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Abstract
3D shape recovery from a single camera image is an ill-

posed inverse problem which must be solved by using a priori
constraints (a.k.a priors). We use symmetry and planarity con-
straints to recover 3D shapes from a single view. In many ways,
symmetry and planarity represent the simplicity of a 3D object,
and by applying these constraints we attempt to reconstruct a sim-
ple 3D shape that can explain the 2D image. Once we assume that
the object to be reconstructed is symmetric, all that is left to do is:
(i) estimate the plane of symmetry, and (ii) establish the symmetry
correspondence between the various parts of the object. The edge
map of the image of an object serves as a representation of its
2D shape; establishing symmetry correspondence means identi-
fying pairs of symmetric curves in the edge map. In this work, we
assume that the vanishing point, which establishes the symmetry
plane up to a scale factor, is known. In addition, we also as-
sume that the focal length and the direction of gravity are known.
We extract long smooth curves from the edge map by solving the
shortest (least-cost) path problem, where the cost function penal-
izes large interpolations and large turning angles. We then find
the optimal curve matches that minimize the number of planes re-
quired to approximate the final 3D reconstruction. This optimiza-
tion problem is framed as a binary integer program and solved
using the Gurobi solver [1].

Introduction
Recovering the 3D shape of an object from a single view is

an ill-posed inverse problem and solving it requires the use of in-
formative priors [2]. Symmetry and planarity constraints are used
in this work, as they have already been identified as constraints
used by the human visual system [3, 4]. Moreover, symmetry is
ubiquitous in nature, as well as in man-made objects, and further-
more, many real world objects are piece-wise planar. The focus of
this work is to reconstruct shape: a spatially global property of an
object. Symmetry and planarity in many ways capture the essence
of shape for many objects. With the abundance of images on the
internet, an algorithm that can reconstruct shape from a single im-
age will have many applications. Although there are many kinds
of symmetry, in this work we always use the term symmetry to
refer to bilateral (mirror) symmetry.

Recovering shapes from a single view has advantages com-
pared to algorithms based on binocular disparity. Establishing
symmetry correspondence (i.e., identifying which two pixels in
the image are projections of 3D symmetric points) leads to more
accurate reconstructions in comparison to establishing binocu-
lar correspondence, and then using binocular disparity for recon-
struction. Reconstructions based on binocular disparity loose ac-
curacy quickly as the distance between the object and camera in-
creases. However, reconstructions based on symmetry are more

robust to changes in distance. Moreover, 20 years ago Zabrodsky
and Weinshall [5] showed that using a symmetry prior can sub-
stantially improve the accuracy of reconstructions from multiple
views.

Symmetry has been used in the past for 3D reconstruction of
objects and scenes; however, some of these methods [6, 7, 8] re-
quire extensive user intervention, like manually establishing sym-
metry correspondences. Methods described in [9, 10] concentrate
on dense 3D reconstruction of scenes, rather than shape recon-
struction from curves. Sinha et al. [11] considered the symmetric
curve matching problem; however, their dynamic programming
algorithm only works with restricted views of the 3D object. Xue
et al. [12] used symmetry to obtain depth maps; however, they
used synthetic images that have planar surfaces bound by straight
lines. In our work, we are interested in estimating a 3D shape
representation of the object in the scene. Though we use a pla-
narity constraint, we are also interested in obtaining shape rep-
resentations for objects with approximately planar surfaces. We
accomplish this by using a planarity measure that counts the num-
ber of planes required to approximate the object. For instance, we
can approximate the furniture shown in Figure 1 with four planes.
Three of these planes are shown in Figure 1, and the fourth plane,
not shown, is opposite to the orange plane. This concept is made
more clear in the following sections. In the next section we pro-
vide an overview of the algorithm, and the following sections de-
scribe each step in detail. This is followed by results and conclu-
sions.

Overview
We begin by defining the vanishing point which character-

izes 3D mirror-symmetry. A vanishing point is a point on the
image plane where the perspective projection of 3D parallel lines
intersect (see Figure 2(a)). Therefore, a vanishing point repre-
sents a particular direction in the 3D world. Let a symmetry line
be defined as a line connecting two 3D points that are symmetric
with respect to a symmetry plane. Figure 2(a) shows a symmetric
chair. The red lines are the projections of symmetry lines. By def-
inition, all the symmetry lines for the object shown in Figure 2(a)
are perpendicular to the plane of symmetry, and hence represent
the same 3D direction. Therefore, there is a vanishing point in
the image corresponding to that direction, let us call it VP. If we
imagine a 3D line with the same direction as the symmetry lines,
and passing through the center of perspective projection, this line
will intersect the image plane at VP. Therefore, if we know the
vanishing point we also know the direction of the normal of the
symmetry plane. Two pixels, pi and p j, are said to symmetri-
cally correspond if they are the projections of two 3D symmetric
points. If the symmetry correspondence of all the pixels repre-
senting the object is known, and if the normal of the symmetry
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plane is known, then the object can be accurately reconstructed
in three dimensions up to a scale factor. See [13, 14, 15] for a
detailed explanation. The edge map of the image of an object is
often a reasonable representation of its 2D shape, and so it can be
used to establish symmetry correspondence by identifying pairs
of points on the edge map that are projections of 3D symmetric
points. Points that symmetrically correspond in an image must be
co-linear with the vanishing point. However, as shown in Figure
2(b), more than two edge pixels can be co-linear with the van-
ishing point, and therefore, we need a way to discriminate cor-
rect and incorrect correspondences. It is advantageous to work
with smooth curves (if such curves can be extracted), because
it reduces the complexity of the problem (the number of curves
is often much less than the number of edge pixels). Addition-
ally, curves have shape which can be utilized. Therefore, in this
framework, we establish symmetry correspondence for pairs of
2D curves, instead of just working with pairs of 2D points.

The first step to solving symmetry correspondence is esti-
mating the position of the vanishing point in the camera image.
Though there are several methods available in the literature for
estimating vanishing points from monocular images [16, 17, 18],
we use the estimates obtained by Michaux and Pizlo [19], because
it is more reliable as it uses binocular information. Note that if one
can identify higher order features like long curves or corners, it is
also possible to partially solve symmetry correspondence without
estimating the vanishing point first. Establishing correspondence
for one or more pairs of features will lead to the vanishing point,
which can then be used to solve correspondence for the remaining
points and parts of the image. Once the vanishing point is known,
the next step is extracting long meaningful curves, where the word
meaningful implies that the curve would make sense to a human
observer. We have evidence that the human visual system extracts
long curves by solving the shortest (least-cost) path problem in
the image [20]. We incorporate this method in our algorithm.
Specifically, we minimize the cost of a path, where the cost is
a weighted combination of the interpolations and turning angles.
From now on, we use the term correspondence to denote a pair of
2D curves that symmetrically correspond to each other in the 3D
representation. The next step is identifying some candidate cor-
respondences and candidate planes (planes that could be used to
approximate the 3D shape of the object). Though we could start
off by assuming that any long curve extracted could correspond
to any other curve, we use a few criteria to reject some unlikely
correspondences from the list of all possible correspondences, re-
sulting in what we refer to as candidate correspondences. Once
we have the candidate correspondences, we evaluate which corre-
spondences lead to a 3D shape recovery that can be approximated
by a minimum number of planes. This is achieved by converting
the problem into a binary integer program and solving it using the
Gurobi solver [1]. Each of these steps are explained in detail in
the next sections.

Curve extraction
The first step in curve extraction is edge detection. As men-

tioned earlier, the image edge map serves as a representation of
the 2D shape of the object. The canny operator is used with an
adaptive threshold to form an edge map. Connected components
in the edge map are then identified and are broken down, based
on gradient orientation, to get short pieces of curve. The idea

Figure 1. Planar approximation by using minimum number of planes.

(a) (b)

Figure 2. (a) Vanishing Point (b) Symmetry Correspondence Problem.

is to split the connected components at high curvature points, like
junctions, to obtain short and smooth pieces of curves. Figure 3(a)
shows short curve pieces obtained for the image of a piece of fur-
niture. Longer curves are obtained by combining these short curve
pieces. This is achieved by finding the shortest paths between all
pairs of short pieces of curve with a cost function that penalizes
spatial separation and large turning angles. To determine the turn-
ing angle and the spatial separation, the end points of the short
curve pieces are first computed. The closest endpoints of two
curves decides how the curves connect, which in turn decides the
distance and the turning angle between them. For instance, con-
sider curve combination a) in Figure 3(b). An approximate 145 ◦

turn is required to continue from the blue curve to the red curve.
So what we are calculating is literally the turning angle. A point
to note here is that when joining curves, rather than straight lines,
the direction of the curve (used to calculate turning angle) is rep-
resented by a few pixels near the vicinity of the connecting end
points. After the pairwise distances and turning angles are com-
puted for all curve combinations, curve combinations with very
high turning angles, or very large interpolated distances, are re-
jected. I.e., combining such curves is forbidden. The turning an-
gle values and distances are then normalized separately, by sub-
tracting the mean and dividing by the standard deviation. This
can result in a negative cost for some curve combinations, so the
absolute value of the minimum is added to avoid this. Turning an-
gles are weighted one and a half times in comparison to distances.
As shown in Figure 3(b), smooth curves are assigned lower costs.
Although shortest paths between all pairs of short curve pieces are
computed, we only use those whose cost is lower than a threshold
in the next step. An example of such a low cost path is shown in
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Figure 3(c). These long curves are then used to identify candidate
correspondences and candidate planes.

(a) (b)

(c)

Figure 3. (a) Different pieces of curves are represented by different
colors. (b) Costs for combining short curves. (c) A low-cost long curve
extracted by the shortest path algorithm.

Identifying Candidate Correspondences and
Planes

The idea, as mentioned earlier, is to view the correspondence
problem as a curve matching problem. I.e., given a curve, say
curve A, we would like to identify another curve from the set
of extracted curves, which is the symmetrical counterpart of A.
If curve B is the symmetric counterpart of curve A, then curve
B is said to correspond to curve A. The set (A, B) is called a
correspondence. We have a set of long curves at the end of the
curve extraction step; however, we do not know the correspon-
dences. The problem of identifying correspondences can be con-
verted into a binary integer program (BIP). However, candidate
correspondences must first be identified in order to formulate the
problem as a BIP. Ideally, the candidate correspondences form a
superset of which the correct correspondences are a subset. Let
s1, s2, . . . , sNc represent Nc extracted long curves. Let S A repre-
sent the set of all possible pairs of curves (correspondences), i.e.,
S A = {(si, s j) | i , j}. Most of the correspondences in this set are
incorrect, and can be rejected based on criteria described later.
The idea here is to select a set of correspondences, S C , such that
S C ⊂ S A, and ensure at the same time that the true correspon-

dences are included in S C . In order to accomplish this, we use
two types of criteria. One type of criteria applies to curves in the
2D image, and the other applies to the 3D reconstruction of the
curves.

2D and 3D Criteria
We use three 2D criteria when choosing candidate corre-

spondences. The first two criteria deal with necessary conditions,
and the third criterion is a heuristic. The first criterion used to
judge whether a correspondence (si, s j) should be a part of S C ,
is to look at the overlap between si and s j when viewed from the
vanishing point. As shown in Figure 4(a), curves that truly corre-
spond have a large overlap. Images of symmetric 3D curves have
100% overlap when viewed from the vanishing point, and there-
fore correspondences with low overlap can be safely rejected.

Shape dissimilarity between two 2D curves is another crite-
rion for rejecting correspondences. As long as the 3D symmet-
ric curves are approximately planar, their projected images have
similar shape [21]. Psychophysical experiments show that when
the 2D curves are arbitrarily different, then they are not perceived
by observers as 3D or symmetrical [22]. The shape similarity is
evaluated for polygonal approximations of the curves, where the
polygonal approximations are obtained by sampling the curves
using rays from the vanishing point (as shown in Figure 4(b)).
Comparing the turning angles at each of the sampled points serves
as a shape match metric, which can be used to decide whether a
correspondence should be part of S C . Images of two planar sym-
metric curves either always turn the same way, or always turn the
opposite way at each sampled point [22]. For instance, the sym-
metric curves that are part of the object in Figure 4(a) turn the
opposite way, while those in Figure 4(b) turn the same way. The
signed turning angles are either subtracted or added, depending
on whether the curves turn the same way or the opposite way.
The ambiguity in whether turning angles are added or subtracted
is resolved by counting the number of times that the curves turn
in the same way, or the opposite way (at the sampled points), and
then choosing the direction with the maximal count. This mea-
sure leads to a low shape cost for the images of planar symmetric
curves, but not necessarily for non-symmetric curves.

For pairs of straight lines, the shape similarity criterion is in-
effective, because lines always have zero turning angles, up to pix-
elation error in the image. In such cases their relative edge orien-
tation can be used to choose candidate correspondences. I.e., cor-
responding straight lines usually have similar edge orientations.
We use K-Means to cluster the edge orientations for the entire
image into three clusters. We use three clusters because rectan-
gular objects have three dominant directions. We then remove
edge pixels that are more than one standard deviation away from
their cluster center. This results in four clusters of edge pixels
(as shown in Figure 4(c)). Three clusters correspond to the three
cluster centers (shown in red, green and blue) and another set of
unclustered edge pixels belonging to none of the clusters(shown
in black). This is done to ensure that pixels with ambiguous edge
orientations (i.e., their edge orientations cannot be assigned to any
group with confidence) are not forced into being part of one clus-
ter or another. When looking for candidate correspondences be-
tween two curves, we insist that of those pixels that are clustered,
more than half of the pixel-wise correspondences belong to the
same cluster.
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There is one 3D criterion for choosing candidate correspon-
dences: we assume that 3D curves are approximately planar.
Therefore, the approximate planarity of a pair of curves can be
used to decide whether or not to include or exclude a correspon-
dence. To produce a planarity score, we first assume that the two
curves correspond and reconstruct them in 3D. Planes are then fit
using RANSAC. The goodness of the fit tells us if the 3D curves
are approximately planar. Curve correspondences that produce
highly non-planar 3D reconstructions can be rejected.

Identifying Candidate Planes
We derive a set of candidate planes, that are used to approx-

imate the 3D object, from the set of candidate correspondences.
First we reconstruct the 3D curve pairs from the candidate corre-
spondences, and consider each curve pair in turn. These two 3D
curves may be co-planar. In this case, we can fit a single plane
to both curves and add it to the list of candidate planes. When
curve pairs are not coplanar, we fit planes to both the 3D curves
separately, and add them to the set of candidate planes.

As mentioned before, we assume that the approximate di-
rection of gravity is known. It is reasonable to assume that
most planes used to approximate a real world object are ver-
tical [22], and this is useful for finding additional candidate
planes. When the individual curves in a curve pair are 3D lines,
then we also add the candidate vertical planes that pass through
each 3D line. This is accomplished by minimizing the function:∑N

i=1(a xi +byi +czi−d)2 + α(ag1 +bg2 +cg3)2, where [xi,yi,zi]
represents the points on the 3D line, [a,b,c,d] represents the plane
we are seeking, [g1,g2,g3] represents direction of gravity, and α
is a weight factor.

We now have a large set of candidate planes; however, it is
very likely that many planes are redundant. Therefore, mean shift
clustering is performed to reduce the number of planes. Once
we have identified the candidate planes and candidate correspon-
dences, we frame the problem of choosing the correct curve cor-
respondences from S C as a binary integer program as described
in the next section.

Choosing the Correct Correspondences
Let c1,c2, . . . ,cN ∈ S C be the set candidate correspondences,

and π1,π2, ...,πM ∈ ΠC be the set candidate planes, identified in
the previous steps. In the next step we identify, the symmet-
ric correspondences, and the planes, used to approximate the 3D
shape of the object. In other words, we choose a subset of the
correspondences in S C , and a subset of planes in ΠC , such that
the resulting 3D reconstruction uses a minimal number of planes,
while ensuring that a substantial portion of the object is still re-
constructed. This problem can be formulated as a binary integer
program (BIP).

The table on the left in Figure 5 shows the variables involved
in the BIP. Each row represents curve correspondences, while
each column represent candidate planes. Every variable xk

i j is
a binary variable. Two things are implied when a variable xk

i j
is set (i.e., when xk

i j = 1). First, the curve correspondence i is
chosen as part of the subset of true correspondences. Second, the
3D curve obtained from this reconstruction is assigned to plane j,
which in turn means that plane j is chosen as one of the planes
used to approximate the 3D object. As shown in Figure 5, each
correspondence is repeated twice. This is because each correspon-

(a)

(b) (c)

Figure 4. (a) Overlap from Vanishing Point, (b) Polygonal approxima-
tion for the shape match metric, and (c) Clustered edge orientations.

dence involves two 2D curves from which two 3D curves are re-
constructed, and these two 3D curves need not be assigned to the
same plane. That is, we must be able to assign a single correspon-
dence to one or two separate planes, and hence, in the BIP, each
correspondence is repeated twice. For example, let us say that the
ith correspondence, ci = (sp, sq), then x1

im = 1 and x2
in = 1 means

that the 3D curve resulting from the reconstruction of 2D curve
sp, was assigned to plane πm, and the 3D curve resulting from the
reconstruction of the 2D curve sq was assigned to plane πn.

The table on the right in Figure 5 shows the cost associated
with setting each variable xk

i j. I.e., wk
i j represents the cost of

choosing correspondence i, and assigning (associating) the kth

3D curve resulting from the correspondence i to plane j. Here,
k ∈ {1,2}, and refers to either the first or second reconstructed 3D
curve from correspondence i. The weight, or cost wk

i j, consists of
two terms, and is given by, wk

i j = exp(dk
i j) + βδi. The first term

is the exponential of the mean distance dk
i j of the kth 3D curve

(reconstructed based on the correspondence i) to plane j. The
second term depends on the shape match δi (Figure 4(b)) between
the two 2D curves involved in the correspondence, and is mea-
sured as the average difference in turning angles at the sampled
points. Correspondences, whose reconstructed 3D curves are far
from the plane, or whose shape match is poor, are removed. The
remaining values are normalized, and then a weighted combina-
tion (represented by β) of the two terms is taken. The problem of
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picking the right correspondences and planes can now be framed
as a constrained BIP as shown below.

minimize wwwT xxx +µyµyµy

subject to

xT lxT lxT l ≥
( p

100

)
L (C1)

UxUxUx ≤ 1N1N1N (C2)

RxRxRx = 0N0N0N (C3)[
EEE −IM−IM−IM

] [xxx
yyy

]
≤ 0M0M0M (C4)

M∑
k=1

yi ≥ 2 (C5)

xk
i j ∈ {0,1} ∀ i, j,k (C6)

yi ∈ {0,1} ∀ i (C7)

where,

xxx = (x1
11, x1

12, .., x1
1M , x1

21, x1
22, ..., x1

2M , ..., x1
NM , x2

11, x2
12,

.., x2
1M , x2

21, x2
22, ..., x2

2M , ..., x2
NM)

www = (w1
11,w1

12, ..,w1
1M ,w1

21,w1
22, ...,w1

2M , ...,w1
NM ,

w2
11,w2

12, ..,w2
1M ,w2

21,w2
22, ...,w2

2M , ...,w2
NM) ∈ RMN

yyy = (y1,y2, ...,yM), lll = (l1, l2, ..., lMN ) ∈ RMN

UUU ∈ RN×(NM), RRR ∈ RN×(NM), EEE ∈ RM×(NM)

IMIMIM is the identity matrix of order M

1N1N1N = (1,1, ...,1︸   ︷︷   ︸
N elements

)T , 0N0N0N = (0,0, ...,0︸   ︷︷   ︸
N elements

)T , 0M0M0M = ( 0,0, ...,0︸   ︷︷   ︸
M elements

)T

µµµ ∈ RM , µi ∈ (0,∞) ∀ i

The elements of vector yyy are binary variables which indicate
whether a plane is selected or rejected. I.e., if yi = 1 then plane
i is selected as a plane that is used to approximate the 3D object.
Constraint C4 is devised to ensure that the elements of yyy are indi-
cator variables for including or excluding planes. As mentioned
before in Figure 5, the columns represent planes. Hence, if any of
the variables (xk

i j) are set in a column, say j, then constraint C4
ensures that plane j is chosen and y j is set. This can be achieved
by insisting that:

2∑
k=1

N∑
i=1

xk
i j

2N
≤ y j

The variable µ represents the cost for each included plane,
thus biasing the solution towards fewer planes. Another impor-
tant constraint that needs to be imposed is that if one of the vari-
ables in row i is set, then one variable in row i + N has to be set
too. This is because we cannot assign one 3D curve (from corre-
spondence i) to a plane, and not assign the other 3D curve (from
correspondence i) to a plane. This can be achieved by imposing
the following constraint for row i:

M∑
j=1

x1
i j =

M∑
j=1

x2
(i+N) j

Constraint C3 imposes this condition for all the correspon-
dences (half the rows). Hence matrix RRR, used to represent this set
of constraints, has N rows.

The trivial solution – setting xxx and yyy to the zero vectors – is
not interesting, since there is no reconstructed shape. Constraint
C1 ensures that the trivial solution is not selected. Element l(iM+ j)
of vector lll represents the length of the curves involved in corre-
spondence i. Hence, the dot product xT lxT lxT l gives the total length of
all the curves that are part of the selected correspondences. Con-
straint C1 ensures that this length is at least p% of L, where L is
the total length of all the distinct curve pieces in the image.

Constraints C2 ensure that the correspondences are unique.
The idea here is that every edge pixel has a unique symmetric
counterpart in the 3D object, and this constraint has to be explic-
itly imposed in our formulation of the problem. For instance, in
Figure 6, correspondences (a) and (b) could be chosen at the same
time, but correspondences (a) and (c) cannot, because of the an-
gular overlap from vanishing point. For each correspondence, we
can identify other correspondences that have a substantial angular
overlap from the vanishing point. This information is used to add
a constraint that only one among those with substantial overlap
is selected. Constraints C2 is a matrix where each row represents
this constraint for a given correspondence.

Since, we do not expect a single plane to approximate any
object, we ensure that at least 2 planes are selected by enforcing
constraint C5. We also add a preference for planes approximately
parallel or perpendicular to the symmetry plane, by decreasing the
weight, µi, of such planes to eighty percent of that of other planes.

We refer to straight line edges in the edge map that approx-
imately pass through the vanishing point as self-symmetric lines.
For example, in Figure 4(c), the blue lines are self-symmetric.
They are referred to as self-symmetric because, the symmetric
counterparts of points on such lines lie on the same line. Since we
frame the problem as a curve matching problem, and since we do
not expect any other curve/line to be the symmetric counterpart of
a self-symmetric line, we remove these lines from the edge map
prior to all processing. These lines can be fit later to the 3D re-
construction that was obtained from optimizing the BIP. The 3D
orientation of these lines is the same as the normal of the sym-
metry plane. The neighborhood information from the 2D image
is used to determine the exact position (and extent) of these lines
in 3D. A small neighborhood of pixels in the 2D image, around
the endpoints of the self-symmetric line, is considered. After the
BIP optimization is complete, the 3D position of some of these
neighborhood pixels may be available depending on whether the
optimization process was able to find matches for them. If 3D
positions are available for pixels in both neighborhoods (corre-
sponding to both end-points of the self-symmetric line), then we
consider all possible lines that go between points in one neighbor-
hood with points in the other neighborhood. We then pick the 3D
line that is most aligned with the normal of the symmetry plane,
to obtain the 3D line corresponding to the self-symmetric 2D line.

As mentioned before, the BIP is solved using the Gurobi
solver [1]. In order to account for occlusions in the image, we ask
the algorithm to reconstruct only 70% of the pixels in the edge
map. Specifically, the value of p in constraint C1 is set to 70. If
a large part of the object is occluded, this value will be too high,
and the problem is infeasible. The value of p is initialized to 70,
and is automatically decremented if the Gurobi solver detects that

110
IS&T International Symposium on Electronic Imaging 2017

Computational Imaging XV



Figure 5. BIP formulation.

the problem is infeasible. In practice it does not take more than a
couple of attempts to find a feasible value of p.

Though a large number of correspondences obtained by the
optimization process are correct, it was observed that a few mis-
takes were made. One of the reasons for the loss of accuracy
comes from the clustering of candidate planes. In order to obtain
better plane estimates, once the optimization process converges
and a solution to the problem is obtained, the planes associated
with the correspondences chosen by the optimization process are
identified. Keep in mind that the candidate planes were obtained
from candidate correspondences in the first place, and hence for
each chosen correspondence, the planes it added/contributed can
be identified. (I.e., the planes before clustering.) The optimization
process is then rerun with these planes as candidate planes. When
the process is rerun, we consider if the new set of candidate planes
requires clustering. It may not, because we expect the new set of
candidate planes to be much smaller than the initial set of candi-
date planes. Even when the number of planes is large enough to
require clustering, the accuracy of the clustered planes should be
much better. In practice, rerunning the optimization process with
the new set of planes corrects some of the errors made in the first
run.

(a) (b) (c)

Figure 6. Correspondences (a) and (b) could be chosen simultane-
ously, but correspondences (a) and (c) cannot, because of the angular
overlap from vanishing point.

Results
Figures 7 and 8 show some of the results obtained. Some of

these images were taken by us using a Point Grey Bumblebee2 R©

stereo camera, and about half were obtained from the internet. For

images taken with the Bumblebee2 R©, we estimated the vanishing
point and the direction of gravity using the algorithm described
in [19]. The image from the left camera was then used by our al-
gorithm as input, along with the estimates for the vanishing point
and the direction of gravity. The focal length and the principal
point were read off of the camera’s firmware. For the internet im-
ages we tried to obtain the estimates of camera calibration param-
eters and vanishing points using existing algorithms [16, 17, 18].
These estimates were not reliable. In fact, under the Manhattan
world assumption [23], used by most of these algorithms, two of
the three vanishing points correspond to the direction of gravity,
and the normal of the symmetry plane. But it is difficult to ap-
ply to Manhattan world assumption to objects like E, K, and L,
because not all the required vanishing points are salient in the
images. This is perhaps the reason why the automatic vanish-
ing point estimating algorithms find these images difficult to han-
dle. Therefore, for such images from the internet, two vanishing
points (representing orthogonal directions in 3D) were estimated
by hand. Since, these vanishing points represent orthogonal di-
rections in the 3D space, the focal length can be obtained if the
principal point is assumed – typically the center of the image. The
solution to xV1 xV2 +yV1 yV2 + f 2 = 0 gives the focal length, where
(xV1,yV1) and (xV2,yV2) are the two estimated vanishing points,
and f is the focal length. Though estimating the direction of grav-
ity can be challenging, our algorithm only needs a crude estimate,
and hence this is not a problem in general.

The results show that the algorithm was able to obtain a rea-
sonably good representation of the 3D shape of the objects. The
3D shape representation is accurate, in most cases, if we take into
consideration that the algorithm was not designed to take care of
occlusions in the image. Shape is a spatially global property and
so is symmetry and planarity. Therefore, enforcing these con-
straints should lead to good shape recovery for objects where such
regularities (at least approximately) exist. As an example, for ob-
ject L, the hind legs are occluded, but the algorithm reconstructs
it from a wrong correspondence, and it is consistent with a good
shape representation because of the regularities imposed on the
3D reconstruction. Similarly, the correspondences obtained for
the top part of the hind legs (represented by red, brown and dark
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Figure 7. Results for objects A-F: Original Image is shown in row one, row two shows the symmetric correspondences detected with corresponding
curves shown in same color, the planes selected are shown in row three, and rows four through six show three different views of the reconstructed
object.

blue lines) for object L are not accurate, but the shape representa-
tion is still good.

One of the problems we faced while performing reconstruc-
tions, is that when 2D curves that are very close to each other
are allowed to correspond, it often leads to bad reconstructions,

as shown in Figure 9. To deal with this issue, we use a distance
threshold to prevent close 2D curves from corresponding. The
distance is measured as the median distance between correspond-
ing points on the two 2D curves. To decide on the threshold, we
first note that the shape of an object is defined mostly by curves
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Figure 8. Results for objects G-L: Original Image is shown in row one, row two shows the symmetric correspondences detected with corresponding
curves shown in same color, the planes selected are shown in row three, and rows four through six show three different views of the reconstructed
object.

close to the 3D convex hull of the object. Hence, reconstructing
3D curves close to the hull is more important. Self-symmetric
lines are used to dynamically decide this threshold. For non-
degenerate views, the length of self-symmetric lines is a good
estimate of the distance between curves that actually correspond.
We choose a value of 0.4 lss as the distance threshold, where lss
is the length of the longest self-symmetric line. This value works
for all images except for object K, for which it had to be set to
0.2 ∗ lss. Using such a threshold means that some of the internal
details of the shape of the object may not be reconstructed, as seen
with object F. But this method can still capture the most impor-

tant aspects of the 3D shape. A better solution to this problem is
to view 3D shapes as composed of 3D parts, and correspondences
should be found between the images of parts rather than the im-
ages of curves. The object in Figure 9 can be thought of as being
composed of six parts: four legs, and two flat surfaces parallel
to the ground. Parts either have symmetric counterparts, or they
are self-symmetric. (In Figure 9, the legs have symmetric coun-
terparts, and the flat surfaces are self-symmetric.) Dealing with
parts, if they can be reliably detected, would simplify the problem
and make it more robust. Moreover, some work [24, 25] towards
part detection is already available and can be used.
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Figure 9. (a) Wrong correspondences resulting from allowing to curves very close to each other to correspond, (b) the planes picked by the
algorithm, (c) and (d) different views of the reconstruction.

The algorithm runtime averages about 15 secs on a 2.8 GHz
Intel R© Core i7 quad core processor with 16 GB RAM. The code
is written in Python. Though BIP is an NP-Hard problem, the
number of variables involved in the BIP is usually not more than
2000. The Gurobi solver can easily handle such problems and
usually converges within a second or two. Setting up the integer
program accounts for the bulk of the runtime. There is ample
scope for performance improvements, if it is a priority.

Conclusion
We have designed an algorithm that can effectively recon-

struct 3D shapes from single camera images by employing sym-
metry and planarity priors. It demonstrates how these priors can
be used to convert an ill-posed problem into a well-posed one.
The results demonstrate the effectiveness of the idea of viewing
the reconstruction problem as a constrained curve matching prob-
lem. By shape, some sort of regularity is implied, and by using
regularities like symmetry and planarity we have successfully re-
constructed simple shapes that can explain the given images.
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