new stem candidates and assigned a
unique stem ID accordingly.
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Figure 11. Example of the registration step. (a) The pink and green rep-

resent two point clouds, one registered to the global frame and the other

extracted from the ToF sensor. (b) The point clouds after undergoing our

registration process

2.4 Width Estimation
Width is defined as the maximum distance between points

in the horizontal direction. Each cluster is aligned with the verti-
cal axis based on the average orientation of the associated Frangi
cluster. The width is then estimated at multiple increments along
the vertical axis. Outliers are removed and remaining estimates
are averaged and stored according to the stem ID.

3. Experimental Set Up
We collected data from a series of sorghum plots located

at the University of Illinois at Urbana-Champaign. Plots are ar-
ranged as described in Section 1 and shown in Figures 1 and 2. A
robot platform mounted with the PMD pico sensor, a commercial
time-of-flight camera, traversed between ranges of a plot while
recording at 45 frames per second. The sensor is placed approx-
imately 15-20 cm away from the plants. Every frame yields an
infrared image and a point clouds around the base of the plants
as seen in Figure 8. The ToF sensor is limited to a resolution of
160×120 with a small FOV of roughly 82◦×66◦ , so only a small
portion of the plant is visible.

To validate the width estimation accuracy, we tagged and
manually measured the width of 100 plants distributed across 10
different plots to use as the ground truth. Ten separate recordings
were taken of the plots with tags were placed within the FOV of
the ToF camera so that correspondence between estimated values
and ground truth measurements could be established.

We ran our algorithm on all 10 videos. The algorithm au-
tomatically detects all stems within a video and outputs an asso-
ciated estimated width. We then manually determined which es-
timated measurement generated by our algorithms corresponded
to which tagged plants with ground truth measurements using the
infrared images and point clouds in order to evaluate accuracy.

4. Results
We present examples of the intermediate steps of the algo-

rithm as well as the final results when compared to ground truth.
In Figure 11, we show an example of the registration process. The
cloud Ci−1 in green in Figure 11a represents a the previous cloud

registered to the global coordinate frame. The pink cloud Ci is the
point cloud extracted from the current frame. Figure 11b displays
the results of our two-step registration process.

In Figure 12, we show two examples of the stem extraction
process on a single frame. Figures 12a and 12d represent the in-
frared images seen by the ToF sensor. Figures 12b and 12e repre-
sent the points clouds Ci and Frangi clouds Fi. Figures 12c and 12f
represent the result of our stem extraction step prior to the cluster
merging algorithm. The registration step is done on a per cluster
basis, or individual stems, rather than whole frames. An example
of the correspondence between two extracted clusters can be seen
in Figure 10.

In order to evaluate the accuracy of the width estimation
step, we use the tagged stems with available ground truth mea-
surements. Of the 100 tagged stems, only 95 were found within
the FOV of the ToF camera when inspecting the infrared images
manually. Missing tags were either occluded by large leaves or
placed too low/high. Of the 95 tags found, 88 were automati-
cally detected throughout the tracking process. Undetected stems
failed to show up during the stem extraction process and thus had
no associated estimated width.

Percent error is defined as the ground truth minus estimated
width divided by ground truth. Note that this accounts for both
under and over estimation as seen in Figure 13. Absolute per-
cent error is the absolute value of the error from ground truth.
Estimated measurements from the 88 detected plants achieved an
average of 0.50% error and 11.5% absolute error when compared
to the manual measurements as ground truth.

Typically we capture around 20-30 cm out of the 3 m of the
range in the plot within the FOV of the ToF camera. Each plant
stem occupies roughly 2-3 cm of that range. The generated point
cloud from a single frame has anywhere between 8,000 to 15,000
points. Each stem extracted by our algorithm from a single frame
corresponds to between 200 to 1,000 points.

Individual estimates and errors can be seen in Figure 14. Our
estimated width tends to follow the general trend of manual mea-
surements such as around tags 69-75. It seems to do more poorly
with particularly narrow stems as seen around tags 8, 19, and 25
which have a width of around 1.5 cm instead of the average 2 cm.
This could be partially due to the low resolution of the ToF cam-
era being unable to capture the narrow stems or overestimations
due to the pipeline combining touching neighboring stems. The
average absolute width error is only 2.38 mm. The PMD pico is
rated at a depth resolution of less than 3 mm at a distance of 50
cm, so we are also approaching the maximum depth resolution.
An example of the histogram outputted by our algorithm for a
single range can be seen in Figure 5.

The variation of estimates across frames in the form of box
and whisker plots can be found in Figure 15, which is very close
to the final estimate used by our algorithm. The thinner lines, or
whiskers, denote the minimum and maximum width estimated.
The red line overlaid on the box and whisker plots shows the
corresponding ground truth measurements. We note that certain
plants have large variation across frames such as numbers 7, 34,
76 and 88. However, there does not seem to be a correlation be-
tween error and large variation as plant numbers 7, 34 and 88
show less than 10% error as seen in Figure 13. Only plant num-
ber 76 shows significant error with our algorithm heavily overes-
timating its width. On the flip side, there are instances of very
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Figure 12. (a)-(c) and (d)-(f) represent two examples of the stem extraction process. (a), (d): infrared images generated by ToF camera; (b), (e): corresponding

point cloud and Frangi cloud; (c), (f) the extracted clusters prior to the merging algorithm.

Figure 13. Graph of the percent error of the estimated width of 88 tagged plants when compared to manual measurements.

Figure 14. Estimated width compared against the ground truth of 88 tagged plants.
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Figure 15. A series of box and whisker plots generated from all estimated widths of every tagged plant with ground truth overlaid. The bottom edge of the dark

blue box and the top edge of the light blue box denote the 25th percentile and 75th percentile respectively. The shared edge between the dark and lighter shade

of blue denotes the median of all estimates.
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low variation and high % error such as plant numbers 5, 25, 36,
65, 67, and 73.

5. Conclusion
We have shown a pipeline for segmenting, estimating and

then tracking stems within a plot. The pipeline is fully automatic,
requiring no manual effort. The width estimation has been shown
to achieve under 1% signed error and under 12% absolute error.
Each plot yields over 50 estimates, a significant improvement on
the sub 5 measurements typically taken manually.

Our algorithm is designed to run automatically without mod-
ifications to existing fields minimizing the obstacles for large
scale adoption by breeders. By producing significantly more data
throughout the growth cycle, our pipeline will improve our under-
standing of the genomes key to high-yield biomass sorghum crops
to aid in the transition towards biofuels. This work can easily be
extended towards other crops such as corn.
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