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Abstract

Large-scale fiber tracking in the images serial-sectioned
Jfrom material samples is a critical step to analyze physical prop-
erties of continuous fiber reinforced composite materials. In
serial-section imaging, increasing the sampling sparsity, i.e., the
inter-slice intervals, can lead to significant speedups in data col-
lection. However, increasing the sampling sparsity leads to dif-
ficulties in tracking large-scale crowded and similar-appearance
fibers through the serial-section slices. One way to address this
issue is to dynamically adjust the sampling rate by balancing the
tracking accuracy with the data collection time. For this purpose,
it is necessary to develop methods for estimating the tracking ac-
curacy on the fly, i.e., immediately after tracking is updated on
a new serial-section slice. Typical tracking accuracy metrics re-
quire ground truths, which are usually constructed by human an-
notations and unavailable on the fly. In this paper, we present
a new approach to evaluate the performance of online large-
scale fiber tracking without involving the ground truth. Specif-
ically, we explore the local spatial consistency of the fibers be-
tween adjacent slices and define a new performance-evaluation
metric based on this spatial consistency. A set of experiments on
real composite-material images are conducted to illustrate the ef-
Sectiveness and accuracy of the proposed performance-evaluation
metric for large-scale fiber tracking.

Introduction

In materials science and research, an important problem is to
quickly and accurately reconstruct and characterize the underly-
ing microstructure of a material sample [6]. For fiber-reinforced
composite materials, the microstructure feature of interest is the
fibers, whose shapes, orientations, and distributions directly affect
the mechanical properties [10, 13]. One typical approach to re-
construct the large-scale fibers is to serial section the 3D material
sample, take high-resolution microscopic images for each slice,
and finally detect/track all the fibers through the slices [14, 16].
However, dense sampling of serial-sectioning, i.e., with very
small inter-slice intervals, is time consuming and prevents the
quick processing of large-sized material sample. On the other
hand, overly sparse sampling of serial-sectioning, i.e., with very
large inter-slice intervals, introduces uncertainty and ambiguity
in tracking fibers across slices. One effective approach to address
this issue is to dynamically adjust the sampling rate, i.e, the inter-
slice intervals, in serial-sectioning by balancing the tracking ac-
curacy with the data collection time.

To achieve this goal, it is necessary to have a reliable evalua-
tion of the tracking performance on the available slices with their
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inter-slice intervals before moving to serial-sectioning the next
slice. This requires the use of an online tracking algorithm and
the development of an on-the-fly tracking performance evaluation
metric. By using an online tracking algorithm, such as Kalman
filters, the fibers can be tracked based on the available slices and
updated as soon as a new serial-sectioned slice is available. The
on-the-fly performance evaluation continuously and quickly as-
sesses the fiber-tracking performance as soon as a new slice is
serial-sectioned and the online fiber tracking is updated using this
new slice. The estimated tracking performance can then be used
to adjust the inter-slice interval for the next slice.

In material science, materials are reinforced by embedded
objects such as small particles, fibers, or boundaries between dif-
ferent crystals. In order to be effective, these objects must be
fairly dense, leading to a common characteristic that the micro-
scopic structure is composed of crowded or densely packed mix-
tures of embedded objects. The objects are mainly fibers in this
paper. The fact that the fibers are crowded induces a spatial con-
sistency for fiber neighbors in different slices, so we take advan-
tage of that spatial consistency in estimating the performance of
large-scale fiber tracking. In this paper, we focus on address-
ing the problem of on-the-fly performance evaluation such that
the fiber tracking performance can be quickly estimated without
any interruption after a new slice is serial sectioned and the on-
line tracking is extended to this new slice. In particular, this re-
quires to exclude the human interactions from the tracking per-
formance evaluation. Unfortunately, existing multi-target track-
ing performance evaluations metrics, such as the widely used
Multiple Object Tracking Accuracy (MOTA) [5], usually require
the ground-truth tracking results. For fiber tracking, these eval-
uation metrics count the coincidence between the tracked fibers
and ground-truth fibers to evaluate the tracking performance. The
construction of the ground-truth fibers requires manual annotation
of fibers on each slice and manual linking of the fibers between
slices. Manually annotating ground truth for large-scale fibers
(about 500 similar-appearance fibers in one slice) in an image se-
quence makes the whole system not automatic. The objective of
this paper is to develop a new metric that can evaluate the perfor-
mance of online large-scale fiber tracking without requiring the
ground truth.

Related Works

In most of the previous work [15, 9, 1, 8, 14], perfor-
mance evaluation for object tracking requires manually anno-
tated ground-truth tracking. By comparing generated tracking re-
sults with the ground-truth tracking on each image through the
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whole image sequence, many metrics have been proposed to eval-
uate the tracking performance from different perspectives such
as MOTA, Multiple Object Tracking Precision (MOTP), Mostly
Tracked (MT), Most Lost (ML), Recall, False Positive (FP), False
Negative (FN), ID Switch (IDSW) and so on [5, 8]. Among these
evaluation metrics, MOTA is the most widely used one by com-
prehensively considering the errors of FP, FN and IDSW. Differ-
ent from these metrics, in this paper we propose a new metric to
evaluate the large-scale fiber tracking without using any ground-
truth tracking.

There have been some prior work [3, 2, 12] on performance
measures for tracking without using ground-truth tracking. Inter-
frame differences of color histogram and motion are used to eval-
uate the segmentation and tracking performance of a single object
in [3, 2]. In [12], the difference of shape, appearance and mo-
tion of the tracked objects across consecutive frames are fitted
into a naive Bayesian classifier to determine whether the track-
ing is good or bad. However, the existing evaluation methods
without using ground truth cannot effectively evaluate large-scale
fiber tracking studied in this paper. First, in fiber tracking, a large
number of fibers share similar appearance (color, size, shape)
and motion through the sequence, so the existing work based on
appearance and motion consistency fails. Second, the existing
work ignored the local spatial consistency of the fibers which has
been shown as an important property in large-scale fiber track-
ing [14, 16]. In this paper, a new metric (without using ground
truth) based on local spatial consistency of the fibers is proposed
to evaluate the performance of online large-scale fiber tracking.

Proposed Metric

As in many other multi-target tracking tasks, large-scale
fibers in a composite material are usually formed into tows (bun-
dles) that are then embedded in a matrix material [14, 16]. Tow
construction may be unknown, so we alternately apply K-means
algorithm to divide fibers into several clusters. We find that the
fibers in one cluster usually show good proximity and parallelism.
As a result, the tracked fibers within one cluster are expected to
show good spatial consistency between adjacent slices. In this
paper, we plan to quantify the fiber spatial consistency between
slices and then use this to evaluate the fiber tracking performance,
which does not involve any ground-truth tracking.

Given the on-the-fly tracking results on an image sequence
of existing N slices (N > 1), our goal is to evaluate the existing
tracking results without using ground truth. Spatial location has
been shown as an effective and reliable representation for similar-
appearance objects as described in [7, 14, 16]. Therefore, to ob-
tain the clusters, we first apply K-means algorithm to divide the
trackers/fibers on the first slice into K clusters using their spatial
locations as features. Figure 1 shows an example of obtaining
clusters by K-means algorithm on the first slice of the image se-
quence.

After knowing the clusters, local spatial consistency is eval-
uated for each cluster separately. Figure 2 shows an example of
good and bad tracking for one sample tracker/fiber according to
the local spatial consistency. For each tracker/fiber i in one clus-
ter, say 0-th cluster, we can obtain its spatial H nearest neighbors
in slices t — 1 and ¢ respectively. Please note that the neighbors
are represented by their tracker identities. Let A/ be the number
of common neighbors for the tracker/fiber i in two adjacent slices

IS&T Infernational Symposium on Electronic Imaging 2017
Computational Imaging XV

(b)
An example of obtaining clusters: (a) the first slice of one sam-

Figure 1.
ple image sequence, (b) obtained clusters by K-means algorithm shown in
different colors. 9 clusters are displayed in this example.

t — 1 and ¢, and then the on-the-fly metric for this tracker/fiber i
on slice 7 is computed as follows:

M?:ﬁ

= (1)

where larger M! indicates that more stable neighbors are pre-
served in two adjacent slices  — 1 and ¢ for this tracker/fiber i.
Let m be the number of trackers/fibers in 0-th cluster. The on-the-
fly metric for 0-th cluster on the slice ¢, denoted as M T}, could
be calculated as the mean of {M!}" . Because there are multiple
clusters, we average {MT}}5_, and get the on-the-fly metric for
all clusters on the slice  as ¢'. After obtaining the on-the-fly met-
ric for all clusters on each slice, the final on-the-fly metric for the
whole tracking results on existing N slices, denoted as On The Fly
Metric (OTFM), can be easily computed as the mean of {¢’ };V: 5-
Large OTFM metric means good and stable spatial consistency
for the whole tracking results on existing N slices. OTFM metric
takes values in [0,1] and it does not need the ground-truth track-

ing.

Figure 2. An example of good and bad tracking for one sample tracker/fiber
denoted as X. H = 4 nearest neighbors for X are displayed with their
tracker/fiber identities in two adjacent slices: (a) slice t —1; (b) bad track-
ing with few common neighbors on slice t (Ay =1); (c) good tracking with
many common neighbors on slice t (A, =4). H nearest eighbors for X are
shown in red with links to X. Green colors indicate trackers/fibers that are not
H nearest eighbors for X.

Experiment

To verify the effectiveness of the proposed OTFM met-
ric for tracking performance evaluation, we use OTFM to rank
the performance of several multi-target tracking algorithms on
three sequences of material image slices for fibers without in-
volving ground truth. We then take the ground-truth tracking
and use traditional MOTA metric to rank the same set of multi-
target tracking algorithms. We examine whether the performance
ranking of these algorithms using the proposed OTFM metric is
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consistent to the performance ranking of these algorithms using
MOTA metric and use this consistency to justify the effective-
ness of the proposed metric. In addition, the monotonicity of
tracking-performance curves with increasing sparsity by OTFM
and MOTA are compared.

Dataset and Settings

The material images used in our experiment were col-
lected at the Air Force Research Laboratories (AFRL) using the
RoboMet.3D automated serial sectioning instrument, which is a
publicized dataset in [16]. The tested material is S200, which is
an amorphous SiC/SiC matrix reinforced by continuous Nicalon
fibers. Using the RoboMet.3D instrument, the test material sam-
ple is cross sectioned and one microscopic image is taken for each
cross-sectioned slice. The test microscopic image sequence con-
sisting of 100 slices, with an inter-slice distance of 1um and the
resolution of each slice is 1292x968. Figure 3 shows the way
to collect the data as described above. This test image sequence
contains hundreds of crowded fibers. Three sets of data with man-
ually annotated ground truth for large-scale fiber tracking, de-
noted as Data 1, Data 2 and Data 3, are collected in the publi-
cized dataset [16]. In this publicized dataset, to test the tracking
performance under sparsely sampled image sequences, the origi-
nal image sequence is down sampled. In particular, C slices are
skipped before taking the next slice in the original sequence, until
the end of original sequence is reached, to construct such sparsely
sampled image sequences. The parameter C is named as sparsity:
the larger the parameter C, the lower the inter-slice continuity of
the constructed image sequence. The sparsity C is in the range
of [0,19]. Large-scale fiber tracking is performed in the image
sequences under different sparsity cases.

}lum

_—

100 Slices

Material Sample

Figure 3. Data collection. Three 100-slice image sequences, denoted as
Data 1, Data 2 and Data 3, are collected in the publicized dataset [16]. Using
RoboMet.3D, it takes about 15 minutes to grind for one slice.

Based on the test image sequences under different sparsity
cases, four Kalman-filter based online tracking algorithms [16]
are used to track the large-scale fibers in the image sequence:
1) Kalman filter using nearest neighboring algorithm for asso-
ciation, 2) Kalman filter using Hungarian algorithm for associ-
ation, 3) Kalman filter using a global thin-plate spline for asso-
ciation, and 4) Kaman filter using groupwise thin-plate splines
for association. These four algorithms are denoted as Kalman-
NN, Kalman-Hung, Kalman-Global and Kalman-Groupwise, re-
spectively. For each sparsity case, we evaluate the corresponding
tracking results by MOTA metric with ground truth and OTFM
metric without ground truth independently and check their evalu-
ation consistency.

There are two parameters to set in the OTFM metric. The
number of clusters K for K-means clustering is set to 9 in our
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experiment. The number of spatial nearest neighbors H in Eq. (1)
is set to 8 in our experiment.

Experimental Results

MOTA and OTEM evaluations for the tracking perfor-
mance of the four tracking methods (Kalman-NN, Kalman-Hung,
Kalman-Global and Kalman-Groupwise) are illustrated in Fig. 4.
We can find that OTFM without using ground truth could get quite
similar evaluation results as MOTA which uses ground truth. As
shown in Fig. 4, the monotonicity of each tracking method’s per-
formance curve by OTFM is highly consistent with that by MOTA
as sparsity increases and the performance-ranking order of differ-
ent tracking methods by OTFM is also quite consistent with that
by MOTA.

The correlation coefficients of the evaluation results by
MOTA and OTFM for different tracking methods are shown in
Table 1. The mean correlation coefficient in Table 1 is 0.95.
The high correlation coefficient demonstrates that the evalua-
tion results by MOTA and OTFM are highly consistent for each
tracking methods. In other words, the tracking performances by
MOTA and OTFM show highly similar monotonicity as sparsity
increases.

Table 1. Correlation coefficients of evaluation results by MOTA
and OTFM for different tracking methods.

Methods Data1 | Data2 | Data3
Kalman-NN 0.99 0.99 0.99
Kalman-Hung 0.99 0.99 0.99
Kalman-Gilobal 0.95 0.88 0.77
Kalman-Groupwise | 0.94 0.96 0.94

In addition, we also conduct experiments to compare the
performance ranking by MOTA and OTFM. Under each sparsity
case, the performance-ranking order of the four tracking meth-
ods by MOTA and OTFM should be consistent. There are some
commonly used rank measures to compare ordering [4]. Under
one sparsity case, let the sorted performance-ranking order of the
four tracking methods by MOTA and OTFM to be Ranky;ors and
Rankor s respectively. To compare Rankyora and Rankorray,
the area under the ROC curve (AUC) and accuracy (acc) are com-
puted. Given n tracking methods, we treat the tracking methods

e n.
whose ranked position is greater than — in Rankyora as real

positive tracking methods and the rest as real negative. Sup-
pose the ranked position of the real positive tracking methods in

Rankorpy are Py, Ps, ..., P,, where a = [gw . AUC is computed as
Y (Pi—i)
2

. Similar to AUC, in Rankor s, we classify tracking
a
methods whose ranked position above half as positive and the rest

as negative. Compared to real positive and real negative tracking
tp+tn

methods, acc is computed as where ¢p and tn are the num-

ber of correctly classified positive and negative tracking methods
by the above classification using Rankprry. AUC and acc are
in the range of [0,1]. Details about computing AUC and acc of
ranking-order measures can be found in [4]. Then, the AUC and
acc results are averaged over different sparsity cases. Large AUC
and acc results indicate consistent ranking order of Ranky;ora and
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Figure 4. Tracking Performance by MOTA using ground truth and OTFM without involving ground truth under different sparsity cases on Data 1, Data 2 and
Data 3. Top row: MOTA results using ground truth; Bottom row: OTFM results without involving ground truth.

Rankorrpr. The resulting AUC and acc results are shown in Ta-
ble 2. Over the three sets of data, the mean AUC is 0.92 and the
mean acc is 0.89, which means the performance ranking of the
four tracking methods by MOTA and OTFM are quite consistent.

Table 2. AUC and acc measurement by comparing Rankyora
and Rankorpy-

Ranking Order Measure | Data1 | Data2 | Data 3
AUC 0.89 0.93 0.94
acc 0.90 0.90 0.88

Also, we randomly sample the evaluation results by MOTA
with ground truth and compare them with the corresponding eval-
uation results by OTFM without ground truth, and repeat this
comparison for 1000 iterations. In each iteration, we random
choose 2 to 4 tracking methods and then random select 1 to 20
sparsity cases, which constructs a random sampled set, say S. For
the set S in one iteration, we concatenate the evaluation results
of S by MOTA with ground truth and by OTFM without ground
truth respectively. Let the sorted performance-ranking order of
S by MOTA and OTFM to be RankISWOT -4 and Rankf)T £ TESpec-
tively (similar as before). For each iteration, we compute AUC
and acc between Rank}SWOT 4 and Rank%r ry- The histograms of
AUC and acc distributions on the 1000 iterations are displayed in
Fig. 5, from which we can see that most of AUC and acc results
are pretty close to 1 with small variances. Table 3 shows mean
and standard deviation for AUC and acc histograms displayed in
Fig. 5. The distribution illustrates that the performance-ranking
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order by MOTA and OTFM are highly consistent.

In summary, Table 1, Table 2, Table 3, Fig. 4 and Fig. 5 to-
gether show that the proposed OTFM metric without using ground
truth could achieve effective and consistent performance evalua-
tion for online large-scale fiber tracking as the MOTA metric us-
ing ground truth.

Discussion

As we described above, the range of OTFM metric is always
in [0,1]. With different number of spatial nearest neighbors H
in Eq. (1), OTFM metric considers the local spatial consistency
in different number of neighbors. Figure 6 shows the effects of
different H to OTFM computation. The performance curves with
different H are highly similar, indicating that OTFM computation
is not sensitive to the parameter H.

For the computational efficiency, we record the running time
of computing OTFM metric over an image sequence containing
663 fibers on a PC with 2.6GHz CPU and 4GB memory. It takes
just 0.24 seconds to perform K-means clustering (K = 9) on the
first slice and on average 1.86 seconds to calculate OTFM metric
(H = 8) on one slice. Therefore, the computation for OTFM met-
ric is very efficient, making it suitable for on-the-fly evaluation of
large-scale fiber tracking.

Conclusions

In this paper, we propose a new on-the-fly metric called
OTFM for evaluating the performance of on-the-fly large-scale
fiber tracking. Without requiring the ground-truth tracking, the
proposed evaluation metric can evaluate the performance of on-
line large-scale fiber tracking accurately and efficiently. The pro-
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Figure 5. AUC and acc histograms by comparing randomly sampled Rank$,;, and RankSy,, on Data 1, Data 2 and Data 3. Each of the histograms holds 30
bins and 1000 values in total.

Table 3. Mean and standard deviation of AUC and acc histograms displayed in Fig. 5. In each cell, mean and standard deviation
are displayed.

Histogram Data 1 Data 2 Data 3
AUC histogram | 0.96 + 0.09 | 0.95 £ 0.11 | 0.95 £+ 0.09
acc histogram | 0.94 +0.08 | 0.93 + 0.10 | 0.93 £+ 0.09
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Figure 6. OTFM evaluation results with different number of spatial nearest neighbors H. OTFM evaluation results when H=2, 4, 8 on Data 1 are shown from
left to right. We find that OTFM computation is not sensitive to the parameter H.

IS&T Infernational Symposium on Electronic Imaging 2017
146 Computational Imaging XV



posed metric can be used to guide the adjustment of inter-slice in-
tervals in serial-sectioning a material sample and therefore speed
up data collection and processing. In the future, we plan to extend
this work to evaluate crowded human tracking [11] without using
ground-truth annotation.
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