
Non-Parametric Texture Synthesis Using Texture Classification
Kyle Ziga1, Judy Bagchi2, Jan P. Allebach1, Fengqing Zhu1

1School of Electrical and Computer Engineering 2Dzine Steps LLC
Purdue University Spring, TX
West Lafayette, IN, USA

Abstract
In this paper we present a method of texture synthesis which

removes the need for users to set, or even understand, parameters
which have an impact on the synthesized output. We accomplish
this by first classifying each input texture sample into one of three
texture types: regular, irregular and stochastic. We found that
textures within a class were synthesized well with similar param-
eters. If we know the input texture class, we can provide a good
starting set of parameters for the synthesis algorithm. Instead of
requiring a user to manually select a set of parameters, we simply
ask that the user tell us whether the synthesized texture is satisfac-
tory or not. If the output is not satisfactory, we adjust parameters
and try again until the user is happy with the output. In this im-
plementation we use the image quilting method in [1], a texture
synthesis algorithm, as well as texture classification. With small
adjustments our method can be applied to other texture synthesis
methods.

1 Introduction
Texture synthesis has a variety of applications in areas such

as computer vision, computer graphics and image processing.
These applications include occlusion fill in by image inpainting,
texture mapping, image compression and more. Also, with the
growth of augmented and virtual reality applications, efficient
texture synthesis algorithms have become more important. Tex-
ture synthesis is the procedure of ”growing” a large texture image
given a small sample texture. An example texture synthesis re-
sult can be seen in Figure 1 The resulting texture should not be a
repetition of the sample pattern. Instead it should look as though
it was created by the same underlying process. In this way only
small texture samples are needed to generate large sized texture
data. Current methods require a user to understand and carefully
set parameters to produce satisfactory results. Removing the need
for a user to tune parameters, while producing comparable results,
will significantly improve existing texture synthesis methods.

Texture synthesis algorithms can be separated into two main
categories: pixel-based methods and patch-based methods. These
methods copy one pixel from the input texture sample to the out-
put synthesized sample based on some defined condition. Efros
and Leung [2] were the first to use this pixel-based technique.
Their approach begins with a single seed pixel and grows the syn-
thesized texture from that starting location. To synthesize a pixel
their algorithm finds all neighborhoods from the sample texture
which are similar, by some criteria, to the neighborhood in the
synthesized texture with the pixel to be synthesized at the center.
Once all candidate neighborhoods from the input texture are col-
lected, one is chosen at random to prevent repetition in the output.

The center pixel of the chosen neighborhood is then taken as the
new synthesized pixel value in the output and the algorithm moves
on to the next pixel location. This process can be extremely slow,
limiting the practical application of such methods. Wei and Levoy
[3] address this issue of speed by extending the previous method
by using tree-structured vector quantization to speed the process
of searching for candidate neighborhoods. Their method reports
output quality equal or better to previous techniques while run-
ning two orders of magnitude faster.

The second category, patch-based methods, include the most
recent techniques developed. These methods find and copy an
entire patch from the input image. The patches are placed into
the output image and then the transition from one patch to an-
other must be taken into account so as to hide the seams between
patches. The way the patches are made to transition smoothly
differs between approaches. In [4] the boundary artifacts are re-
moved by blending the transition areas. They use feathering, or
blurring, across the patch boundaries in order to create smooth
transitions from one patch to the next. Efros and Freeman in
[1] allow neighboring patches to slightly overlap, then compute
a similarity metric for the overlap regions of two patches. Us-
ing this metric they construct a list of all patches which meet the
criteria, then randomly select one patch to avoid repetition in the
synthesized texture. They then perform a boundary cut which
minimizes the error in the overlap regions of two patches, finding
the best seam. Selected parameters for this method highly affect
the output, as illustrated in Figure 2. The two previous meth-
ods both use regular and constant sized patches, generally square.
In [5] the boundary cut is extended further. They use irregular

Figure 1: An example texture synthesis result. The left is the
original texture, the right is the synthesized texture at twitce the

size of the original.

136
IS&T International Symposium on Electronic Imaging 2017

Computational Imaging XV

https://doi.org/10.2352/ISSN.2470-1173.2017.17.COIMG-436
© 2017, Society for Imaging Science and Technology



patches without a constant patch size in order to find the optimal
seam between patches. A graph cut approach is used to determine
the optimal patch seam for any given region of the output texture.

Some methods work better for certain types of textures while
some textures are extremely difficult to synthesize regardless of
the method used. However, these results come after the process
of working with the algorithms and understanding how parame-
ters affect the output. Such a process is tedious, burdensome to
untrained users, and difficult to adapt to real-life appliactions. Our
work is based on the image quilting method described in [1]. In
this case the parameters include: size of the patch, overlap area
and error tolerance for the overlap regions. For someone very
familiar with the details of the texture synthesis algorithm being
used paramter tuning is not a big issue, but for untrained users
this can be a frustrating trial and error process. We propose a so-
lution to this problem by first classifying the input texture into a
predetermined texture type. Once the texture type is known, an
initial estimate of parameters for the image quilting method can
be set without any user input. This allows for texture synthesis
to be carried out automatically in applications where a user does
not have a technical understanding of the algorithm. The only
user input required is feedback of whether the synthesized result
is satisfactory.

Figure 2: Example of patch size effects. Left: Patch size of
500x500 pixels (Structure retained), Right: Patch size of

450x450 pixels (Structure not retained)

2 Texture Classification
We found that the texture synthesis parameters which pro-

duce the best results strongly depended on certain characteristics
of the input texture. For example, if the input texture has a strong
repeating pattern, the patch size must be on the order of the funda-
mental repeated element, visualized in the right image of Figure
6. If this is not done correctly, the structure of the pattern would
not be maintained as seen in Figure 2. It was also noticed that
in highly structured textures the error tolerance in the overlap-
ping regions of patches needed to be very strict. Failure to do this
would also result in the structure of the pattern not being kept.
On the other end of the spectrum we found that if the input tex-
ture was very random and noise-like, the parameters needed to be
more relaxed. The output for these types of textures depended on
the error tolerance for the overlap regions being much lower. If
this was not done the output would look repetitive and a clear dif-
ference from the input image would be noticeable. These obvser-
vations led us to create a preprocessing step in the image quilting
algorithm [1] in which we first identify the type of texture the in-
put is. Once we know which type of texture the input is we can

predict a good starting point for the image quilting parameters.
Then, with simple user feedback, we can adjust the parameters
accordingly until the synthesized output is satisfactory.

2.1 Texture Types
Textures can generally be classified into two types: stochas-

tic and regular. However, most real-world textures fall somewhere
between these two classes forming a spectrum of texture types
[6]. In our preprocessing step we classify three texture types:
stochastic, irregular and regular. An example of each texture type
is shown in Figure 3. These three classes were selected based on
similar parameters needed to produce the best texture synthesis re-
sults. The application of our work is in the field of interior design,
as such we can provide examples of each type of texture relating
to interior design. Stochastic textures are random, noise-like tex-
tures, commonly found in carpets. Irregular textures fall between
stochastic and regular texture types. Textures that fall under this
category do not have a clear repeating structure, but also are not
completely noise-like. Examples of this type of texture are mar-
ble, granite, or natural stones. Regular type textures have very
strong repeating structures, like the square patterns shown in the
right image of Figure 3. A single element of this repeating pat-
tern, or the fundamental repeating pattern, can be identified and
extracted. An example of the fundamental repeating pattern can
be seen highlighted in green in the right image of Figure 6.

Figure 3: Example texture classes. Left: Stochastic, Center:
Irregular, Right: Regular

2.2 Local Binary Patterns
To perform the texture classification we made use of local

binary patterns [7]. A texture feature vector could be extracted
from the input image by using the local binary pattern operator
on neighborhoods within the input image, then constructing a his-
togram for the transformed image. This method was selected for
computational simplicity. Generating a local binary pattern im-
age is done by encoding each pixel based on the pixel’s relation
to neighboring pixels. For a simple explanation of local binary
pattern encoding we will examine a 3x3 neighborhood from a
texture image as shown in Figure 4. Each of the eight neigh-
bors is compared to the center pixel. Every neighboring pixel is
assigned to one bit in an 8-bit binary number. If the neighbor-
ing pixel is greater than the center pixel, that pixel is assigned a
value of one. If the neighboring pixel is less than the center pixel,
a value of zero is assigned to that pixel. Once all comparisons
have been made the center pixel is assigned the integer value of
the 8-bit codeword by concatenating the newly assigned values of
the neighboring pixels. The order of the neighboring pixel val-
ues used when generating the codeword is arbitrary but must be
kept consistent for all pixels. The neighborhood for performing
the encoding can be modified in two ways. First, a circular neigh-

IS&T International Symposium on Electronic Imaging 2017
Computational Imaging XV 137



borhood can be used where only a radius is defined. Since the
points of this neighborhood will not lie on the rectangular grid of
the image, pixel values for neighboring locations will be interpo-
lated. Second, the number of neighbors does not need to be set to
eight. A different amount of neighbors will change the number of
possible encoded values in the output image.

Figure 4: Left: Example 3x3 pixel neighborhood, Center:
Comparison of neighbors to center pixel, Right: Local binary

pattern codeword
Once this process is completed we have an image in which

each pixel value is the local binary pattern encording. We now
need to construct the texture feature vector from this image. The
feature vector is constructed by concatenating histograms for non-
overlapping windows within the local binary pattern image. For
our 3x3 neighborhood example we selected a window size of
15x15 pixels following [7]. For each window we could construct
a histogram of length 256. The histogram for each window would
be concatenated to form the global feature vector for the texture
image. This feature vector could then be used by any machine-
learning method to classify the texture.

2.3 Classifying
We use a simple approach to classify textures as a proof of

concept. In order to classify input texture images of unknown
texture type, sample textures belonging to each class must first
be collected. We used four samples from the stochastic class, ten
samples from the irregular class and eight samples from the reg-
ular class. The local binary pattern feature vector was then com-
puted for each training image. When the class of an unknown
texture is desired, the same steps are followed to compute the
feature vector of the unknown texture. Then the feature vector
is compared with the training data to determine which class the
new texture belongs to. In this paper we compute the chi-square
distance between the feature vectors given chi-square distance is
used to measure distance between histograms. We then use a near-
est neighbor approach and determine the class that the new texture
belongs to as the one with the minimum average chi-square dis-
tance.

3 Our Approach
The intent of this paper is provide a method which elimi-

nates the need for the user to perform tedious parameter tuning
while still producing high quality texture synthesis results. How-
ever, even the latest texture synthesis algorithms do not succeed in
synthesizing every input texture. For this reason we still need to
use some user information to steer our texture synthesis method
towards a more appropriate set of parameters. In our method the
user simply needs to respond to the question of a satisfactory out-
put with a ”yes” or ”no” after the synthesis has taken place. If
answered ”yes”, the program will terminate, if ”no”, the parame-
ters from the previous run will be adjusted and synthesis will start
over until the results satisfy the user.

Our method follows these steps to synthesize a texture:

1. Compute the local binary pattern image of the input texture.
2. Use the local binary pattern image to construct the texture

feature vector for the input texture.
3. Classify the input texture as one of the three texture classes.
4. Set initial parameters for texture synthesis based on the tex-

ture class.
5. Run texture synthesis algorithm with defined parameters.
6. When synthesis is complete ask user if the result is satisfac-

tory.

(a) If yes, quit.
(b) If no, update parameters and go to step 5.

3.1 Parameters
Based on the class of texture the input image has been identi-

fied, along with the user feedback, we were able to develop a strat-
egy to set the parameters for the image quilting algorithm which
produce the best results. Since there is variability in the best pa-
rameters even within a texture class, the user feedback will allow
the parameters to be updated. The table in Figure 5 shows the ini-
tial set of parameters used once the texture class is identified. The
patch size parameter is defined as a percentage of the input image
size, the overlap is defined as a percentage of the patch size and
the error tolerance is a raw difference in a selected error metric
between patch overlap regions.

Class Patch Size Overlap Error Tol.
Stochastic 0.4 0.05 0.1
Irregular 0.5 0.1 0.01
Regular 0.9 0.1 0.001

Figure 5: Initial parameters for each texture class.

The user response to the output of the texture synthesis tells
our method what to do next. If the user says that the output is not
satisfactory the parameters need to be adjusted to try and correct
the error. The overlap area still remains to be calculated as a per-
centage of the patch size. Error tolerance also does not need to be
adjusted once the texture class is found. The only parameter that
needs to be adjusted is the patch size. The adjustment is made as
a percentage of the previous iteration’s patch size. The new patch
size is ninety percent of the previous patch size for each class. It
was found that this parameter plays the most important role in the
synthesis results. For regular textures the patch size needs to be
on the order of the fundamental repeating structure or the pattern
will not be kept. An error in a repeated regular pattern is eas-
ily perceived by humans. Generally, the patch size must be large
enough to capture the structures within the input texture, but small
enough that the output image does not look too similar to the input
texture. The output must look like a different image generated by
the same process. To achieve this our method starts with an over
estimation of the patch size and slowly decreases the size until the
output is satisfactory. Figure 6 demonstrates this procedure. Each
box represents the patch size for one round of texture synthesis.
When the patch size is set to the size of the green box it is on
the order of the fundamental repeating structure, as demonstrated
by the right image, and the synthesized texture is accepted. Af-
ter each round the patch sized is reduced to ninety percent of the

138
IS&T International Symposium on Electronic Imaging 2017

Computational Imaging XV



previous size regardless of which class the input texture belongs
to.

Figure 6: Illustration of patch size progression through user
feedback. Left: Each box represents the patch size for each

iteration of texture synthesis, Right: Green box shows
appropriate patch size on the order of the fundamental repeating

structure.

4 Experimental Results
To test our method we used real world textures of varying

texture types. The textures were selected to represent a range of
those that were commonly found in the interior design industry
such as flooring and countertops. No parameters for the image
quilting method were needed as input from the user. The only
user interaction was the feedback described in previoius sections.

Our classification results are satisfactory, though only tested
on a small sample size. We used twenty-two training images re-
ceived eighty percent accuracy when testing on images containing
similar characteristics to the training set. As the sample size in-
creases, intra-class variation may cause an issue using a nearest
neighbor approach as discussed in this paper. In that case another
classification method may be investigated.

The results of our method are shown in Figure 8. For
stochastic type textures, (Figure 8 (a), (b), (c), (d), (e) and (f)),
our method works very well. This is because a wide range of pa-
rameters would yield pleasing results. Any perceptual differences
in the synthesized output for different parameters are difficult to
detect. Structural textures with a strong repeating pattern are also
very succesfully synthesized using our method. Unlike stochastic
textures, structural textures are very sensitive to the parameters.
This causes our methods to require approximately 3-5 iterations
of user feedback in order to correctly synthesize most structural
textures. Results of structural textures are shown in the third im-
age in Figure 8 (j), (k), and (l).

The texture class that is challenging for the proposed method
is the irregular texture. There are two reasons why these texture
types are difficult to properly synthesize. The first is that they do
not have a fundamental repeating pattern but they do contain some
structure which can be easily seen when synthesized incorrectly.
Working with a sample image limits the available data used to
synthesize, creating the possibility of leaving out some structural
characteristics which may be obvious to a human viewer. This can
be seen in Figure 7 (a). The stones clearly have some structure,
but not a well defined structure. In the synthesized image it is
obvious that mistakes have been made when pebbles of different
color and texture are attempted to be matches in an overlapping re-
gion. The second reason is that most real world irregular textures

have multiple layers of textures within them. For example Figure
7 (b) is an irregular texture of stones, but within each stone there
exists a stochastic type texture. Our method will try to synthesize
the irregular structure as best it can, but in certain cases such as
the one in the figure the mistakes are very obvious. This is not true
in all cases. Figure 8 (g), (h), and (i) show cases where irregular
textures are able to be correctly synthesized by our method. We
believe that in order to overcome the challenge of irregular texture
sythesis, methods other than patch based algorithms must be de-
veloped. The use of patches limits the total information available
to that which exists in the input image. A model based method
has the possibility to produce better results for irregular textures.
One would need to extract an accurate model for the generation of
the texture given in the input image, then synthesize a new image
according to the model for the output.

5 Conclusion and Future Work
In this paper we have presented a method that allows a user

to synthesize real world textures without the need to understand
or tune parameters. We have done this by first classifying an input
texture into one of three classes: stochastic, irregular and regular.
Once the texture type is known, a starting estimate of the best
parameters can be made automatically. Then with a simple user
feedback we can adjust the parameters until a satisfactory result
is produced. This allows for the integration of texture synthesis
into tools where users may not have technical knowledge of the
texture synthesis algorithm being used.

References
[1] A. A. Efros and W. T. Freeman, “Image quilting for texture

synthesis and transfer,” ACM SIGGRAPH, vol. 28, pp. 341–
346, August 2001.

[2] A. A. Efros and T. K. Leung, “Texture synthesis by non-
parametric sampling,” The Proceeding of the Seventh IEEE
International Conference on Computer Vision, pp. 1033–
1038, September 1999. Corfu, Greece.

[3] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-
structured vector quantization,” Proceedings of the Con-
ference on Computer Graphics and Interactive Techniques,
vol. 28, pp. 479–488, July 2000.

[4] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-
time texture synthesis by patch-based sampling,” ACM Trans-
actions on Graphics, vol. 20, pp. 127–150, July 2001.

[5] V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick,
“Graphcut textures: Image and video synthesis using graph
cuts,” ACM Transactions on Graphics, vol. 23, pp. 277–286,
July 2003.

[6] W.-C. Lin, J. Hays, C. Wu, V. Kwatra, and Y. Liu, “A com-
parison study of four texture synthesis algorithms on near-
regular textures,” ACM SIGGRAPH Posters, p. 16, August
2004.

[7] T. Ojala, M. Pietikainen, and T. Mainpaa, “Multiresolution
gray-scale and rotation invariant texture classification with lo-
cal binary patterns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, pp. 971–987, July 2002.

IS&T International Symposium on Electronic Imaging 2017
Computational Imaging XV 139



Figure 7: Experimental results: Examples of failed synthesis attempts. The smaller image is the input sample and the larger image is the
synthesized output. Output synthesized at twice the input size. The red boxes highlight errors in the synthesized output.

Author Biography
Kyle Ziga received his BS in Computer Engineering from

the Calumet campus of Purdue University in 2015. He is now
working on his PhD at Purdue University West Lafayette in the
field of Image Processing.

Jan P. Allebach is Hewlett-Packard Distinguished Professor
of Electrical and Computer Engineering at Purdue University.
Allebach is a Fellow of the IEEE, the National Academy of
Inventors, the Society for Imaging Science and Technology
(IS&T), and SPIE. He was named Electronic Imaging Scientist of
the Year by IS&T and SPIE, and was named Honorary Member
of IS&T, the highest award that IS&T bestows. He has received
the IEEE Daniel E. Noble Award, the IS&T/OSA Edwin Land
Medal, and is a member of the National Academy of Engineering.
He currently serves as an IEEE Signal Processing Society
Distinguished Lecturer (2016-2017).

Fengqing Zhu is an Assistant Professor of Electrical and
Computer Engineering at Purdue University, West Lafayette, IN.
Dr. Zhu received her Ph.D. in Electrical and Computer Engi-
neering from Purdue University in 2011. Prior to joining Purdue
in 2015, she was a Staff Researcher at Huawei Technologies
(USA), where she received a Huawei Certification of Recognition
for Core Technology Contribution in 2012. Her research interests
include Image processing and analysis, video compression,
computer vision and computational photography.

Judy Bagchi is founder and CEO of Dzine Steps, a cloud
software provider to home builders and independent design cen-
ters nationwide. Prior to this Judy held Research & Development
Management roles at Hewlett-Packard and Nortel. She is an in-
dustry veteran with more than 20 years of experience in the entire
business value chain. She has a keen interest in and has led and
participated in various activities supporting Women in Technol-
ogy.

140
IS&T International Symposium on Electronic Imaging 2017

Computational Imaging XV



Figure 8: Experimental results: Examples of successful synthesis results. The smaller image is the input sample and the larger image is
the synthesized output. Output synthesized at twice the input size.

IS&T International Symposium on Electronic Imaging 2017
Computational Imaging XV 141


