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Abstract
Light-field cameras capture 4-dimensional spatio-angular

information of the light field. They provide more helpful multi-
ple viewpoints or sub-apertures for visual analysis and visual un-
derstanding than traditional cameras. Optical flow is a common
method to get scene structure cues from two images, however, sub-
pixel displacements and occlusions are two inevitable challenges
in the optical flow estimation from light-field sub-apertures.

In this paper, we develop a light-field flow model, and pro-
pose an edge-aware light-field flow estimation framework for
joint depth estimation and occlusion detection. It consists of
three steps: i) An optical flow volume with sub-pixel accuracy
is extracted from sub-apertures by edge-preserving interpolation.
Then occlusion regions are detected through consistency check-
ing. ii) Robust light-field flow and depth estimation are initialized
by a winner-take-all strategy and a weighted voting mechanism.
iii) Final depth map is refined by a weighted median filter based
on guided filter. Experimental results demonstrate the effective-
ness and robustness of our method.

Introduction
Light-field cameras capture not only 2D images, but also the

angles of the incoming light rays [1, 2]. These additional light
angles bring an important benefit of light-field cameras, that is
multiple viewpoints or sub-apertures are available from a single
light-field image. Scene structure (depth) recovery from light-
field camera has been an essential and interesting task. Limited
by the fundamental tradeoff between spatial and angular resolu-
tion [3], however, it still faces the challenges of robustness and
accuracy, especially at regions of depth discontinuities and occlu-
sions.

Many methods have been proposed to address this problem
in recent years. Most of them are based on the focal stacks anal-
ysis and their data consistency measure [4, 5, 6, 7], such as cor-
respondence and defocus. These methods usually face two limi-
tations: a) their occlusion detection methods, in some cases, are
sensitive to the color and texture on object surface. b) the accu-
racy of their depth estimation theoretically depends on the interval
size of focal stacks ( the pre-established α values in depth search
range).

In this paper, we try to solve these problems by borrowing
the idea of optical flow analysis in the traditional computer vision
community. However, little work has explicitly considered the op-
tical flow estimation for light-field images. Different from tradi-
tional optical flow applications, optical flow estimation from sub-
apertures suffers from two inevitable problems: occlusion [6, 7]
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Figure 1. Visual comparison of discontinuities and occlusions handling of

different algorithms. The results of Tao et al. [4], Jeon et al. [8] and Wang et

al. [6, 7] can be obtained by running the codes from their project webpages. It

can be seen that our method has better depth-discontinuity preserving prop-

erty.

and sub-pixel displacement [8].
We introduce an edge-aware light-field flow model which ac-

counts for multi-view motion field (sub-aperture images), light-
field geometry (depth), translation (correspondence) and occlu-
sion. It can estimate out a robust light-field flow together with
accurate depth maps and occlusions.

Our main contributions are:
(1) We develop a light-field flow model on a single light-

field image by fusing all optical flows between each sub-aperture
image and the central sub-aperture image. This model is indepen-
dent of the property of sub-aperture images.

(2) We introduce an edge-aware light-field flow estimation
framework for joint depth recovery and occlusion detection.

As shown in Figure 1, we can obtain accurate light-field flow
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with good depth-discontinuity preserving property. Moreover, our
depth estimation and occlusion detection results are better than
those of the state-of-the-art methods.

Related Works
Depth from Light-Field Cameras: Depth recovery from

a single light-field image is still an essential and challenging prob-
lem in the computational photography field. Most of recent works
focus on the solutions from different depth cues, such as corre-
spondence, defocus, shading, and occlusion, etc. Georgiev and
Lumsdaine [9] estimated disparity maps by computing a normal-
ized cross correlation between microlens images. Perwass and
Wietzke [10] introduced a correspondence technique to estimate
depth. Yu et al. [11] analyzed the 3D geometry of lines in a
light field image and computed the disparity maps through line
matching between the sub-aperture images. Jeon et al. [8] esti-
mated the multi-view stereo correspondences with sub-pixel ac-
curacy using phase shift theorem. Lin et al. [12] described a tech-
nique to recover depth from a light field image based on the fo-
cal stack symmetry analysis and data consistency measure. Tao
et al. [4, 5] discussed the advantages and disadvantages of dif-
ferent depth cues for depth estimation. They combined shading,
correspondence and defocus cues into 4D Epipolar Image (EPI)
to complement the disadvantages of each other. On the basis
of this work, Wang et al. [6, 7] developed a light-field occlusion
model based on the physical image formation, and then Williem
et al. [13] proposed two novel data costs for correspondence and
defocus cues. Their light-field occlusion models, however, some-
times are difficult to distinguish between depth discontinuities and
surface color/texture discontinuities. Moreover, most of existed
methods preset the equal interval values of refocusing parame-
ter α during depth search, which results in the non-equal interval
displacements during correspondence points searching (refocus-
ing ray tracing).

Optical Flow: Optical flow is an effective tool for the
analysis of scene structure or camera motion, and has made sig-
nificant progress in recent years. Different from traditional op-
tical flow applications focused on large displacements, there are
two main challenges for optical flow estimation from light-field
images: sub-pixel displacement and ray-level occlusion. How-
ever, many excellent optical flow methods still provide the inspi-
ration for us. Ayvaci et al. [14] formulated occlusion detection
and optical flow estimation as a joint optimization problem, and
presented two efficient numerical schemes to solve it. Revaud et
al. [15] presented a sparse-to-dense edge-preserving interpolation
of correspondences (EpicFlow) for filling occlusions. Kennedy et
al. [16] proposed an optical flow framework with geometric oc-
clusion estimation and multiple frames fusion.

Light-Field Flow Model
We develop our light-field flow model based on the light-

field imaging mechanism. Different from the traditional optical
flow between two images, our model is built on a single light-field
image. According to the light-field imaging geometry, a light-
field image includes a set of narrow baseline multi-view images
(sub-aperture images). It is evident that optical flows exist in any
two sub-aperture images, and they are data-dependent. We will
discuss the constraints and the correlations among these optical
flows and fuse them into a light-field flow model with occlusion
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Figure 2. Ray tracking and refocusing diagram. The rays (blue rays) come

from the scene point P should converge at a refocused point P′α , and have the

same radiation. Occluded rays (red ones) come from different scene points.

culling.
We first consider two reasonable assumptions before we start

to discuss our light-field flow model.
Photo-consistency assumption: This is an important as-

sumption and implied in most existed methods [4, 5]. It means
all rays converge at a focused point should come from the same
scene point and should have the same radiation, as illustrated by
the blue lines in Figure 2. The radiation distribution of these rays
is tight in noisy scenarios.

Ray-level occlusion assumption: When occlusion oc-
curs, photo-consistency no longer holds, and the manifestation of
occlusion at ray-level is occluded rays [17]. Moreover, these oc-
cluded rays might emit from different scene points on the occlu-
sion objects, as shown by the red lines in Figure 2. The radiation
distribution of occluded rays is sparse and random.

Light-field flow modeling
Let L (x,u) and L (x′,u′) be two sub-aperture images of

light-field data, where x and x′ are the spatial coordinates, and
u and u′ are the angular coordinates, respectively. Under the
photo-consistency assumption, the correspondence between two
sub-aperture images is given by

L (x,u) =
{

L (w(x,u) ,u+∆u)+n(x,u) x /∈Ω

ρ (x,u) x ∈Ω
(1)

where Ω is the occluded region. w(x,u) is the domain defor-
mation mapping L (x,u) onto L (x′,u+∆u) everywhere except
the occluded regions. The additive term n(x,u) is deviations re-
sulted from illumination changes, quantization error, sensor noise,
and linear interpolation error, etc. In the occluded region Ω, the
image can take any value ρ (x,u) that is in general unrelated to
L (w(x,u) ,u+∆u) |x∈Ω.

According to the refocusing equation of light-field image [1],
we have{

w(x,u) = x+β (x) ·∆u
β (x) = 1− 1

α(x)
(2)

where α (x) = F ′
/

F is the refocusing parameter and represents
the depth for each pixel x.

Usually, optical flow denotes the incremental displacement,
i.e.

v(x,u) = w(x,u)−x = β (x) ·∆u (3)
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Figure 3. The framework of our method.

We can eliminate the correlation between optical flow and
angular coordinates of sub-aperture images by dividing ∆u on
both sides. This means all optical flow fields between any two
sub-apertures have the same flow model which is independent of
the property of sub-aperture images. We define it as the light-field
flow model.

Considering the additive term n(x,u) and the occluded re-
gion Ω, the light-field flow model is given by

f lowLF (x,u) =
{

β (x)+δ (x,u) x /∈Ω

ερ (x,u) x ∈Ω
(4)

where δ (x,u) is the deviation term caused by the additive term
n(x,u) in the optical flow estimation , and ερ (x,u) can take any
value when x ∈Ω.

According to the photo-consistency assumption and the ray-
level occlusion assumption, we note that δ (x,u) is small but
dense and ερ (x,u) is usually large but sparse, so we will use
these properties as an inference criterion for β (x) estimation. In
the next section, we will introduce a simple but effective method
to estimate it by a winner-take-all strategy and a weighted voting
mechanism.

Implementation
In this section, we introduce an edge-aware light-field flow

estimation framework for joint depth recovery and occlusion de-
tection, as shown in Figure 3. It includes three main steps: a) opti-
cal flow volume extraction with sub-pixel accuracy from the sub-
aperture image array; b) light-field flow estimation by a winner-

take-all strategy and a weighted voting mechanism; c) Edge-
aware depth regularization with depth-discontinuity preserving.

Optical flow volume extraction
This step independently estimates optical flow from any two

sub-aperture images, and then build them into an optical flow vol-
ume. Considering the sub-pixel displacements and ray-level oc-
clusion between two sub-aperture images, we should use an opti-
cal flow with sub-pixel accuracy.

We adopt the method of Ayvaci et.al [14] to estimate the op-
tical flow between each sub-aperture image and the central sub-
aperture image. The advantage of this method is it formulates
the sub-pixel accurate optical flow estimation and sparse occlu-
sion detection as a joint optimization problem. What need to be
explained is that we do not further use EpicFlow [15] to improve
the estimation accuracy of occluded regions [18] because of its
limited improvement and high time-consuming.

Light-field flow estimation
According to the Equation 4, we unify the optical flow vol-

ume into a light-field flow model.
For the pixel x in the central sub-aperture image, the hori-

zontal and vertical components of each optical flow in the optical
flow volume can provide two potential β (x) values of pixel x.
That is we can get a set of potential β values from the optical flow
volume for each pixel. These potential β values undoubtedly are
degraded by noise δ (x,u) and ερ (x,u). Our task is estimating an
accurate β value for each pixel from these degraded data. Inspired
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Figure 4. The effectiveness of our regularization step.

by the properties of δ (x,u) and ερ (x,u) (discussed in the previ-
ous section), we propose a simple and efficient weighted voting
mechanism for β selection.

For each pixel, more specifically, we uniformly dividing the
valid range of β into several levels. Each potential β value is
treated as a voter, and each voter is assigned to a weight according
to the occlusion probability of each pixel detected in step 1. In
other words, the higher the occlusion probability, the lower the
vote weights. Then we use the winner-take-all strategy to select
the level with the highest number of votes as initial light-field flow
(β value) for each pixel. Initial depth map can be computed by
Equation 2, as shown in Figure 4(a)(b).

Edge-aware depth regularization
Given initial light-field flow, we regularize it with weighted

median filter [19] for the final light-field flow and depth map, as
shown in Figure 4(c)(d). This weighted median filter is a kind
of edge-aware filter based on guided filters [20, 21]. It enforces
a piecewise smooth flow with depth-discontinuity preserving for
each β slice (level). The central sub-aperture image is used as the
guidance image of guided filter.

Experimental Comparisons
In our implementation, the refocusing parameter α ranges

from 0.2 to 2.0, so the valid range of β is from -4.0 to 0.5, and is
quantized into 256 different levels. According to the experience
and experiment analysis, the regularization parameter of guided
filter is set to 0.0001.

We compare our method to those of Jeon et al. [8], Tao et
al. [4] and Wang et al. [6, 7]. The source codes can be downloaded
from the authors’ project webpages.

We validate our method on real-world scenes. Some are
taken by Lytro 1.0 and Lytro Illum cameras, and the sub-aperture
images are extracted by LFToolbox 0.4 [22, 23]. Others are from
EPFL Light-Field Image Dataset [24]. We focus on the algorithm
effectiveness and robustness in handling discontinuities and oc-

(a) Input light-field image (c) Our result (b) Lytro Desktop

(d) Jeon et al. (CVPR2015) (e) Tao et al. (ICCV2013) (f) Wang et al. (ICCV2015)

Figure 5. Robustness comparison on a non-occlusion plane scene.

clusions. Therefore, the scenes with lots of depth, color and tex-
ture discontinuities, especially the objects and backgrounds are
full of complex texture, are selected as our experimental data.

Depth maps for plane scenes Figure 5 shows an interest-
ing robustness comparison on a non-occlusion plane scene. The
real scene is just a picture of the Color Chart. There is no occlu-
sion on the scene except the rich color/texture discontinuity edges.
Jeon’s, Tao’s and Wang’s methods all fail to recover a meaningful
depth map because of the color/texture edge effect. On the con-
trary, our method gives a satisfactory result and is insensitive to
the surface color/texture discontinuities.

Depth maps for real scenes Figures 6 and 7 show the
light-field flow and the depth estimations results on real scenes
with fine structures and occlusions, captured with Lytro 1.0 and
Lytro Illum light-field camera, respectively. Experimental results
show both Joen’s and Tao’s methods lose fine structures, because
the details are vulnerable to textures, edges and noises. Wang’s
method can recover fine details at occlusion boundaries, but it is
not robust to the regions with rich textures. Clearly, our method
performs better, especially at depth discontinuities and occlusions
regions.

Conclusion and Future works
In this paper, we develop a light-field flow model for light-

field cameras by fusing all the optical flows between each sub-
aperture image and the central sub-aperture image. Then an edge-
aware light-field flow estimation framework is presented, targeted
at two main challenges of light-field flow: sub-pixel displacement
and ray-level occlusion. We demonstrate the benefits of light-field
flow by evaluating our algorithm against state-of-the-art methods.

In our method, however, optical flow volume extraction is
still time-consuming because the optical flows estimation from
sub-apertures are independent. Future works will focus on this
issue.
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Figure 6. Light-field flow and depth estimation results on real scenes taken by the Lytro 1.0 light-field camera. These data are selected from the work of Lin et

al., and we get their depth estimation results from their paper [12].
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